27,815 research outputs found

    Neural Face Editing with Intrinsic Image Disentangling

    Full text link
    Traditional face editing methods often require a number of sophisticated and task specific algorithms to be applied one after the other --- a process that is tedious, fragile, and computationally intensive. In this paper, we propose an end-to-end generative adversarial network that infers a face-specific disentangled representation of intrinsic face properties, including shape (i.e. normals), albedo, and lighting, and an alpha matte. We show that this network can be trained on "in-the-wild" images by incorporating an in-network physically-based image formation module and appropriate loss functions. Our disentangling latent representation allows for semantically relevant edits, where one aspect of facial appearance can be manipulated while keeping orthogonal properties fixed, and we demonstrate its use for a number of facial editing applications.Comment: CVPR 2017 ora

    Object recognition using shape-from-shading

    Get PDF
    This paper investigates whether surface topography information extracted from intensity images using a recently reported shape-from-shading (SFS) algorithm can be used for the purposes of 3D object recognition. We consider how curvature and shape-index information delivered by this algorithm can be used to recognize objects based on their surface topography. We explore two contrasting object recognition strategies. The first of these is based on a low-level attribute summary and uses histograms of curvature and orientation measurements. The second approach is based on the structural arrangement of constant shape-index maximal patches and their associated region attributes. We show that region curvedness and a string ordering of the regions according to size provides recognition accuracy of about 96 percent. By polling various recognition schemes. including a graph matching method. we show that a recognition rate of 98-99 percent is achievable

    Evaluating color texture descriptors under large variations of controlled lighting conditions

    Full text link
    The recognition of color texture under varying lighting conditions is still an open issue. Several features have been proposed for this purpose, ranging from traditional statistical descriptors to features extracted with neural networks. Still, it is not completely clear under what circumstances a feature performs better than the others. In this paper we report an extensive comparison of old and new texture features, with and without a color normalization step, with a particular focus on how they are affected by small and large variation in the lighting conditions. The evaluation is performed on a new texture database including 68 samples of raw food acquired under 46 conditions that present single and combined variations of light color, direction and intensity. The database allows to systematically investigate the robustness of texture descriptors across a large range of variations of imaging conditions.Comment: Submitted to the Journal of the Optical Society of America
    • …
    corecore