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ABSTRACT

JOSHUA ELI STEINHURST: Practical Photon Mapping in Hardware
(Under the direction of Dr. Anselmo Lastra)

Photon mapping is a popular global illumination algorithm that can reproduce a wide

range of visual effects including indirect illumination, color bleeding and caustics on com-

plex diffuse, glossy, and specular surfaces modeled using arbitrary geometric primitives.

However, the large amount of computation and tremendous amount of memory band-

width, terabytes per second, required makes photon mapping prohibitively expensive for

interactive applications.

In this dissertation I present three techniques that work together to reduce the band-

width requirements of photon mapping by over an order of magnitude. These are com-

bined in a hardware architecture that can provide interactive performance on moderately-

sized indirectly-illuminated scenes using a pre-computed photon map.

1. The computations of the naive photon map algorithm are efficiently reordered,

generating exactly the same image, but with an order of magnitude less bandwidth

due to an easily cacheable sequence of memory accesses.

2. The irradiance caching algorithm is modified to allow fine-grain parallel execution

by removing the sequential dependency between pixels. The bandwidth require-

ments of scenes with diffuse surfaces and low geometric complexity is reduced by

an additional 40% or more.

3. Generating final gather rays in proportion to both the incident radiance and the

reflectance functions requires fewer final gather rays for images of the same quality.
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Combined Importance Sampling is simple to implement, cheap to compute, com-

patible with query reordering, and can reduce bandwidth requirements by an order

of magnitude.

Functional simulation of a practical and scalable hardware architecture based on these

three techniques shows that an implementation that would fit within a host workstation

will achieve interactive rates. This architecture is therefore a candidate for the next

generation of graphics hardware.
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CHAPTER 1

INTRODUCTION

“Computer graphics is now a mature discipline. Both hardware and software
are available that facilitate the production of graphical images as diverse as
line drawings and realistic renderings of natural objects. A decade ago the
hardware and software to generate these graphical images cost hundreds of
thousands of dollars. Today, excellent facilities are available for expenditures
in the tens of thousands of dollars . . . ”

— Procedural Elements For Computer Graphics (Rogers, 1985, xi)

Not only has the cost of graphics hardware fallen by an order of magnitude each of the

last three decades, but the expectations of graphics consumers has grown correspondingly.

The original applications that inspired and funded early computer graphics research, such

as scientific visualization, Computer Aided Design (CAD), and flight simulators, continue

to flourish. However, the primary driver of the computer graphics industry, and therefore

research, is now entertainment applications such as movies and video games, which have

insatiable demands for higher quality imagery.

Not content with wireframe or plastic looking objects, movie audiences now expect

photo-realistic scenery, characters, and special effects. In addition to the careful work of

whole teams of artists and the sheer increase in computer speed, this has been achieved

by the increasing sophistication of computer graphics rendering algorithms. One of the

many areas of improvement has been the more faithful simulation of the physics of light.

Shadows, indirect lighting, and reflections are all natural effects that we expect to see

in an image when appropriate. However, this kind of simulation can be very expensive.

Each of the 24 images per second in a movie often requires several hours of computation.



In 2005, domestic video game sales overtook movie box office receipts (Crandall and

Sidak, 2006; MPAA, 2006). Much of this success can be attributed to the increas-

ing sophistication of consumer graphics hardware available at reasonable prices. This

has allowed game developers to produce interactive experiences that are visually closer

to movies. There is a crucial difference that explains the still obvious gap in quality.

Movies require the generation of approximately one quarter of a million images, but only

once. Stored on film or disk, the images are simply displayed to viewers. Interactive

video games, however, must produce dozens of unique images every second for each and

every player. Even with the most powerful commodity graphics hardware available, only

a simplistic light transport algorithm can typically be used. This dissertation presents a

novel architecture that can interactively generate images using an advanced light trans-

port algorithm, photon mapping. This will allow for more photo-realistic imagery in

interactive applications such as video games.

1.1 Realistic image synthesis

Modelling the interaction of light and the objects in a scene is the essence of realistic image

synthesis. The detail with which we can specify the geometry of a scene has improved

remarkable over the years. Commodity graphics hardware allows the interactive viewing

of all but the largest of scenes. It is the more accurate simulation of light transport that

will differentiate the next generation of graphics hardware.

Local illumination models assume that light is emitted by a source, reflects off a single

surface and is captured on the viewing plane forming an image. Although sophisticated

physically-based and directly acquired models of reflection are now in use, the framework

in which they are used in commodity hardware is relatively simple. The illumination at

any point in the scene is independent of the rest of the scene. This separability enables

a high degree of parallelism that is well exploited in existing hardware.

2



Real world illumination at a single point, however, is dependent on the entire scene.

One object may cast a shadow on another, light may bounce indirectly off of multiple

objects, there may be highly specular mirrors, caustics may form, etc. These effects can

be painstakingly added one by one to an image generated with local illumination models

using single purpose rendering algorithms such as shadow volumes (Heidmann, 1991),

environment maps (Blinn and Newell, 1976; Greene, 1986), pre-computed radiosity tex-

tures (Cohen and Wallace, 1993), or even a highly specific glittering gem effect (Gosselin,

2004).

However, these algorithms are hard to combine or generalize and often fail to capture

essential parts of the underlying physics: the shadow maps may cause aliasing; environ-

ment maps are generally incorrect; the sparkling gem effect may fail when the gem is

submerged in water; and the pre-computed radiosity textures have to be recomputed if

the scene changes significantly. A more accurate simulation will require less programmer

and artist time for each scene. It will therefore be more economical as processing power

becomes more plentiful and cheap relative to the salaries of skilled labour. Generic global

illumination models, used at least partially in many photo-realistic renderings, create the

visual effects directly by simulating, with varying accuracy, the physics of light transport

between objects in a scene.

The very benefit of global illumination, the correct simulation of multiple interactions

of light with the scene, also explains why generic global illumination algorithms are so

rarely used in interactive applications. The illumination at every point in the scene

depends not only on the light sources but also recursively on every other visible point in

the scene, because they may be reflecting light. This recursion is almost always expensive

to compute, and global illumination algorithms can be distinguished primarily by how

they break the recursion. Photon mapping, the algorithm used in this dissertation,

terminates the recursion very early while still supporting effects arising from multiple

reflections.
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(a) The light passing through
the glass sphere is refracted,
forming a caustic on the floor.

(b) A highly glossy, but
not specular, floor reflects a
blurred image of a textured
wall.

(c) Indirect lighting coming
through the archway reflects off
a glossy red polygon onto the
wall.

Figure 1.1: Photon mapping is a powerful and efficient global illumination algorithm.
These images demonstrate some particular effects handled well by photon mapping. This
dissertation presents a hardware architecture capable of rendering these images at inter-
active rates.

1.2 Photon mapping

Photon mapping (Jensen, 1996a; Jensen, 2001) is a popular and robust global illumi-

nation algorithm. It can reproduce a wide range of visual effects including indirect

illumination, color bleeding, and caustics on complex diffuse, glossy and specular sur-

faces represented using arbitrary geometric primitives, as demonstrated in Figure 1.1.

The algorithm generates an image in two phases.

The first phases breaks the energy of the light sources into discrete packets called

photons1. The photons are shot into space and allowed to probabilistically reflect, refract

and be absorbed by surfaces. At every intersection with the scene, the photons, their

locations, energy, and direction of travel, are recorded in the photon map.

The actual image is generated in the second phase. Although the process has multiple

steps (see Chapter 2 for details) it uses the photon map as an estimate of the amount

1The term photon is somewhat misleading because they do not represent actual physical photons.
The most apparent restriction is that only a subset of ray optics is supported. The name is however
highly suggestive of the initial algorithm and has become entrenched.
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and quality of light arriving at any point in the scene from all directions. To estimate

the incident radiance, a photon gather is performed. This is essentially a k -Nearest-

Neighbors (kNN) search, finding the k photons closest to the point of interest from the

map. The photon gather is used to terminate, at an early stage, the recursive evaluation

of light transport.

The realism of the photon mapping comes at a cost, in terms of both computation

and memory bandwidth. Using the naive photon map algorithm on the Sponza scene, as

described in Section 1.4 and shown in Figure 1.3, 145 million floating point operations

are required for a single 512×512 image. This computational cost is significant, but

manageable given the tremendous increase in semiconductor capabilities. The memory

bandwidth requirements, 367 Gigabytes (GB) per image, is a more significant problem

because off-chip bandwidth has not improved at the same rate as computational power.

This cost is very significant for interactive applications that must generate a new

image dozens of times a second. At thirty images a second, the memory bandwidth

requirement reaches 11 Terabytes (TB) per second. In current semiconductor technology

this is a prohibitively large bandwidth for a desktop-sized machine. Improvements are

therefore necessary if photon mapping is to be made practical for interactive use.

1.3 Summary of original contributions

This dissertation presents several novel techniques to dramatically reduce the bandwidth

cost of photon mapping. These techniques are then combined into a practical hardware

architecture that can support interactive applications. Taken together, these contribu-

tions support my thesis statement:

Scenes with complex illumination can be rendered using the photon mapping

algorithm at interactive rates by a hardware architecture which can feasibly

be implemented using semiconductor technology available in 2010.
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Specifically, the architecture combines the following techniques to reduce the bandwidth

requirements of photon mapping:

Low bandwidth photon gathers using reordering: Photon-gather reordering pro-

duces the same image as the naive photon mapping algorithm, but reorders the

computations such that the memory accesses are more coherent (Steinhurst et al.,

2005). A 128 KB cache is then able to exploit this coherence and reduce the band-

width to main memory by over an order of magnitude.

