4 research outputs found

    A Methodology for Implementing RF BiSTs in Production Testing to Replace RF Conventional Tests

    Get PDF
    Production testing of Radio Frequency (RF) devices is challenging due to the complex nature of the tests that have to be performed to verify functionality. In this dissertation a methodology to replace the complex and expensive RF functional tests with defect-oriented Built-in Self Tests (BiSTs) is detailed. If a design has sufficient margin to RF specifications then RF tests can be replaced with structural tests using a new data analysis technique called quadrant analysis, which is presented. Data from the analysis of over one million production units of said System on Chip (SoC) is presented along with the results of the analysis. The BiST techniques that have been used are discussed and a Texas Instruments 65 nm RF SoC with a Bluetooth and a FM core was used as a case study. The defect models that were used to develop the BiSTs are discussed as well. The scenario in which a design does not have sufficient margin to specification is also discussed. The data analysis method required in such a case is a regression analysis and the data from such an analysis is shown. The results prove that it is possible to replace expensive RF conventional tests with structural tests and that modern RFCMOS process technology and advances in design like the Digital Radio Processor (DRPTM) technology enable this. The Defective Parts Per Million (DPPM) impact of making this replacement is 27 units and is acceptable for RFCMOS high volume products. Finally, data showing test cost reduction of about 38% that resulted from the elimination of RF conventional tests is presented

    Design methodologies for built-in testing of integrated RF transceivers with the on-chip loopback technique

    Get PDF
    Advances toward increased integration and complexity of radio frequency (RF) andmixed-signal integrated circuits reduce the effectiveness of contemporary testmethodologies and result in a rising cost of testing. The focus in this research is on thecircuit-level implementation of alternative test strategies for integrated wirelesstransceivers with the aim to lower test cost by eliminating the need for expensive RFequipment during production testing.The first circuit proposed in this thesis closes the signal path between the transmitterand receiver sections of integrated transceivers in test mode for bit error rate analysis atlow frequencies. Furthermore, the output power of this on-chip loopback block wasmade variable with the goal to allow gain and 1-dB compression point determination forthe RF front-end circuits with on-chip power detectors. The loopback block is intendedfor transceivers operating in the 1.9-2.4GHz range and it can compensate for transmitterreceiveroffset frequency differences from 40MHz to 200MHz. The measuredattenuation range of the 0.052mm2 loopback circuit in 0.13µm CMOS technology was 26-41dB with continuous control, but post-layout simulation results indicate that theattenuation range can be reduced to 11-27dB via optimizations.Another circuit presented in this thesis is a current generator for built-in testing ofimpedance-matched RF front-end circuits with current injection. Since this circuit hashigh output impedance (>1k up to 2.4GHz), it does not influence the input matchingnetwork of the low-noise amplifier (LNA) under test. A major advantage of the currentinjection method over the typical voltage-mode approach is that the built-in test canexpose fabrication defects in components of the matching network in addition to on-chipdevices. The current generator was employed together with two power detectors in arealization of a built-in test for a LNA with 14% layout area overhead in 0.13µm CMOStechnology (<1.5% for the 0.002mm2 current generator). The post-layout simulationresults showed that the LNA gain (S21) estimation with the external matching networkwas within 3.5% of the actual gain in the presence of process-voltage-temperaturevariations and power detector imprecision

    Generación y evaluación de formas de onda en un transmisor 5G con agregación de señales banda ancha-estrecha

    Get PDF
    El objetivo del presente TFG es el estudio y evaluación de los nuevos esquemas de transmisión que surgen en los sistemas de comunicaciones móviles actualmente en desarrollo. En estos sistemas, además de los servicios clásicos de voz y datos, se requiere prestar una serie de servicios avanzados, como pueden ser los relativos a Internet of Things, comunicaciones vehiculares o comunicaciones para misión crítica, para los cuales se precisa integrar señales de banda ancha con otras de banda estrecha. Estos servicios se empezaron a introducir en los sistemas 4G debido a la versatilidad de la modulación OFDM y se espera que sean los de 5G los que den una respuesta completa a los mismos. Para la consecución de los objetivos expuestos, se proponen dos simuladores implementados en el entorno software Matlab que permiten generar las señales características del estándar 5G, agregadas con otras de distinta naturaleza. Ambos posibilitan la reconfiguración de una gran variedad de parámetros, especialmente aquellos de la capa física, por ser los más influyentes en lo que queremos analizar. Se incluyen, además, una serie de extras orientados a una caracterización más precisa de la realidad, como son el modelado de sistemas no lineales o del canal de transmisión. A partir de todo esto, se generarán diversos escenarios y se evaluará el comportamiento y prestaciones del sistema en base a medidas de linealidad y distorsión en banda.Por último, se determinará, a partir de los resultados obtenidos, cuáles serían las condiciones y configuraciones óptimas de transmisión según el caso, para escenarios avanzados en los que intervienen tanto señales de banda ancha como de banda estrecha, mejorando así la eficiencia y prestaciones de las comunicaciones.<br /

    Resilience of an embedded architecture using hardware redundancy

    Get PDF
    In the last decade the dominance of the general computing systems market has being replaced by embedded systems with billions of units manufactured every year. Embedded systems appear in contexts where continuous operation is of utmost importance and failure can be profound. Nowadays, radiation poses a serious threat to the reliable operation of safety-critical systems. Fault avoidance techniques, such as radiation hardening, have been commonly used in space applications. However, these components are expensive, lag behind commercial components with regards to performance and do not provide 100% fault elimination. Without fault tolerant mechanisms, many of these faults can become errors at the application or system level, which in turn, can result in catastrophic failures. In this work we study the concepts of fault tolerance and dependability and extend these concepts providing our own definition of resilience. We analyse the physics of radiation-induced faults, the damage mechanisms of particles and the process that leads to computing failures. We provide extensive taxonomies of 1) existing fault tolerant techniques and of 2) the effects of radiation in state-of-the-art electronics, analysing and comparing their characteristics. We propose a detailed model of faults and provide a classification of the different types of faults at various levels. We introduce an algorithm of fault tolerance and define the system states and actions necessary to implement it. We introduce novel hardware and system software techniques that provide a more efficient combination of reliability, performance and power consumption than existing techniques. We propose a new element of the system called syndrome that is the core of a resilient architecture whose software and hardware can adapt to reliable and unreliable environments. We implement a software simulator and disassembler and introduce a testing framework in combination with ERA’s assembler and commercial hardware simulators
    corecore