7 research outputs found

    Scalable methods for computing state similarity in deterministic Markov Decision Processes

    Full text link
    We present new algorithms for computing and approximating bisimulation metrics in Markov Decision Processes (MDPs). Bisimulation metrics are an elegant formalism that capture behavioral equivalence between states and provide strong theoretical guarantees on differences in optimal behaviour. Unfortunately, their computation is expensive and requires a tabular representation of the states, which has thus far rendered them impractical for large problems. In this paper we present a new version of the metric that is tied to a behavior policy in an MDP, along with an analysis of its theoretical properties. We then present two new algorithms for approximating bisimulation metrics in large, deterministic MDPs. The first does so via sampling and is guaranteed to converge to the true metric. The second is a differentiable loss which allows us to learn an approximation even for continuous state MDPs, which prior to this work had not been possible.Comment: To appear in Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20

    Representation Discovery for MDPs Using Bisimulation Metrics

    No full text
    We provide a novel, flexible, iterative refinement algorithm to automatically construct an approximate statespace representation for Markov Decision Processes (MDPs). Our approach leverages bisimulation metrics, which have been used in prior work to generate features to represent the state space of MDPs.We address a drawback of this approach, which is the expensive computation of the bisimulation metrics. We propose an algorithm to generate an iteratively improving sequence of state space partitions. Partial metric computations guide the representation search and provide much lower space and computational complexity, while maintaining strong convergence properties. We provide theoretical results guaranteeing convergence as well as experimental illustrations of the accuracy and savings (in time and memory usage) of the new algorithm, compared to traditional bisimulation metric computation

    Representation Discovery for MDPs Using Bisimulation Metrics

    No full text
    We provide a novel, flexible, iterative refinement algorithm to automatically construct an approximate statespace representation for Markov Decision Processes (MDPs). Our approach leverages bisimulation metrics, which have been used in prior work to generate features to represent the state space of MDPs. We address a drawback of this approach, which is the expensive computation of the bisimulation metrics. We propose an algorithm to generate an iteratively improving sequence of state space partitions. Partial metric computations guide the representation search and provide much lower space and computational complexity, while maintaining strong convergence properties. We provide theoretical results guaranteeing convergence as well as experimental illustrations of the accuracy and savings (in time and memory usage) of the new algorithm, compared to traditional bisimulation metric computation
    corecore