Tiled irradiance caching with pre-computed radius for split-sphere heuristic:

Irradiance caching is commonly used to reduce the number of final gathers re-

quired (Ward et al., 1988). However, the conventional irradiance caching algorithm

creates a sequential dependency between the pixels of an image preventing either

efficient parallel execution or the application of photon-gather reordering. The

image is divided into tiles each with a separate irradiance cache. To remove the

dependency within each tile, I present a new technique for calculating the split-

sphere heuristic. Together these technqiues provide a means to apply irradiance

caching to a finely-grained parallel photon mapper without introducing significant

additional error to the generated images.

Resource constrained importance sampling: Global importance sampling, which

generates final gather rays in proportion to both the incident radiance and the

reflectance function, requires fewer final gather rays to compute images of the same

quality. This in turn reduces the number of photon gathers and the amount of

bandwidth required. I present combined importance sampling, which, compared

to existing schemes, requires limited bandwidth, computation and intermediate

storage (Steinhurst and Lastra, 2006).
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1.4 Scenes of interest

The intended use of the photon mapping architecture is for interactive applications such

as video games and architectural walkthroughs. To evaluate the proposed system I have

used variations on two scenes with the following qualities:

• Varied surface reflectance properties: diffuse, glossy and specular. This is important

to fully test the combined importance sampler. It also allows a more complete

evaluation of gather reordering when considerable coherence is already present in

the gather requests.

• A camera position that views less than half of the scene. This exposes a potential

weakness of bi-directional global illumination algorithms such as photon mapping,

in that effort may be wasted because not all of the photon map is used.

• Varied illumination complexity. The light in scenes with high illumination complex-

ity must navigate through several reflections before entering the camera. In scenes

such as these, the indirect illumination is very important and is a good case for

photon mapping. In simpler scenes most of the light is due to direct illumination

and the indirect illumination calculated by photon mapping is subtle.

These requirements will result in a fair evaluation of photon mapping, irradiance

caching, importance sampling, and query reordering, thereby making the architecture

simulation representative of the desired workload. I have chosen two basic scenes that,

with some variations, meet these criteria and sample the space of potential uses:

Global illumination demonstration There are certain global illumination phenom-

ena, which can be subtle, for which the photon map algorithm is particularly good,

such as caustics and color bleeding. This scene would exaggerate these effects with

camera position and scene composition to closely examine the effects. I have chosen
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Figure 1.2: Several variations of this global illumination test scene, a slightly modified
Cornell box, are used in this dissertation. Note that the scene is a simple box with a
single area light, a mirrored sphere and a glass sphere, and colored walls. This scene
exhibits indirect illumination as color bleeding, reflections, and a bright focused caustic
under the glass sphere. This image using the naive photon mapping algorithm requires
50 gigabytes of memory bandwidth and 37 billion floating point operations.

a variation of the standard Cornell box, Figure 1.2, traditionally used for global il-

lumination evaluation. The geometry is very simple, a handful of rectangles, but it

meets the other criteria. In later chapters I will use further variations, for example

adding extra objects for complexity or changing the surface reflectance. Alterna-

tively, the light may be replaced by a spot light aimed at the ceiling, eliminating

any direct lighting, thus emphasizing the requirements for a quality computation

of the indirect illumination.

Architectural walkthrough Global illumination is a necessity for complex scenes with

indirect illumination. However, architectural models with individual rooms con-

nected by doors, windows, and archways can waste computation in bi-directional

algorithms such as photon mapping. I have used the Sponza Atrium model, pro-

vided by Marko Dabrovic of RNA Studios, as a test scene for exploration. The
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Figure 1.3: The Sponza atrium, modeled by Marko Dabrovic of RNA Studios and used
with permission, is a large complex structure with a central atrium and corridors that
overlook the atrium. The sky is modeled as an area light the size of the top opening, all
illumination in the corridors is indirect. The naive photon mapping algorithm generates
367 gigabytes of traffic to the photon map memory and uses 209 billion floating point
operations.

geometry is complicated and is composed of different regions with small openings

onto a shared atrium. The light is modeled as coming from the sky, a large area

light. The light spilling through the archway is all indirect. Without global illumi-

nation this scene would be mostly black. Minor variations such as the introduction

of small glossy reflectors are used in evaluating the architecture.

1.5 Dissertation summary

This dissertation is divided into three parts: background, individual techniques, and

the combined architecture. Chapter 2 provides an overview of the evolution of graphic

hardware architectures, global illumination algorithms (including a detailed explanation

of photon mapping) and the criteria of the target implementation technology.

Inspired by techniques commonly used in high performance computing I explore two
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methods for reducing the bandwidth costs of photon mapping without changing the

resulting image. Chapter 3 show that a highly effective, if impractically expensive, re-

ordering technique is able to reduce the required memory bandwidth by four orders of

magnitude. A more practical reordering that is amenable to hardware implementation re-

duces the requirements by one order of magnitude. An additional reordering that further

improves upon this is discussed. Instead of modifying the algorithm, Chapter 4 examines

using different data structures to store the photon map. This approach is found to have

negligible effects on bandwidth compared to photon gather reordering.

Irradiance caching and importance sampling are both well known techniques to reduce

the number of final gather rays, and hence photon gathers, required. In Chapters 5 and 6,

I present modifications to make these approaches more amenable to parallel hardware

implementation while maintaining image quality. The effectiveness of these techniques

depends greatly on the scene and can vary from a 50% reduction in memory bandwidth

to an order of magnitude. Both techniques can be made compatible with photon gather

reordering, thus we need not choose between one and the other.

Finally, these three techniques are then combined in an architecture, presented and

evaluated in Chapter 7. The architecture has been functionally simulated and found to

be practical, scalable, and efficient. Two boards containing a total of 8 replications of a

custom chip will be able to render variations of the Cornell box scene and Sponza model

at 30-128 frames per second.
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CHAPTER 2

BACKGROUND

2.1 The evolution of graphics hardware

Since the earliest days of squiggles on oscilloscopes, the architects of computer graphics

hardware have sought to achieve the most realistic image generation possible at inter-

active rates while constrained by the available technology. Kurt Akeley has categorized

graphics hardware into generations (Akeley and Hanrahan, 2001). These generations are

determined on the basis of functionality rather than technological considerations such as

size or cost. Each generation was therefore dominant in different years depending on the

portion of the market, i.e. price range, considered: research, high-end, and consumer-

level commodity parts.

The first generation to be sold commercially generated wireframe images. Based

on oscilloscope and plotter technology, the display devices were vector based and did

not require prohibitively large amounts of memory. The major difference between the

architectures in the first generation was the algorithm used to solve the visibility problem,

the removal of the surfaces that are behind other objects from the point of view of the

camera.

The focus of second generation architectures was on reducing the computational cost

of the visibility calculations. As multi-megabyte memories became affordable, raster

display devices quickly began to dominate. Raster displays store an array in memory,

called a frame buffer, that records the color that should be displayed for every pixel of the

image. Although this introduces resolution dependent artifacts into generated images, it



decouples image generation and display. This decoupling allows for the simple z-buffer

visibility algorithm (Catmull, 1974). Although memory was slightly less expensive than it

had been, it was still difficult to justify the inclusion of much more than the frame buffer.

When these machines were built the gap between memory access time and computation

speed was not as significant as it would soon become. This change will have a large

impact on system design.

By the third generation, semiconductor technology improvements permitted inter-

active systems to both use more computation per frame and have significantly larger

memories. The additional computation allocated to rasterization allowed application

programmers to use more polygons, allowing for more geometrically detailed models.

The lighting models also became more complex, although still restricted to local illumi-

nation. With the additional memory, system designers were able to incorporate texture

mapping, a technique capable of adding significant information to the generated image

without increasing the detail of the geometric model. Texture mapping not only requires

large memories, but generates a large amount of memory traffic requiring high bandwidth

interconnects. The speed of the texture memories became a technological problem and

required careful, and often expensive, engineering.

The RealityEngine was a successful high-end third generation machine (Akeley, 1993).

Through extensive replication of texture memories high performance was achieved with-

out the use of caches. Although never built due to business issues, the NEON architecture

is highly indicative of the design of consumer systems of the late 1990’s (McCormack et al.,

1998). Due to the low target selling price, the designers of the NEON were unable to

justify the use of expensive replication. Instead, the design emphasis was on maximizing

the power of a very small texture cache. This was performed by a careful reordering of

the rendering process.

The vast majority of commercially available products today fall into the fourth gen-

eration. Rasterization and visibility are no longer the central performance limitations
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for most users. Consequently, system designers are able to devote their new resources to

adding programmability throughout the pipeline. Computationally expensive vertex and

pixel shaders provide sophisticated local illumination effects and can be pushed to effi-

ciently perform limited global illumination such as Whitted-style ray tracing and direct

visualization photon mapping (Purcell et al., 2002; Purcell et al., 2003).

An early example of the fourth generation was the UNC PixelFlow project (Molnar

et al., 1994; Eyles et al., 1997). The shading calculations were decoupled from rasteri-

zation, reducing the impact of complex shading models.The sort-last ordering combined

with a large number of SIMD processing elements enabled massive parallelism throughout

the machine. The NVIDIA GeForce6800 is a recent commodity graphics processor (Mon-

trym and Moreton, 2005) made possible by the tremendous increase in computational

capability of semiconductor technology. As memory access speeds and total bandwidth

have lagged behind the growth in computation, efficient use of the memory cache and

bus have become even more crucial in order to achieve acceptable performance.

