423,253 research outputs found

    Optical Flow Guided Feature: A Fast and Robust Motion Representation for Video Action Recognition

    Full text link
    Motion representation plays a vital role in human action recognition in videos. In this study, we introduce a novel compact motion representation for video action recognition, named Optical Flow guided Feature (OFF), which enables the network to distill temporal information through a fast and robust approach. The OFF is derived from the definition of optical flow and is orthogonal to the optical flow. The derivation also provides theoretical support for using the difference between two frames. By directly calculating pixel-wise spatiotemporal gradients of the deep feature maps, the OFF could be embedded in any existing CNN based video action recognition framework with only a slight additional cost. It enables the CNN to extract spatiotemporal information, especially the temporal information between frames simultaneously. This simple but powerful idea is validated by experimental results. The network with OFF fed only by RGB inputs achieves a competitive accuracy of 93.3% on UCF-101, which is comparable with the result obtained by two streams (RGB and optical flow), but is 15 times faster in speed. Experimental results also show that OFF is complementary to other motion modalities such as optical flow. When the proposed method is plugged into the state-of-the-art video action recognition framework, it has 96:0% and 74:2% accuracy on UCF-101 and HMDB-51 respectively. The code for this project is available at https://github.com/kevin-ssy/Optical-Flow-Guided-Feature.Comment: CVPR 2018. code available at https://github.com/kevin-ssy/Optical-Flow-Guided-Featur

    Ordered Pooling of Optical Flow Sequences for Action Recognition

    Full text link
    Training of Convolutional Neural Networks (CNNs) on long video sequences is computationally expensive due to the substantial memory requirements and the massive number of parameters that deep architectures demand. Early fusion of video frames is thus a standard technique, in which several consecutive frames are first agglomerated into a compact representation, and then fed into the CNN as an input sample. For this purpose, a summarization approach that represents a set of consecutive RGB frames by a single dynamic image to capture pixel dynamics is proposed recently. In this paper, we introduce a novel ordered representation of consecutive optical flow frames as an alternative and argue that this representation captures the action dynamics more effectively than RGB frames. We provide intuitions on why such a representation is better for action recognition. We validate our claims on standard benchmark datasets and demonstrate that using summaries of flow images lead to significant improvements over RGB frames while achieving accuracy comparable to the state-of-the-art on UCF101 and HMDB datasets.Comment: Accepted in WACV 201

    Designing Motion Representation in Videos

    Get PDF
    Motion representation plays a vital role in the vision-based human action recognition in videos. Generally, the information of a video could be divided into spatial information and temporal information. While the spatial information could be easily described by the RGB images, the design of the motion representation is yet a challenging problem. In order to design a motion representation that is efficient and effective, we design the feature according to two principles. First, to guarantee the robustness, the temporal information should be highly related to the informative modalities, e.g., the optical flow. Second, only basic operations could be applied to make the computational cost affordable when extracting the temporal information. Based on these principles, we introduce a novel compact motion representation for video action recognition, named Optical Flow guided Feature (OFF), which enables the network to distil temporal information through a fast and robust approach. The OFF is derived from the definition of optical flow and is orthogonal to the optical flow. The derivation also provides theoretical support for using the difference between two frames. By directly calculating pixel-wise spatiotemporal gradients of the deep feature maps, the OFF could be embedded in any existing CNN based video action recognition framework with only a slight additional cost. It enables the CNN to extract spatiotemporal information. This simple but powerful idea is validated by experimental results. The network with OFF fed only by RGB inputs achieves a competitive accuracy of 93.3% on UCF-101, which is comparable with the result obtained by two streams (RGB and optical flow), but is 15 times faster in speed. Experimental results also show that OFF is complementary to other motion modalities such as optical flow. When the proposed method is plugged into the state-of-the-art video action recognition framework, it has 96.0% and 74.2% accuracy on UCF-101 and HMDB-51 respectively

