6,351 research outputs found

    Combining data-driven MT systems for improved sign language translation

    Get PDF
    In this paper, we investigate the feasibility of combining two data-driven machine translation (MT) systems for the translation of sign languages (SLs). We take the MT systems of two prominent data-driven research groups, the MaTrEx system developed at DCU and the Statistical Machine Translation (SMT) system developed at RWTH Aachen University, and apply their respective approaches to the task of translating Irish Sign Language and German Sign Language into English and German. In a set of experiments supported by automatic evaluation results, we show that there is a definite value to the prospective merging of MaTrEx’s Example-Based MT chunks and distortion limit increase with RWTH’s constraint reordering

    A Survey of Word Reordering in Statistical Machine Translation: Computational Models and Language Phenomena

    Get PDF
    Word reordering is one of the most difficult aspects of statistical machine translation (SMT), and an important factor of its quality and efficiency. Despite the vast amount of research published to date, the interest of the community in this problem has not decreased, and no single method appears to be strongly dominant across language pairs. Instead, the choice of the optimal approach for a new translation task still seems to be mostly driven by empirical trials. To orientate the reader in this vast and complex research area, we present a comprehensive survey of word reordering viewed as a statistical modeling challenge and as a natural language phenomenon. The survey describes in detail how word reordering is modeled within different string-based and tree-based SMT frameworks and as a stand-alone task, including systematic overviews of the literature in advanced reordering modeling. We then question why some approaches are more successful than others in different language pairs. We argue that, besides measuring the amount of reordering, it is important to understand which kinds of reordering occur in a given language pair. To this end, we conduct a qualitative analysis of word reordering phenomena in a diverse sample of language pairs, based on a large collection of linguistic knowledge. Empirical results in the SMT literature are shown to support the hypothesis that a few linguistic facts can be very useful to anticipate the reordering characteristics of a language pair and to select the SMT framework that best suits them.Comment: 44 pages, to appear in Computational Linguistic

    Seeding statistical machine translation with translation memory output through tree-based structural alignment

    Get PDF
    With the steadily increasing demand for high-quality translation, the localisation industry is constantly searching for technologies that would increase translator throughput, with the current focus on the use of high-quality Statistical Machine Translation (SMT) as a supplement to the established Translation Memory (TM) technology. In this paper we present a novel modular approach that utilises state-of-the-art sub-tree alignment to pick out pre-translated segments from a TM match and seed with them an SMT system to produce a final translation. We show that the presented system can outperform pure SMT when a good TM match is found. It can also be used in a Computer-Aided Translation (CAT) environment to present almost perfect translations to the human user with markup highlighting the segments of the translation that need to be checked manually for correctness

    Statistical Machine Translation Features with Multitask Tensor Networks

    Full text link
    We present a three-pronged approach to improving Statistical Machine Translation (SMT), building on recent success in the application of neural networks to SMT. First, we propose new features based on neural networks to model various non-local translation phenomena. Second, we augment the architecture of the neural network with tensor layers that capture important higher-order interaction among the network units. Third, we apply multitask learning to estimate the neural network parameters jointly. Each of our proposed methods results in significant improvements that are complementary. The overall improvement is +2.7 and +1.8 BLEU points for Arabic-English and Chinese-English translation over a state-of-the-art system that already includes neural network features.Comment: 11 pages (9 content + 2 references), 2 figures, accepted to ACL 2015 as a long pape
    corecore