The fifth generation of graphics hardware is still in the research phase and there

is uncertainty about what algorithms and architectures will succeed commercially. It

seems clear however that global illumination support is the key feature targeted by system

designers seeking to improve the quality of image generation (Chalmers et al., 2002; Dutré

et al., 2003). Section 2.5 reviews the previously reported global illumination architectures.

In this dissertation I examine in detail one specific algorithm, photon mapping, and

design a complete architecture to evaluate its fitness as the algorithm of choice for the

fifth generation of graphics hardware.

The chapter begins by laying out the semiconductor technology targeted during the

design and evaluation of my architecture. The design choices are driven by the continuing

trend towards tremendous amounts of computation capability while only modest gains in

memory bandwidth are predicted. Before presenting the details of photon mapping and

the difficulties it presents a system designer, it is necessary to review the terminology
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and notation of light transport simulation as well as other established algorithms for

generating images with global illumination.

2.2 Target implementation technology

The goal of this dissertation is to present a photon mapping architecture that can be

implemented in the next three years using no more than one custom designed chip. Fur-

thermore, the system should fit within a single host workstation, using one or more expan-

sion cards, to reduce system complexity and cost. The computational power and memory

bandwidth that the architecture and algorithms can require are therefore constrained.

Although semiconductor technology has improved both resources at a staggering rate,

the growing gap between computational performance and memory bandwidth is a severe

challenge.

A suitable measure of the computational cost of a global illumination algorithm is

the number of floating point operations required, as they are significantly more expensive

than integer or bit-vector arithmetic. A single FLoating point OPeration is commonly

abbreviated as a FLOP. The rate of computation is then measured in FLOPS, floating

point operations per second. Frequently the need to discuss the total number of floating

point operations that a process requires arises, without regard to execution time, in which

case the abbreviation FLOPs, with a small s, is used as the plural of FLOP.

Figure 2.1 shows the growth of computation in traditional consumer graphics pro-

cessors as measured in floating point operations per second. This growth in computa-

tion matches the transistor density trend data provided by the International Technology

Roadmap (ITRS, 2006). Because fourth-generation graphics algorithms are easily cast in

the stream processing paradigm (Venkatasubramanian, 2003), graphic hardware archi-

tectures are able to increase their performance on nearly the same curve as the underlying

semiconductor technology. It is therefore expected that commodity graphics hardware
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Figure 2.1: Growth in GPU computation. The exponential growth of transistor density
has enabled commodity graphics hardware to perform an increasing number of floating
point operations per second. This data, along with that presented in Figure 2.2, was
originally collected by Lastra and extended to include more recent products using published
manufacturer specifications (Lastra, 2006; ATI, 2007; NVIDIA, 2007).

will continue to increase the amount of computation that can be performed on a single

chip. A design that requires no more than 500 GFLOPS will not present a problem by

2010, the timeline envisioned for the architecture in this dissertation.

It is instructive to compare this exponential growth in performance of graphics hard-

ware to that of traditional CPUs. A CPU typically allocates a large portion of its tran-

sistor budget to both large memory caches and complex control logic, leaving relatively

little for the actual arithmetic and logical functions. The recent trend towards multiple

cores on a single chip is an attempt to take advantage of the additional computational

power while constrained by inherent lack of parallelism in individual workloads.

Unlike computation, memory bandwidth has been growing at a linear rate as shown

in Figure 2.2. This growing gap remains despite a significant investment in inter-connect

technologies. Algorithms and architectures must therefore minimize their requests for
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Figure 2.2: Growth in GPU bandwidth. The growth in bandwidth available on commod-
ity graphics hardware, while impressive, has been linear. The increasing gap between
computation and bandwidth must be directly addressed by any global illumination hard-
ware architecture.

data from memory. Global illumination algorithms typically reference the same data,

from large data structures that can not be kept locally, multiple times. Care must be

taken to reduce the required bandwidth either by using effective caches or by reordering

the computations to reduce redundant accesses. A design that requires no more than

90 GB per second for each chip will be feasible in 2010.

2.3 Realistic image synthesis

Realistic image synthesis as introduced in Chapter 1 is the computational art of simulat-

ing the science of optics: the generation, propagation and detection of light in a scene.

There are highly accurate physical models of light, such as photonics, electromagnetic,

wave, and quantum, that explain almost all observed visual effects including diffraction

and polarization. However, these models are currently too computationally intensive
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for general use in computer graphics. This dissertation, and the majority of computer

graphics systems, utilizes the ray optics model of light propagation (also known as ge-

ometric optics) which would be familiar to early optical researchers such as Johannes

Kepler, Willebrord Snell and Isaac Newton.

The principal restrictions of ray optics are that light travels in straight lines, at an

infinite speed, and is not influenced by external factors such as electromagnetic fields or

gravity. The rays of light are redirected at the boundaries of objects either according to

simple geometric rules, such as Snell’s law of refraction, or by more complicated functions

described in Section 2.3.2. Although ray optics is a simple model, it is capable of ex-

pressing the majority of visual effects seen in the world, such as reflection, refraction, and

image formation. There are several excellent texts outlining the algorithmic application

of ray optics to computer graphics, such as (Shirley, 2000) and (Glassner, 1995).

In this section we apply radiometry, the measurement of light energy transfer, to ray

optics to discuss a single equation from which all standard global illumination algorithms

can be derived. Monte Carlo integration is presented as a technique commonly used to

solve this equation while generating images. There are several well-writen introductions

to these topics, in particular those of Cohen (Cohen and Wallace, 1993, Chapter 2),

Jensen (Jensen, 2001, Chapter 2) and Dutré (Dutré et al., 2003, Chapter 2) upon all of

which this section draws.

2.3.1 Radiometry

Physically based global illumination algorithms are expressed in terms of radiometric

units, which are used to quantify light. These terms are listed in Table 2.1 and briefly

described here. The basic unit of light is a single photon, which carries a certain amount

of radiant energy, expressed in Joules (J) and denoted as Q. The total amount of energy

arriving or departing an entire surface via a set of photons at any instant in time is
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Symbol Quantity Unit
Q Radiant Energy J
Φ Radiant Power (Flux) W
E(x) Irradiance (Incoming) W/m2

B(x) Radiosity (Outgoing) W/m2

L(x, ~ω) Radiance W/m2/sr

Table 2.1: Common radiometric symbols, terms and units. x is a specific surface point.
Radiance may be either incoming or outgoing depending on the direction of ~ω.

measured in Watts (W) (Joules per second) and referred to as radiant power or flux.

Φ =
dQ

dt

A light source, such as a household light bulb, can be described as emitting a certain

number of Watts1. In a similar fashion, the rate at which photons arrive on an office

desk from all directions is a measure of flux.

To describe the movement of light energy over time at a specific point, x the flux

is differentiated over an area and is measured in Watts per square meter. This unit is

referred to as radiosity, B(x), if the light is being emitted and irradiance, E(x), is the

light is incident. The term irradiance is an unfortunate historical artifact as it is not the

opposite of radiance, defined shortly.

E(x), B(X) =
dΦ

dm2

Radiosity does not distinguish the direction that light was traveling when measured and

is therefore unsuitable for making critical measurements such as the amount of light

arriving at a camera from a particular angle.

1Light bulbs are labeled by the electrical energy they consume over time, also measured in Watts.
Because light bulbs are inefficient, the majority of energy is dissipated as heat, the radiant power of a
light bulb will be significantly smaller than the electrical usage.

18



Figure 2.3: Radiance is the total radiant flux arriving across, or departing from, a differ-
ential area from the range of directions in a differential solid angle around ~ω. Depending
on the direction of light transport, radiance is categorized as incident or exitant. Radi-
ance is the physical unit measured by image sensors such as eyes and cameras.

Radiance, L(x, ~ω), is the flux across a differential area from a specific differential

direction (solid angle) and is measured in Watts per square meter per steradian (Fig-

ure 2.3).

Li(x, ~ω) =
d2Φ

dm2dω

Radiance may be either incident, Li(x, ~ω), emitted, Le(x, ~ω), or reflected, Lr(x, ~ω). The

exitant radiance is the sum of the emitted and reflected radiance, Lo(x, ~ω) = Le(x, ~ω) +

Lr(x, ~ω). Image sensors, such as our eyes, cameras, and virtual cameras, are modeled as

sensors of radiance. Radiance also plays a critical role in the modeling of reflection and

refraction on non-diffuse surfaces.

In this dissertation it is assumed that the space between objects is empty. This

assumption can be combined with the property of ray optics that states that light travels
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Figure 2.4: The invariance of radiance. The exitant radiance leaving a point in the
direction of another is exactly equal to the radiance arriving at second point from the
direction of the first.

in a straight line to form an important property of radiance. As shown in Figure 2.4, the

exitant radiance at point x in the direction ~ωo towards point y is equal to the radiance

that arrives at y from the direction, ~ωi of x.

Lo(x, ~ωo) = Li(y, ~ωi)

This critical property allows us to compute the incident radiance at a point if we already

know the exitant radiance at other points in the scene. This observation forms the basis

of the rendering equation.

