12 research outputs found

    Approximate Cover of Strings

    Get PDF
    Regularities in strings arise in various areas of science, including coding and automata theory, formal language theory, combinatorics, molecular biology and many others. A common notion to describe regularity in a string T is a cover, which is a string C for which every letter of T lies within some occurrence of C. The alignment of the cover repetitions in the given text is called a tiling. In many applications finding exact repetitions is not sufficient, due to the presence of errors. In this paper, we use a new approach for handling errors in coverable phenomena and define the approximate cover problem (ACP), in which we are given a text that is a sequence of some cover repetitions with possible mismatch errors, and we seek a string that covers the text with the minimum number of errors. We first show that the ACP is NP-hard, by studying the cover-size relaxation of the ACP, in which the requested size of the approximate cover is also given with the input string. We show this relaxation is already NP-hard. We also study another two relaxations of the ACP, which we call the partial-tiling relaxation of the ACP and the full-tiling relaxation of the ACP, in which a tiling of the requested cover is also given with the input string. A given full tiling retains all the occurrences of the cover before the errors, while in a partial tiling there can be additional occurrences of the cover that are not marked by the tiling. We show that the partial-tiling relaxation has a polynomial time complexity and give experimental evidence that the full-tiling also has polynomial time complexity. The study of these relaxations, besides shedding another light on the complexity of the ACP, also involves a deep understanding of the properties of covers, yielding some key lemmas and observations that may be helpful for a future study of regularities in the presence of errors

    Repetitive perhaps, but certainly not boring

    No full text
    In this paper some of the work done on repetitions in strings is surveyed, especially that of an algorithmic nature. Several open problems are described and conjectures formulated about some of them

    Can We Recover the Cover?

    Get PDF
    Data analysis typically involves error recovery and detection of regularities as two different key tasks. In this paper we show that there are data types for which these two tasks can be powerfully combined. A common notion of regularity in strings is that of a cover. Data describing measures of a natural coverable phenomenon may be corrupted by errors caused by the measurement process, or by the inexact features of the phenomenon itself. Due to this reason, different variants of approximate covers have been introduced, some of which are NP-hard to compute. In this paper we assume that the Hamming distance metric measures the amount of corruption experienced, and study the problem of recovering the correct cover from data corrupted by mismatch errors, formally defined as the cover recovery problem (CRP). We show that for the Hamming distance metric, coverability is a powerful property allowing detecting the original cover and correcting the data, under suitable conditions. We also study a relaxation of another problem, which is called the approximate cover problem (ACP). Since the ACP is proved to be NP-hard [Amir,Levy,Lubin,Porat, CPM 2017], we study a relaxation, which we call the candidate-relaxation of the ACP, and show it has a polynomial time complexity. As a result, we get that the ACP also has a polynomial time complexity in many practical situations. An important application of our ACP relaxation study is also a polynomial time algorithm for the cover recovery problem (CRP)

    Quasi-Periodicity Under Mismatch Errors

    Get PDF
    Tracing regularities plays a key role in data analysis for various areas of science, including coding and automata theory, formal language theory, combinatorics, molecular biology and many others. Part of the scientific process is understanding and explaining these regularities. A common notion to describe regularity in a string T is a cover or quasi-period, which is a string C for which every letter of T lies within some occurrence of C. In many applications finding exact repetitions is not sufficient, due to the presence of errors. In this paper we initiate the study of quasi-periodicity persistence under mismatch errors, and our goal is to characterize situations where a given quasi-periodic string remains quasi-periodic even after substitution errors have been introduced to the string. Our study results in proving necessary conditions as well as a theorem stating sufficient conditions for quasi-periodicity persistence. As an application, we are able to close the gap in understanding the complexity of Approximate Cover Problem (ACP) relaxations studied by [Amir 2017a, Amir 2017b] and solve an open question

    Repetitive perhaps, but certainly not boring

    No full text
    In this paper some of the work done on repetitions in strings is surveyed, especially that of an algorithmic nature. Several open problems are described and conjectures formulated about some of them

    String Covering: A Survey

    Full text link
    The study of strings is an important combinatorial field that precedes the digital computer. Strings can be very long, trillions of letters, so it is important to find compact representations. Here we first survey various forms of one potential compaction methodology, the cover of a given string x, initially proposed in a simple form in 1990, but increasingly of interest as more sophisticated variants have been discovered. We then consider covering by a seed; that is, a cover of a superstring of x. We conclude with many proposals for research directions that could make significant contributions to string processing in future
    corecore