3 research outputs found

    Doctor of Philosophy in Computer Science

    Get PDF
    dissertationRay tracing is becoming more widely adopted in offline rendering systems due to its natural support for high quality lighting. Since quality is also a concern in most real time systems, we believe ray tracing would be a welcome change in the real time world, but is avoided due to insufficient performance. Since power consumption is one of the primary factors limiting the increase of processor performance, it must be addressed as a foremost concern in any future ray tracing system designs. This will require cooperating advances in both algorithms and architecture. In this dissertation I study ray tracing system designs from a data movement perspective, targeting the various memory resources that are the primary consumer of power on a modern processor. The result is high performance, low energy ray tracing architectures

    Practical photon mapping in hardware

    Get PDF
    Photon mapping is a popular global illumination algorithm that can reproduce a wide range of visual effects including indirect illumination, color bleeding and caustics on complex diffuse, glossy, and specular surfaces modeled using arbitrary geometric primitives. However, the large amount of computation and tremendous amount of memory bandwidth, terabytes per second, required makes photon mapping prohibitively expensive for interactive applications. In this dissertation I present three techniques that work together to reduce the bandwidth requirements of photon mapping by over an order of magnitude. These are combined in a hardware architecture that can provide interactive performance on moderately-sized indirectly-illuminated scenes using a pre-computed photon map. 1. The computations of the naive photon map algorithm are efficiently reordered, generating exactly the same image, but with an order of magnitude less bandwidth due to an easily cacheable sequence of memory accesses. 2. The irradiance caching algorithm is modified to allow fine-grain parallel execution by removing the sequential dependency between pixels. The bandwidth requirements of scenes with diffuse surfaces and low geometric complexity is reduced by an additional 40% or more. 3. Generating final gather rays in proportion to both the incident radiance and the reflectance functions requires fewer final gather rays for images of the same quality. Combined Importance Sampling is simple to implement, cheap to compute, compatible with query reordering, and can reduce bandwidth requirements by an order of magnitude. Functional simulation of a practical and scalable hardware architecture based on these three techniques shows that an implementation that would fit within a host workstation will achieve interactive rates. This architecture is therefore a candidate for the next generation of graphics hardware
    corecore