2.3.2 The rendering equation

An ideal pinhole camera (Figure 2.5) measures the flux arriving on the image plane at

the location p for each pixel, potentially sampled in order to improve image quality or
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Pinhole Object

Figure 2.5: Image formation with an ideal pinhole camera. For every pixel p in the image,
the radiance arriving at the eye-point e from x in the direction ~ωp must be computed.
Li(e, ~ωp) = Lo(x,−~ωp)

enable additional visual effects. Because the pinhole allows only one ray of light to reach

any point on the image plane, it is the incident radiance, Li(p, ~ωp), that is measured.

By the invariance of radiance, this is the same radiance passing through the pinhole, at

position e, along the same ray ~ωp. The position e is commonly referred to as the camera

location or eye-point. The ray originating at e in the direction ~ωp is called an eye-ray.

Each eye-ray must be intersected with the scene to find the first intersection point,

x, Although the majority of graphics hardware uses rasterization to resolve visibility,

ray-casting is now a practical approach, even for interactive applications (Section 2.5).

Once the intersection has been found, the invariance of radiance can be used to determine

the incident radiance at the eye, and hence on the image plane, in terms of the exitant
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Pre-condition: e is the location of the eye (camera)
Pre-condition: Any per-scene or per-image pre-procesing has been performed

for each pixel (u, v) of the image do
for each sample do

image(u, v)← 0
// Form the eye-ray (e, ~ωp)
p← sampled location on the image plane of pixel (u, v)
~ωp ← (e− p)
// Use ray-casting to find the closest intersection in the scene
x← intersect with scene(e, ~ωp)
// Compute Li(e, ~ωp) based on Lo(x,−~ωp)
image(u, v)← compute exitant radiance(x,−~ωp)

end for
image(u, v)← image(u, v)/(# samples)

end for
Post-condition: image = the generated image

Algorithm 2.1: The pixel-driven rendering algorithm, adapted from (Dutré et al., 2003).
The quality of a generated image depends on the exact implementation of the method
compute exitant radiance().

radiance at x back along ~ωp.

Li(p, ~ωp) = Li(e, ~ωp) = Lo(x,−~ωp)

Algorithm 2.1 provides a high-level view of this process, deferring for the moment how

the exitant radiance, Lo, is computed.

The exitant radiance at x towards the eye, or any other point in the scene viewed

from a particular direction, is the sum of the reflected, refracted and locally emitted

radiance. The emitted radiance, Le, is computed directly from the description of the

object containing x. For most surfaces, the value is uniformly zero. The amount of

light that is reflected and refracted towards the viewer, however is more complicated. It

depends on both the light that arrives on the surface, from all directions, and the specific

material properties of the surface. When a ray of light lands on an object at a particular

point, z, from a particular direction, ~ωi, the energy will either be absorbed, or emitted
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from a potentially different point, z′, in a potentially different direction, ~ωo. When

restricted to reflection2 this is known as the Bidirectional Scattering Surface Reflectance

Distribution Function (BSSRDF) and has eight dimensions (Nicodemus et al., 1977).

Nicodemus also introduced a simplification of the BSSRDF where reflected light is

assumed to be emitted from the same location where it landed (z′ = z). The Bidirectional

Reflectance Distribution Function (BRDF) is denoted as

fr(z, ~ωi, ~ωo) =
dLr(z, ~ωo)

Li(z, ~ωi)(~ωi•~n)d~ωi

where ~ωo is towards the viewer, ~ωi is the direction from which the incoming light is

arriving, ~n is the local surface normal at z, Lr is the reflected radiance towards the

viewer, and (~ωi•~n) represents the foreshortening due to the two surfaces not necessarily

being parallel. Although this formulation precludes the representation of some desired

visual effects, such as the sub-surface scattering seen in white marble statues, it can be

computed without additional expensive pre-computation.

The perfectly specular BRDF, an ideal mirror, reflects the incoming light energy only

along the reflected angle and is a special case. The BRDF of a more general surface will

reflect some portion of the incoming light to the entire hemisphere of visible directions.

Purely diffuse surfaces reflect the light evenly, while glossy surfaces exhibit a behavior

between that of ideal specular and diffuse reflectors. Some examples of common BRDFs

are illustrated in Figure 2.6. Global illumination algorithms differ in the BRDFs that

they efficiently support.

The concepts of incident, reflected and emitted radiance and the BRDF are united in

the rendering equation (Kajiya, 1986) using an integral with a domain of the hemisphere,

2Refraction can be analyzed in a symmetric fashion to reflection. For clarity, refraction is not con-
sidered throughout this section.
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Figure 2.6: Examples of common BRDF classifications. The purely diffuse BRDF reflects
light from all directions equally towards the viewer, while the highly specular surface, an
ideal mirror, reflects only the light from a single direction. In between, glossy surfaces
reflect light from all directions, but weigh those that come near the angle of specular
reflection more heavily.

Ω, of incoming radiance at z and shown in Equation 2.1.

Lr(z, ~ωo) = Le(z, ~ωo) +

∫
Ω

fr(z, ~ωi, ~ωo)Li(z, ~ωi)(~ωi•~n)d~ωi (2.1)

There are several interesting characteristics of the rendering equation. The first is that it

is recursive, the light that reflects from z is dependent on the light that arrives at z from

other surfaces, but that is in turn dependent on how much light lands on those other

surfaces. Every global illumination algorithm based on the rendering equation must find

a way to terminate this recursion in order to guarantee that the algorithm will halt.

Secondly, the key operation while rendering an image is a continuous integration. In

all but the most trivial of scenes, the integral can not be solved analytically. Both of

these challenges must be addressed, in an implementation of compute exitant radiance(),

before the rendering equation can be used to generate an image.
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2.3.3 Numerical integration

The integrand of the rendering equation, shown in Equation 2.1, is the complicated

product of three separate functions. The incident radiance function, Li(x, ~ω) is gener-

ally unknown3 and exhibits strong discontinuities because of changes in visibility. For

these reasons, analytical integration can not be applied to the rendering equation. The

approach of this section is inspired by (Veach, 1997).

When an integral can not be solved analytically in closed form, Equation 2.2, nu-

merical integration can be used to find an estimate, Θ̂, of the true value Θ (Hamming,

1973). The integral is replaced by the weighted sum of N discrete point evaluations of

the integrand, g(s), as shown in Equation 2.3. There are an entire family of numerical

integration estimators that differ in their selection of the points Si at which g(s) is eval-

uated and the weights Wi which describe how they are combined. The correctness and

efficiency of these techniques depends on the exact function being integrated. In the case

of computer graphics and the rendering equation, many techniques are not suitable.

Θ =

∫
Ω

g(s)dµ(s) (2.2)

Θ̂ =
N∑

i=1

Wig(Si) (2.3)

The rendering equation, g(s) = fr(x, ~ωi, ~ωo)Li(x, ~ωi)(~ωi •~n) is the product of three

functions, with x and ~ωo fixed. The domain of integration, Ω, is the entire hemisphere

of directions from which light arrives at x. Each sample Si is a single direction light

may be arriving from. dµ(s) is the differential solid angle and Θ is the reflected radiance

reflected for which we are solving.

As a point of notation, statisticians customarily refer to each value Si as an obser-

3Indeed, if Li(x, ~ω) were known for all x and ~ω, then an evaluation Li(e, ~ωp) for all eye-rays would
produce the required measurements on the image plane for the final image with no further work. This
is closely related to lightfields and lumigraphs (Gortler et al., 1996; Levoy and Hanrahan, 1996).
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vation and the entire vector < S1, S2, S3, · · ·SN > as a sample. In computer graphics

it is standard to refer to each observation Si as a sample and call N the sample size.

The whole vector of samples is informally referred to using a variety of terms such as

“sample locations” or in the case where Ω is the hemisphere, “sample directions”. In this

dissertation, the computer graphics terms are used exclusively.

A simple numerical integration technique used in introductory Calculus courses is

the Riemann Sum. The samples Si are spread uniformly throughout the domain Ω.

Each sample is given a weight Wi = 1
N

. The Riemann Sum is a deterministic numerical

integration technique because the sample locations Si and weights Wi are fixed ahead of

time.

Other deterministic integration methods include the trapezoid rule and Simpson’s

rule. Although beneficial in other domains, these methods are rarely useful in computer

graphics because unless the integrand is smooth, a very large sample size will be re-

quired to achieve good results (Veach, 1997). Even more troublesome, extending these

techniques to more than one dimension is very expensive. If N samples are sufficient

for a given one-dimensional problem, Nd samples would be required for a d-dimensional

problem. This is known as the “curse of dimensionality”.

2.3.4 Monte Carlo integration

In contrast to these deterministic methods, Monte Carlo integration is stochastic. The

samples, Si, are chosen randomly from the region of integration, Ω. The generic Monte

Carlo estimator of g(s), GN , is shown in Equation 2.4 (Rubinstein, 1981). Since all the

weights in Monte Carlo estimators have a common term of 1
N

, this has been factored out

of the summation.

GN =
1

N

N∑
i=1

Wig(Si) (2.4)
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If Wi = 1 and every point in Ω has the same probability of being sampled by Si

then this is called the Blind Monte Carlo technique. Although Blind Monte Carlo is very

straightforward, samples are chosen from the domain randomly but uniformly, it takes

a large value of N to have much confidence in the estimate. Importance sampling is

one technique to improve the performance of the blind Monte Carlo estimator, and is

discussed in detail in Chapter 6.

To apply Monte Carlo integration to the rendering equation, Equation 2.2, the po-

sition x and the viewing angle ~ωo are fixed. Instead of integrating over the continuous

hemisphere Ω, the hemisphere is discretely sampled and the results summed as in Equa-

tion 2.5.

