137,003 research outputs found

    Representation and decision making in the immune system

    Get PDF
    The immune system has long been attributed cognitive capacities such as "recognition" of pathogenic agents; "memory" of previous infections; "regulation" of a cavalry of detector and effector cells; and "adaptation" to a changing environment and evolving threats. Ostensibly, in preventing disease the immune system must be capable of discriminating states of pathology in the organism; identifying causal agents or ``pathogens''; and correctly deploying lethal effector mechanisms. What is more, these behaviours must be learnt insomuch as the paternal genes cannot encode the pathogenic environment of the child. Insights into the mechanisms underlying these phenomena are of interest, not only to immunologists, but to computer scientists pushing the envelope of machine autonomy. This thesis approaches these phenomena from the perspective that immunological processes are inherently inferential processes. By considering the immune system as a statistical decision maker, we attempt to build a bridge between the traditionally distinct fields of biological modelling and statistical modelling. Through a mixture of novel theoretical and empirical analysis we assert the efficacy of competitive exclusion as a general principle that benefits both. For the immunologist, the statistical modelling perspective allows us to better determine that which is phenomenologically sufficient from the mass of observational data, providing quantitative insight that may offer relief from existing dichotomies. For the computer scientist, the biological modelling perspective results in a theoretically transparent and empirically effective numerical method that is able to finesse the trade-off between myopic greediness and intractability in domains such as sparse approximation, continuous learning and boosting weak heuristics. Together, we offer this as a modern reformulation of the interface between computer science and immunology, established in the seminal work of Perelson and collaborators, over 20 years ago.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Representation and Decision Making in the Immune System

    Get PDF
    The immune system has long been attributed cognitive capacities such as "recognition" of pathogenic agents; "memory" of previous infections; "regulation" of a cavalry of detector and effector cells; and "adaptation" to a changing environment and evolving threats. Ostensibly, in preventing disease the immune system must be capable of discriminating states of pathology in the organism; identifying causal agents or "pathogens"; and correctly deploying lethal effector mechanisms. What is more, these behaviours must be learnt insomuch as the paternal genes cannot encode the pathogenic environment of the child. Insights into the mechanisms underlying these phenomena are of interest, not only to immunologists, but to computer scientists pushing the envelope of machine autonomy.This thesis approaches these phenomena from the perspective that immunological processes are inherently inferential processes. By considering the immune system as a statistical decision maker, we attempt to build a bridge between the traditionally distinct fields of biological modelling and statistical modelling. Through a mixture of novel theoretical and empirical analysis we assert the efficacy of competitive exclusion as a general principle that benefits both. For the immunologist, the statistical modelling perspective allows us to better determine that which is phenomenologically sufficient from the mass of observational data, providing quantitative insight that may offer relief from existing dichotomies. For the computer scientist, the biological modelling perspective results in a theoretically transparent and empirically effective numerical method that is able to finesse the trade-off between myopic greediness and intractability in domains such as sparse approximation, continuous learning and boosting weak heuristics. Together, we offer this as a modern reformulation of the interface between computer science and immunology, established in the seminal work of Perelson and collaborators, over 20 years ago

    Immune cognition, social justice and asthma: structured stress and the developing immune system

    Get PDF
    We explore the implications of IR Cohen's work on immune cognition for understanding rising rates of asthma morbidity and mortality in the US. Immune cognition is conjoined with central nervous system cognition, and with the cognitive function of the embedding sociocultural networks by which individuals are acculturated and through which they work with others to meet challenges of threat and opportunity. Using a mathematical model, we find that externally- imposed patterns of 'structured stress' can, through their effect on a child's socioculture, become synergistic with the development of immune cognition, triggering the persistence of an atopic Th2 phenotype, a necessary precursor to asthma and other immune disease. Reversal of the rising tide of asthma and related chronic diseases in the US thus seems unlikely without a 21st Century version of the earlier Great Urban Reforms which ended the scourge of infectious diseases

    Selection pressure and organizational cognition: implications for the social determinants of health

    Get PDF
    We model the effects of Schumperterian 'selecton pressures' -- in particular Apartheid and the neoliberal 'market economy' -- on organizational cognition in minority communities, given the special role of culture in human biology. Our focus is on the dual-function social networks by which culture is imposed and maintained on individuals and by which immediate patterns of opportunity and threat are recognized and given response. A mathematical model based on recent advances in complexity theory displays a joint cross-scale linkage of social, individual central nervous system, and immune cognition with external selection pressure through mixed and synergistic punctuated 'learning plateaus.' This provides a natural mechanism for addressing the social determinants of health at the individual level. The implications of the model, particularly the predictions of synergistic punctuation, appear to be empirically testable

    Application of an AIS to the problem of through life health management of remotely piloted aircraft

    Get PDF
    The operation of RPAS includes a cognitive problem for the operators(Pilots, maintainers, ,managers, and the wider organization) to effectively maintain their situational awareness of the aircraft and predict its health state. This has a large impact on their ability to successfully identify faults and manage systems during operations. To overcome these system deficiencies an asset health management system that integrates more cognitive abilities to aid situational awareness could prove beneficial. This paper outlines an artificial immune system (AIS) approach that could meet these challenges and an experimental method within which to evaluate it
    corecore