    Action Recognition Using Particle Flow Fields

    Get PDF
    In recent years, research in human action recognition has advanced on multiple fronts to address various types of actions including simple, isolated actions in staged data (e.g., KTH dataset), complex actions (e.g., Hollywood dataset), and naturally occurring actions in surveillance videos (e.g, VIRAT dataset). Several techniques including those based on gradient, flow, and interest-points, have been developed for their recognition. Most perform very well in standard action recognition datasets, but fail to produce similar results in more complex, large-scale datasets. Action recognition on large categories of unconstrained videos taken from the web is a very challenging problem compared to datasets like KTH (six actions), IXMAS (thirteen actions), and Weizmann (ten actions). Challenges such as camera motion, different viewpoints, huge interclass variations, cluttered background, occlusions, bad illumination conditions, and poor quality of web videos cause the majority of the state-of-the-art action recognition approaches to fail. An increasing number of categories and the inclusion of actions with high confusion also increase the difficulty of the problem. The approach taken to solve this action recognition problem depends primarily on the dataset and the possibility of detecting and tracking the object of interest. In this dissertation, a new method for video representation is proposed and three new approaches to perform action recognition in different scenarios using varying prerequisites are presented. The prerequisites have decreasing levels of difficulty to obtain: 1) Scenario requires human detection and trackiii ing to perform action recognition; 2) Scenario requires background and foreground separation to perform action recognition; and 3) No pre-processing is required for action recognition. First, we propose a new video representation using optical flow and particle advection. The proposed “Particle Flow Field” (PFF) representation has been used to generate motion descriptors and tested in a Bag of Video Words (BoVW) framework on the KTH dataset. We show that particle flow fields has better performance than other low-level video representations, such as 2D-Gradients, 3D-Gradients and optical flow. Second, we analyze the performance of the state-of-the-art technique based on the histogram of oriented 3D-Gradients in spatio temporal volumes, where human detection and tracking are required. We use the proposed particle flow field and show superior results compared to the histogram of oriented 3D-Gradients in spatio temporal volumes. The proposed method, when used for human action recognition, just needs human detection and does not necessarily require human tracking and figure centric bounding boxes. It has been tested on KTH (six actions), Weizmann (ten actions), and IXMAS (thirteen actions, 4 different views) action recognition datasets. Third, we propose using the scene context information obtained from moving and stationary pixels in the key frames, in conjunction with motion descriptors obtained using Bag of Words framework, to solve the action recognition problem on a large (50 actions) dataset with videos from the web. We perform a combination of early and late fusion on multiple features to handle the huge number of categories. We demonstrate that scene context is a very important feature for performing action recognition on huge datasets. iv The proposed method needs separation of moving and stationary pixels, and does not require any kind of video stabilization, person detection, or tracking and pruning of features. Our approach obtains good performance on a huge number of action categories. It has been tested on the UCF50 dataset with 50 action categories, which is an extension of the UCF YouTube Action (UCF11) Dataset containing 11 action categories. We also tested our approach on the KTH and HMDB51 datasets for comparison. Finally, we focus on solving practice problems in representing actions by bag of spatio temporal features (i.e. cuboids), which has proven valuable for action recognition in recent literature. We observed that the visual vocabulary based (bag of video words) method suffers from many drawbacks in practice, such as: (i) It requires an intensive training stage to obtain good performance; (ii) it is sensitive to the vocabulary size; (iii) it is unable to cope with incremental recognition problems; (iv) it is unable to recognize simultaneous multiple actions; (v) it is unable to perform recognition frame by frame. In order to overcome these drawbacks, we propose a framework to index large scale motion features using Sphere/Rectangle-tree (SR-tree) for incremental action detection and recognition. The recognition comprises of the following two steps: 1) recognizing the local features by non-parametric nearest neighbor (NN), and 2) using a simple voting strategy to label the action. It can also provide localization of the action. Since it does not require feature quantization it can efficiently grow the feature-tree by adding features from new training actions or categories. Our method provides an effective way for practical incremental action recognition. Furthermore, it can handle large scale datasets because the SR-tree is a disk-based v data structure. We tested our approach on two publicly available datasets, the KTH dataset and the IXMAS multi-view dataset, and achieved promising results

    Human action recognition with line and flow histograms

    Get PDF
    We present a compact representation for human action recognition in videos using line and optical flow histograms. We introduce a new shape descriptor based on the distribution of lines which are fitted to boundaries of human figures. By using an entropy-based approach, we apply feature selection to densify our feature representation, thus, minimizing classification time without degrading accuracy. We also use a compact representation of optical flow for motion information. Using line and flow histograms together with global velocity information, we show that high-accuracy action recognition is possible, even in challenging recording conditions. © 2008 IEEE
    corecore