Lr(x, ~ωo) = Le(x, ~ωo) +
1

N

N∑
i=1

fr(x, Si, ~ωo)Li(x, Si)(Si•~n) (2.5)

2.4 Global Illumination algorithms

There are a wide variety of global illumination algorithms, only a few of which are be dis-

cussed here. They differ from each other in how they solve the rendering equation. Dutré

et al. presents a well integrated theoretical framework (Dutré et al., 2003). Pharr and

Humphreys provide a comprehensive practitioners guide with full implementations (Pharr

and Humphreys, 2004). Path tracing is by far the largest class of global illumination al-

gorithms. As these form the basis of photon mapping, they will be explored in some

depth in this section. Finite-element methods, such as radiosity, use a fundamentally

different approach to solving the rendering equation, the advantages and disadvantages

of which are explored at the end of this section.
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2.4.1 Path tracing

Path tracing algorithms establish light transport paths between lights sources and those

points in the scene where we wish to compute the incident radiance. Often, these points

are directly on the image plane, corresponding to the pixels of the rendered image. This

approach yields the pixel-driven rendering algorithm presented in Algorithm 2.1. The

path tracing methods differ in their implementation of compute exitant radiance(x, ~ωo)

and any preprocessing that may be required before image generation begins.

2.4.1.1 Whitted-style ray tracing

Perhaps the best known path tracing algorithm is ray tracing, introduced to computer

graphics by Whitted (Whitted, 1980). Requiring no pre-processing and being fully de-

terministic, the method is simple to implement (Algorithm 2.2). The desired exitant

radiance is computed as the sum of three terms: the locally emitted light, the reflected

light due to direct illumination from the scene-defined light sources, and the light reflected

along the angle of perfect reflection or refraction. The integral in the rendering equation

is replaced with one recursive evaluation of compute exitant radiance computing indirect

illumination.

The algorithm is therefore only correct for perfectly specular surfaces, such as chrome

spheres. More general materials, including those with a diffuse and glossy BRDF, are

not handled correctly and the image generated will be biased. The recursion must some-

how be terminated for an image to eventually be generated. Simple heuristic criteria for

limiting the depth of recursion, such as running out of storage or a reaching hard-coded

maximum depth, lead to biased results and a large number of shadow rays which con-

tribute little to the final image (Shirley, 2000). These two issues lead to the development

of a more sophisticated scheme, stochastic ray tracing.
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Pre-condition: x is the location under consideration
Pre-condition: ~ωo is the direction towards the viewer

// Compute the locally emitted radiance in direction ~ωo

result← emitted illumination(x, ~ωo)
// Compute the direct illumination due to the pre-defined light sources
result← result + direct illumination(x, ~ωo)
// Compute the indirect illumination due to specular reflection
if recursion termination criterion not yet reached then

~ωi ← compute reflected angle(~n, ~ωo)
y ← intersect with scene(x, ~ωi)
result← result + fr(x, ~ωi, ~ωo)× compute exitant radiance(y,−~ωi)

end if
Post-condition: result = the total reflected radiance from x towards ~ωo

Algorithm 2.2: Whitted-style ray tracing. Various heuristics can be used to terminate
recursion. This simple implementation of compute exitant radiance(x, ~ωo) is valid only
for perfectly specular surfaces, such as chrome balls. Nonetheless, it provides impressive
results in suitable scenes.

2.4.1.2 Stochastic ray tracing

Cook introduced distributed ray tracing as a comprehensive framework for extending

Whitted-style ray tracing using stochastic techniques, based on Monte-Carlo integra-

tion (Cook et al., 1984). It handles arbitrary material BRDFs, as well as motion blur,

depth of field, and other realistic effects. In a straightforward implementation, arbitrary

BRDFs are supported by replacing the single reflection sample, along the angle of specu-

lar reflection, with N randomly chosen samples using Equation 2.5 to compute the total

reflected radiance. These random samples can be chosen uniformly, proportionally to

the BRDF, or according to the quasi-Monte-Carlo technique (Shirley, 2000). Even an

implementation of this basic technique that allowed only 4 levels of recursion, generating

seriously biased images, would require N4 evaluations of compute exitant radiance. As

N is in the range of hundreds to thousands, this implementation of distributed ray trac-

ing is highly inefficient, but can be easily adapted to preserve its strengths while reducing

the number of computations that contribute little to the final image.

An alternative method (Algorithm 2.3) to terminating the recursion of the rendering
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Pre-condition: x is the location under consideration
Pre-condition: ~ωo is the direction towards the viewer

// Compute the locally emitted radiance in direction ~ωo

result← emitted illumination(x, ~ωo)
// Compute the direct illumination due to the pre-defined light sources
result← result + direct illumination(x, ~ωo)
// Determine if recursion should continue
ρ← probability of absorption
if ρ > random unit number then

// Compute the indirect illumination due to specular reflection
~ωi ← sample visable hemisphere(~n, ~ωo)
y ← intersect with scene(x, ~ωi)
result← result + fr(x, ~ωi, ~ωo)× compute exitant radiance(y,−~ωi)/(1− ρ)

end if
Post-condition: result = the total reflected radiance from x towards ~ωo

Algorithm 2.3: Stochastic ray tracing. Using Monte Carlo integration to support ar-
bitrary BRDFs and Russian roulette to terminate the recursion, stochastic ray tracing
is a simple but robust global illumination algorithm. Because only a single sample is
generated and evaluated, many samples per pixel must be generated from the image
plane.

equation is to use Russian roulette. Instead of generating N secondary rays at each point,

a single ray is created and recursively evaluated. However, this ray is chosen randomly

from the hemisphere, not the angle of specular reflection as in Whitted-style ray tracing.

At each intersection the ray is probabilistically terminated, depending on how reflective

the material BRDF is. To avoid biasing the result, the intermediate reflected radiance

must be scaled by the probability of absorption. In exchange for reducing the branching

factor of recursion, this method requires hundreds to thousands of samples from each

pixel. This implementation of distributed ray tracing focuses its efforts near the top of the

recursion tree and is far more efficient. A full range of improvements and optimizations

to stochastic ray tracing can be found in (Shirley, 2000).
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2.4.1.3 Additional path tracing algorithms

Although more expressive than Whitted-style ray tracing, stochastic ray tracing has the

problem that many of directions sampled will contribute little towards the final image

unless they are directed to those portions of the scene that either contain light sources or

strong reflectors of light sources. This results in a noisy image, especially if any caustics

are present. Two alternative path tracing techniques increase efficiency by utilizing the

knowledge of the specified light sources.

Bi-directional path tracing, like stochastic ray tracing using Russian roulette, traces

multiple rays from the eye deep into the scene, recording all the intersection points (Lafor-

tune and Willems, 1993; Veach and Guibas, 1994). Rather than using shadow rays to

compute direct illumination and propagating backwards through the ray, a second ray is

traced from a light source, recording all its intersections. Using the visibility function, as

determined by ray tracing, and a series of weights, derived from the rendering equation,

the light power is transfered from the light ray to eye ray and accumulated at the pixel.

Although each eye ray is significantly more expensive to process, in certain scenes it can

take far fewer samples per pixel to reduce noise to an acceptable level.

Bi-directional path tracing can be enhanced by improving the generation of sample

directions as more information is known. A sophisticated technique that uses this ap-

proach is Metropolis light transport (Veach, 1997). Starting with standard bi-directional

path tracing, those paths that lead to a strong contribution to the image are used as

guides indicating which portions of the scene are brightly illuminated. Care is taken to

avoid bias while expending as few paths as possible on those portions of the scene not

expected to contribute. An example where Metropolis light transport works well is two

rooms separated by a keyhole, ordinarily a difficult scene to render without a lot of noise.

Once even one path finds the keyhole, it is mutated, generating other paths that also get

through the keyhole.

31



2.4.2 Radiosity

Classical radiosity computes a radiosity value for every surface point in the scene dur-

ing a view-independent pre-process (Goral et al., 1984). The surfaces in a scene are

divided into patches and initialized with the appropriate radiosity if the patch is part of

a light source. Using a numerical linear system solver, the energy is allowed to transfer

through the system until a steady state is found. This solution is then consulted by

compute exitant radiance() directly during pixel-driven rendering, Algorithm 2.1. Based

on energy balance equations from radiative heat transfer studies, radiosity has been val-

idated to direct physical observation (Goral et al., 1984; Pattanaik et al., 1997). Recall

that the radiometric term radiosity describes the total flux leaving a differential point

in all directions. By not storing the hemispherical distribution of exitant radiance, the

standard method can only support scene that are purely diffuse.

A significant amount of research has been published on improving the computational

efficiency of radiosity, removing artifacts due to the selection of the patches and extending

the technique to non-diffuse surface. These results are well summarized in (Cohen and

Wallace, 1993) and (Dutré, 1994, Chapter 5). Unfortunately, some difficulties remain.

The surfaces must be parameterizable in order to be divided into patches, adding com-

plexities when arbitrary procedurally generated geometry is used. Additionally, many of

the techniques to improve efficiency remove the regularity of operations and make it dif-

ficult to take advantage of parallel independent processors with limited communication.

2.4.3 Discussion

This section touched on just a few of the global illumination algorithms currently in

use. More in depth examinations of global illumination techniques, and their variations,

can be found in many excellent texts, such as those by Dutré (Dutré et al., 2003) and

Pharr (Pharr and Humphreys, 2004). The critical criteria for evaluating a global illumi-
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nation algorithm for a given use are:

• The restrictions imposed on the scene, both geometric and material properties

• The visual effects that are correctly and efficiently rendered

• The computation required to prepare intermediate data structures

• The ability to parallelize the workload on cost effective architecture

None of the algorithms examined so far in this chapter meet these requirements for

the scenes and visual effects described in Chapter 1. In Section 2.6 photon mapping is

presented as a possible contender implementation in fifth generation graphics hardware.

The next section examines existing fifth generation graphics architectures, focusing on

those that are used by or inspired the architecture presented in Chapter 7.

2.5 Fifth generation graphics architectures

As described in Section 2.1, it is expected that fifth generation graphics architectures

will concentrate on adding support for global illumination. There is as of yet no com-

mercially available examples of interactive4 fifth generation architectures, however there

are research designs that have been proposed and/or built. Many early hardware global

illumination systems are discussed by Chalmers (Chalmers et al., 2002). In this section

I discuss a sample of the more recent system architectures intended to be implemented

as interactive hardware, that have inspired aspects of the architecture presented in this

dissertation.

A series of papers and prototype machines from the University of Saarland define an

efficient architecture for interactive ray tracing. The original SaarCOR design required

4The RenderDrive line of products by ARTSVPS are commercially produced offline accelerators for
high quality ray tracing (ARTVPS, 2007).
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a static scene and only supported a limited numbers of secondary rays (Schmittler et al.,

2002). A highly efficient FPGA implementation demonstrated that the architecture was

able to operate with very limited memory bandwidth by tracing rays in small bun-

dles (Schmittler et al., 2004). More recently, a second implementation with partially

dynamic scenes and programmable shaders with more secondary rays has been demon-

strated (Woop et al., 2005). The architecture is still however a Whitted-style ray tracing,

unable to efficiently handle diffuse inter-reflections, caustics, or other phenomena that

the photon mapping algorithm handles well.

As described in Section 2.6, ray casting is one of the two most important compu-

tational kernels in photon mapping. The SaarCOR architecture casts coherent rays in

order to reduce the required memory bandwidth significantly. The algorithms deployed

in the architecture described in Chapter 7 take care to ensure coherency of not only the

photon gather locations, but also the rays that are cast using a small instantiation of the

SaarCOR.

The GI-Cube architecture provided Whitted-style ray tracing in the context of volume

rendering (Dachille and Kaufman, 2000). The regular nature of the volume rendering

allowed for a simple packet based routing structure to sort partially traced rays to im-

prove cache coherencey. This provided both inspiration for the hashed photon gather

reordering presented in Chapter 3 as well as the overall packet-based routing for the

entire architecture presented in Chapter 7.

2.6 Photon mapping

Photon mapping (Jensen, 1996a), is a worthy candidate for interactive rendering using

high quality global illumination. A popular and robust global illumination algorithm, it

can reproduce a wide range of visual effects including indirect illumination, color bleeding,

and caustics on complex diffuse, glossy and specular surfaces represented using arbitrary
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geometric primitives, as was demonstrated in Figure 1.1. When these visual effects are

present in an image, photon mapping tends to be cheaper than the previously discussed

alternatives for images of equivalent variance. It is however important to note that the

algorithm is biased. Once the photon map is generated, the final image will not reach zero

variance as the number of pixel samples increases to infinity. The algorithm generates

an image in two phases.

The first phase breaks the energy of the light sources into discrete packets called pho-

tons. Although inspired by the physics of light, this use of the word photon is somewhat

misleading because they do not represent actual physical photons. The name is how-

ever highly suggestive of the initial algorithm and has become entrenched. The photons

are shot into space and allowed to probabilistically reflect, refract and be absorbed by

surfaces. At every intersection with the scene, the photon, their locations, energy, and

direction of travel, are recorded in the photon map.

The actual image is generated in the second phase. The photon map is an estimate

of the incident radiance at any point in the scene. To consult the photon map, a photon

gather is performed. This is essentially a kNN search, using the photon map to find the

k photons closest to the point of interest. The photon gather is used to terminate, at an

early stage, the recursive evaluation of rendering equation.

The photon map algorithm is most comprehensively described in Jensen’s own book

with pointers to more recent research (Jensen, 2001). In this section, we examine more

closely the two phases of the algorithm and examine the costs to determine what the

limiting factor is.

2.6.1 Photon map creation

Photons are generated on the scene-defined light sources. A simple approach is to allocate

the photon budget to light sources according to the total flux emitted, randomly choosing
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Pre-condition: NPM is the number of photons requested for the indirect photon map
while #Photons < NPM do

// Determin initial photon position and direction
p← position on a light source
~d← randomly selected direction from light source
// Follow photon through scene until absorbed
caustic path ← true
repeat

x← intersect with scene(p, ~d)
if x is not a highly specular surface then

caustic path ← false
Record (x, ~d) in the indirect map

end if
if caustic path is true then

Record (x, ~d) in the caustic map
end if
p← compute reflected angle(x,−~d)

until photon is absorbed
end while

Post-condition: The indirect and caustic photon maps represent a sparse representa-
tion of incident radiance throughout the scene

Algorithm 2.4: Photon map creation. Photons are traced from the light sources through
the scene. The intersections are recorded in the indirect photon map. The caustic photon
map records only those intersections which were not diffusely reflected from the light.
The process continues until enough photons are successfully traced.

the initial direction from the light sources into the scene. Each photon is then traced

through the scene (Algorithm 2.4). They are probabilistically reflected, refracted and

finally absorbed at diffuse or glossy surfaces. A record, p, is made of each intersection

the photon has with the scene. Only those intersection with highly specular surfaces

are not stored. It is these records that form the entries in the photon map, storing the

location, xp, attenuated flux, Φp, and incident direction, ~ωp. A second, smaller, photon

map is used to further accelerate the rendering of caustic reflection. This caustic photon

map records the intersections of only those photons that have not hit a diffuse surface and

which are not stored in the indirect photon map. A photon map is a sparse representation

of the incident radiance, Lr(x, ~ω), for all points in the scene and from all directions.
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For typical scenes with indirect illumination, the number of photons shot, NPM , is

required to be in the hundreds of thousands or even millions (Jensen, 2001). As there will

be a very large number of kNN searches, it is important that these searches be efficient.

The standard acceleration data structure is the kd -tree (Bentley, 1975). The choice of

data structure will be studied in Chapter 4.

For static scenes the photon map can be generated as a single preprocess and reused

for multiple viewpoints. Alternatively, time dependent photon mapping adds time as

dimension for the kNN gathers, allowing for animations without temporal aliasing (Cam-

marano and Jensen, 2002). Jensen described a simple three-pass technique that uses an

additional importance map, generated by shooting importans (Jensen, 1996b). Impor-

tans are an analogue of photons; they are shot from the camera into the scene and their

distribution is then used to determine when the standard photons should be recorded in

the photon map. Additionally, importance sampling can be used to guide the initial di-

rections in which photons are shot using a projection map from the light sources (Jensen

and Christensen, 1995).

2.6.2 Image generation

After the photon maps are created, the image is rendered using the pixel-driven al-

gorithm (Algorithm 2.1). The exitant radiance is computed in four steps, outlined in

Algorithm 2.5. The direct and emitted illuminations are computed in the same manner

as they were for path tracing. The indirect illumination however is computed twice, once

for general indirect illumination and once for caustics, using the two separate photon

maps.

To compute the caustic illumination using the photon map, a kNN search within the

caustic photon map is conducted in a small neighborhood around the point x. Reason-

able values for k are 100 or more (Jensen, 2001). As these photons are taken as a sparse
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Pre-condition: x is the location under consideration
Pre-condition: ~ωo is the direction towards the viewer

// Compute the locally emitted radiance in direction ~ωo

result← emitted illumination(x, ~ωo)
// Compute the direct illumination due to the pre-defined light sources
result← result + direct illumination(x, ~ωo)
// Compute the indirect illumination using the caustic photon map
result← result + photon gather(caustic map, x, ~ωo)
// Compute the indirect illumination using the indirect photon map
result← result + compute indirect(x, ~ωo)

Post-condition: result = the total reflected radiance from x towards ~ωo

Algorithm 2.5: Generation of an image using the photon map. Direct illumination and
self emitted radiance are computed as they were for path tracing. The caustic photon
map is queried using a single photon gather. The rest of the indirect illumination is
computed using one of the two visualization techniques discussed in this section.

sampling of the incident radiance at the position x, Jensen showed that the rendering

equation can be adapted to compute the reflected radiance at x in any direction, Equa-

tion 2.6, without further recursion of the rendering equation. (The term A represents

the area of the circle defined by the radius required to find all k photons.) This process

is referred to as a photon gather and is illustrated in Figure 2.7. It is worth noting that

this process is similar to Monte Carlo integration, except that the sample directions have

been chosen previously, by the selection of photon paths.

Lr(x, ~ωo) =
k∑

p=1

fr(x, ~ωp, ~ωo)
4Φp(x, ~ωp)

4A
(2.6)

The caustic illumination is computed for every eye-ray using a single photon gather

at x in the caustic photon map. There are two common techniques for computing the

general indirect illumination using photon gathers. The first, direct visualization, uses a

second final gather at x in the general indirect photon map. There is no need to recurse

through the rendering equation at all, leading to a very efficient algorithm. Unfortunately,

direct visualization exhibits strong visual artifacts unless a prohibitively large number of

photons are used (Jensen, 2001).
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Figure 2.7: Computing reflected radiance using a photon gather. A single photon gather
performed at x to estimate the reflected indirect illumination. The k nearest photons in
the photon map are located, and are interpreted as a sparse representation of the incident
radiance, allowing for the evaluation of the rendering equation without further recursion.

2.6.2.1 Final gather visualization

The final gather visualization, shown in Figure 2.8, estimates the reflected radiance at x

by evaluating the rendering equation using a Monte Carlo integration. Instead of a single

photon gather, the hemisphere surrounding x is sampled and N rays, ~ωi, are cast out

into the scene as described in Section 2.3.4. At each intersection point, yi, a standard

photon gather is performed. These results are combined using Equation 2.5 to compute

the indirect diffuse illumination. Reasonable values for N are 100 or more (Jensen, 2001).

Because the artifacts of direct visualization are stark, I use the higher-quality final-gather

visualization in this dissertation. The simple modified Cornell box image in Figure 1.2

required only N = 50 to achieve acceptable visual quality. The more complicated image

of the Sponza scene in Figure 1.3, however, required N = 200.
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Figure 2.8: Final gather visualization of the photon map. A higher quality estimate of
incident radiance is obtained by using Monte Carlo integration to perform a final gather.
A photon gather is performed at the end of each secondary ray, ~ωi.

2.6.3 Computational Requirements

The computational requirements of generating interactive images using the final-gather

visualization algorithm are significant. The costs are analyzed in Section 7.3 and sum-

marized in Section 7.3.5. The most significant portion of the computation is the indirect

photon gathers. The photon gathers require a kNN search (traversing the photon map,

comparing normals and verifying that the photons found are within the allowed radius),

evaluating the BRDF for each photon chosen, and finally the accumulation in the frame

buffer of the results.

The modified Cornell box image in Figure 1.2 requires 37 GFLOPs to render, or

1.1 TFLOPS at 30 frames per second. The Sponza scene requires 209 GFLOPs per image,

or 6.3 TFLOPS at 30 frames per second. This is a lot of computation, far more than
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is expected to be available on CPUs in the near future. In Section 2.2 it was estimated

that fine-grained graphics applications can easily expect to support 500 GFLOPS of

computation by 2010. The workload of the Sponza atrium would need to be split among

13 chip replications to achieve this rate. This number of chips, each with dedicated

high-speed memory, is aggressive to include within a single host workstation.

2.6.4 Bandwidth Requirements

The bandwidth requirements of photon mapping are measured as either the total number

of bytes that must be transfered from off-chip memory to render an image, or as a rate

using the number of bytes per second. The data structures holding the photon map,

geometry, surface properties and other required items are too large to fit in embedded

memory for the next several years.

The modified Cornell box image in Figure 1.2 requires 50 GB to render, or 1.4 TB/s

at 30 frames per second. The Sponza scene requires 367 GB per image, or 11 TB/s at

30 frames per second. These bandwidth rates are very high, with the bulk of the cost

due to the kNN searches for the indirect photon gathers. Using the estimate of near

future memory bandwidth in Section 2.2, the 11 TB/s would require that the workload

be divided among 123 chips each with a replication of the same memory. This is not

feasible to house in a single host workstation, and would require either a large cluster or

a large specially built chassis.

2.7 Discussion

Photon mapping is a viable candidate for implementation as an interactive global illumi-

nation architecture. Although the computational requirements are significant, it is the

memory bandwidth that precludes a straight forward implementation from being small

enough to install in a single host workstation. It is the photon gathers used by the final
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gather visualization to compute indirect illumination that are so expensive. Therefore,

this dissertation focuses on the bandwidth requirements of the indirect photon gathers,

introducing three techniques that reduce their cost while not significantly increasing the

computation required. The results are then utilized by a feasible hardware architecture

to support interactive rendering.
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CHAPTER 3

PHOTON GATHER REORDERING

Rendering an image with the naive photon mapping algorithm, as described in Sec-

tion 2.6, generated a tremendous amount of memory traffic. The Sponza scene, for

example, required 367 GB for a single image. An interactive system generating thirty

frames per second would therefore require at least 11 TB/s of memory bandwidth. Only

a small portion of the required bandwidth can be attributed to solving the visibility

problem, with ray casting, or performing the local evaluation of surface reflectance, in

the form of texture lookups. The large value is due almost entirely to the photon gathers.

Chapters 5 and 6 will describe two techniques to reduce the number of photon gathers

that must be performed, and thus indirectly the bandwidth requirements. Together

with Chapter 4, this chapter focuses on reducing the bandwidth costs of performing a

particular and fixed set of photon gathers without any modifications to the generated

image. This is achieved by changing the order of operations, allowing the memory cache

to become more effective.

After an exploration of the origin of the high bandwidth costs incurred by the naive

photon mapping algorithm, the potential reordering schemes are broken into two cat-

egories. Four specific techniques are presented and analyzed. Of these, the reordering

based on the Hilbert curve reduces off-chip bandwidth by up to four orders of magnitude

(to 15 MB for the Cornell scene), but requires 1 GB of intermediate high-speed storage.

Alternative techniques are presented that still achieve one order of magnitude improve-

ment for the scenes described in Chapter 1 but only use 1 MB of intermediate storage.
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Figure 3.1: In this example scene, each eye ray spawns three final gather rays. The dashed
circles show the locations of the photon gathers. The gather locations are numbered in
the order they might be generated by the naive algorithm. Although many of the gathers
are very close to each other in 3D space, and hence in the photon map as well, those
gathers are not performed at similar times. A cache is therefore unable to reduce the
bandwidth requirements.

The algorithms presented in this chapter form the basis of the architecture described in

Chapter 7.

3.1 Origin of the high costs

The naive implementation of photon mapping, as described in Chapter 2, is illustrated

in Figure 3.1. The pixels of the image are evaluated sequentially, in row-major order.

A pixel may be sampled multiple times, for higher image quality with less geometric

aliasing, with each sample establishing an eye ray into the scene. This eye ray is cast

through the scene to find the first intersection, x. If x is on a highly specular object, the
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ray is reflected and cast again, until a non-specular object is found. Using the Monte-

Carlo integration technique, NFG final gather rays, originating at x, are sampled from the

visible hemisphere uniformly. This process is then repeated for every other pixel. Notice

that the random sampling of the hemisphere is performed pixel by pixel without regard

to prior choices. These final gather rays are then traced through the scene to their

own intersection points, yi, where a photon gather is performed in lieu of a recursive

application of the rendering equation.

Memory caches reduce memory traffic by exploiting locality in the memory request

stream. To be effective they require both spatial and temporal locality (Patterson and

Hennessy, 1996). Using a reasonable data structure (see Chapter 4 for a discussion of the

available choices) each individual photon gather need examine only a small portion of

the memory holding the photon map. Notice, however, that in the illustration there are

many photon gathers on the right wall that need to be performed. They are so close that

they will require access to the same portion of the photon map, indeed many of the same

photons will be found for each photon gather. The fact that so many photon gathers

require the same piece of memory implies that there is strong spatial locality present

in the workload and that a cache has the potential to greatly reduce the bandwidth

requirements drastically by preventing many photon gathers from requiring any new

information from memory.

Unfortunately, these photon gathers that are so close to each other were in fact

generated by different pixels and are evaluated at different times. There is therefore very

little temporal locality and the cache is unable to provide any substantial reduction in

bandwidth requirements. The key insight in this chapter is that the photon gathers are

completely independent of each other, despite the sequential order implied by the naive

algorithm. By reordering the photon gathers, temporal locality can be improved and

the potential coherence will become exposed, reducing memory bandwidth dramatically

without changing the final image.
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Figure 3.2: After the eye rays for each tile are generated, they are cast into the scene.
At each intersection point the hemisphere of directions is sampled, possibly using gener-
ative reordering. The final gather (secondary) rays are then intersected with the scene,
determining where the photon gathers will take place. This list of photon gathers may be
reordered a second time, deferred reordering, before the gathers are processed. The final
result for each query is a contribution to an individual pixel. The results are accumulated
in the framebuffer after shading.

3.2 Reordering algorithms

The techniques presented in this chapter can be characterized as taking two different

approaches for changing the order in which photon gathers are processed. The first,

generative reordering, modifies the order in which the final gather rays, and hence photon

gathers, are generated. Deferred reordering, on the other hand, generates a list of photon

gathers, Y , and then sorts the list before performing the searches. Figure 3.2 provides

a logical overview of how to apply these two approaches to a system which generates

images using the photon map.

To compare the reordering algorithms described in this chapter, a publicly available

renderer, pbrt (Pharr and Humphreys, 2004), was modified by adding a software cache

simulator. The renderer notes all accesses to the photon map and provides the stream

of memory references to the cache simulator for analysis. The simulator models a fully-

associative cache that implements the Least Recently Used (LRU) eviction policy. Fully
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associative caches are costly to implement in hardware because of the large number of

comparators required. Caches are instead usually implemented with the less optimal set-

associative eviction policy. However, it has been shown that, in the absence of a highly

regular access pattern, reducing the associativity raises the number of block evictions

and fetches by a constant factor (Hill and Smith, 1989). The reduction from a fully-

associative cache to an 8-way set-associative cache increases the number of fetches by

approximately 39%.

The experiments in this chapter were conducted on the test scenes from Section 1.4,

the Cornell box and the Sponza model. At first, the cache is configured as 128 KB in size

with 128 byte cache lines. Section 3.5 explores the parameters we chose for the cache.

The kd -tree data structure for the photon map is used throughout this chapter and the

images generated are 512×512 with a single sample per pixel. The number of final gather

rays per eye-ray, NFG, varies as noted for each experiment.

3.3 Generative reordering

The naive ordering can be thought of as the base case for reordering. The first set of

techniques examine and modify the order in which the final gather ray directions are

generated. These rays are determined before ray casting has been performed. As a

consequence, the final locations of the photon gathers, denoted yi in Section 2.6.2, are

not yet known. Even without this knowledge, significant increases in temporal locality

are possible.

In many scenes the eye rays from neighboring pixels will intersect the scene at points

x in close proximity to each other (Wald et al., 2001). The nature of this coherence is

that the origins of the final gather rays cast during the Monte Carlo integration will tend

to be similar for pixels near to each other in the image.
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Figure 3.3: A small image tile has the property that its pixels will tend to project to a
small number of objects that are close to each other. The origins for the final gather rays
will therefore also be closer together than those of large tiles.

3.3.1 Tiled reordering

It would seem that this coherence could be exploited by breaking the screen into tiles.

The naive photon map algorithm would then be applied to each tile independently. The

pixels of each individual tile are processed in scanline order. The list of associated photon

gather sites, Y <a,b>, is an enumeration of the photon gather locations for the tile <a, b>.

A similar technique is commonly used in graphics rasterization hardware to improve

texture memory locality (McCormack et al., 1998). As demonstrated in Figure 3.3,

image tiles that are of moderate size generally project onto just a small portion of the

scene, causing all the gather rays in Y <a,b> to have similar origins. This will be true

except in scenes that have significant depth discontinuities, such as a leafy forest.

The problem with the tiled approach by itself is that while the origins, x, of the

rays used by the Monte Carlo integration are similar, the directions, ~ωi, remain spread

across the hemisphere. In scenes which consist primarily of relatively open rooms, with or

without complex objects or wall surface geometry, the resulting search locations yi remain
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Figure 3.4: Although the division of the image into tiles brings coherence to the origins of
the final gather rays, the directions of the rays remains random. To expose the coherence
in the location of photon gathers, the tile is processed multiple times. During each pass
only those final gather rays with similar directions are generated.

too scattered throughout the scene to improve cache efficiency. This lack of improvement

can be seen on the top line of the graphs in Figure 3.5. As the tile sizes varies, there is

not a noticeable change in the bandwidth requirements of the naive tiled algorithm.

3.3.2 Tiled direction-binning reordering

The tiled algorithm can be improved by explicitly grouping the final gather rays by

direction, ~ωi, in addition to the implicit grouping by origin, x. The resulting rays will

share both similar origins and directions (see Figure 3.4). They will therefore tend to

highly coherent and intersect the scene at points yi near each other (Wald et al., 2001).

This generative ordering can be implemented by performing multiple passes over the

tile, after the initial ray casting has located the eye-ray intersections x. Each pass will
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only generate those rays, ~ωi, that fall within a specified portion of the hemisphere. This

is in contrast to the naive algorithm which generates all the rays for a single eye ray

before continuing. The hemisphere is divided into bins of equal solid angle. The number

of bins is a system parameter; the smaller that each direction bin is, the more coherent

the rays generated will be. This benefit is offset by the repeated work incurred during

each pass. The correct tradeoff is found experimentally.

The tiled direction-binned reordering algorithm requires less than a third of the naive

algorithm’s bandwidth for all tile sizes larger than 4×4 (Figure 3.5). The modified Cornell

scene is reduced from 50GB per image to 13 GB with a tile size of 16×16, while the

Sponza scene is reduced from 367 GB to 58 GB. An interesting feature of the graphs

in Figure 3.5 is the knee at tiles of size 16×16. As mentioned above, larger tiles cover

multiple surfaces, reducing the coherence of the final gather ray origins, x. The result

is that the final gather rays for the tile will spread further out in the scene when the

tiles get large. For the test scenes in Chapter 1, this knee occurred at 16×16 and it was

determined to use 16×16 bins for all results presented in this chapter.

When generating an image using the photon map, highly specular surfaces such as

mirrors and glass objects are treated specially. Instead of using a final gather immediately,

the eye ray is reflected and/or refracted as a single ray until it reaches a diffuse or glossy

surface. If this occurs to some of the pixels in a tile, then the origins of the final gather

rays will be very far apart, eliminating the coherence of photon gather locations. The

implementation used in this dissertation tackles this problem by creating a list of those

eye rays affected, and delaying all action on them until the final gathers for all other

pixels in the tile are handled.
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(a) Modified Cornell box, NFG = 33
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(b) The Sponza atrium, NFG = 200

Figure 3.5: The tiled Hilbert curve reordering results in the lowest bandwidth for each
tile size. Only tiles of moderate size are practical due to internal storage constraints.
16×16 and 32×32 are both feasible and perform well for the cost effective reorderings of
tiled direction binned, both with and without hash reordering.
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3.4 Deferred reordering

The generative reordering techniques described in the previous section enumerate a list Y ,

Y <a,b> if tiling is being used, of photon gather locations. The second set of techniques for

improving the locality of the photon gathers consists of reordering the elements yi ∈ Y

to form Y ′ before performing the photon gathers. There are several possible deferred

reorderings, and they may be matched with any generative reordering; any combination

is possible.

This decoupling of the photon-gather-location generation from the actual gather pro-

cess does however introduce computational and storage overhead. For each photon gather

the following must be stored: the search location, the direction from which this point

is viewed, a pointer to the local material properties, the destination pixel, and an RGB

pixel contribution weight. The system described in this dissertation requires 44 bytes for

each deferred photon gather.

If all the photon gathers for a 512×512 image with 100 gathers per pixel, NFG = 100,

are deferred for reordering, then 1 GB of intermediate storage will be required. If the

screen is divided into 16×16 tiles, then 1 MB of intermediate storage will be required.

Some deferred techniques do not require the full list Y to be enumerated at any one

moment, but instead operate in a streaming fashion over a window of photon gather

requests.

3.4.1 Hilbert curve reordering

The tiled direction-binning generative reordering technique is efficient and effective at

reducing bandwidth. A deferred technique that waits for the entire list of photon gather

requests, T , and performs an near-optimal sorting on that list would provide a measure

for just how much reduction in bandwidth is possible.

The Hilbert curve, shown in both two and three dimensions in Figure 3.6, is a space-
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Figure 3.6: The Hilbert curve is a space filling curve with the property that points close
to each other in the multidimensional space will tend to be close to each other in the
linear order imposed by the Hilbert Curve. Although this property does not always hold,
the Hilbert curve is optimal in 2D and believed to be optimal in higher dimensions.

filling fractal. It has the useful property that if two points are close to each other in

the multidimensional space, they will tend to be close to each other in the linear order

imposed by the Hilbert curve. It can therefore be used to produce a linear mapping of a

multidimensional space (Faloutsos and Roseman, 1989; Moon et al., 1996).

As a deferred ordering, the entire set of photon gathers, Y , can be organized along

a three-dimensional Hilbert curve, Y ′ = Hilbert(Y ). This is shown symbolically in Fig-

ure 3.7. All the photon gathers in Y are considered to be inserted into an uniform grid

so fine that no cell contains more than a single gather. This grid is then traversed in

the Hilbert curve order to produce the new order, Y ′. As the traversal moves through

the grid, the photon gathers are processed in the photon gather until. The system used

in these experiments to reorder the gathers was developed to minimize memory band-

width in the presence of a small cache and is derived from code provided by Liu and

Snoeyink (Liu and Snoeyink, 2007).

The Hilbert reordering algorithm, applied over all of the searches in Y , is able to
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Figure 3.7: The Hilbert curve is used to reorder photon gathers by inserting them into a
virtual grid that is then stepped through in the order indicated by the Hilbert curve.

reduce the bandwidth of the Cornell scene from 50 GB to 15 MB, an improvement of

four orders of magnitude. This can be considered a nearly optimal result; the average

photon is transferred from memory less than twice. This shows that reordering has the

potential to dramatically reduce the cost of photon mapping. However, applying this

technique to the entire image requires that we store the entire list Y before it is sorted.

This does not seem feasible because it would require 1 GB of memory for a system using

16×16 tiles.

3.4.2 Tiled Hilbert reordering

Generating the Hilbert curve ordering for the entire image at once required a significant

amount of processing and storage. To reduce this overhead, the reordering can be done on

individual screen tiles generated by the screen tiled algorithm, Y ′<a,b> = Hilbert(Y <a,b>).
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Although this reduces both the computational and storage overhead, it also reduces the

effectiveness of the reordering. The bandwidth increases as the number of pixels in the

tile decreases, as shown by the bottom curves in Figure 3.5. As the tile size increases, the

Hilbert reordering can exploit more coherence in the search locations. For reasonable tile

sizes of 8×8 to 32×32, the bandwidth ranges from 20 GB to 3 GB for the Cornell box,

and 40 GB to 8 GB for the Sponza model. Notice that unlike the tiled direction-bining

algorithm, there is no knee in the graph. This is because rather than attempting to

make the final gather rays more coherent, the actual locations of the photon gathers are

directly sorted.

As the work by Liu matures, it may prove possible to perform a Hilbert reordering on

a tile basis directly in hardware. The additional reduction of bandwidth for the photon

gathers would have to exceed the cost. Tiles would have to be large enough so that the

difference between the generative techniques and the Hilbert curve technique is large,

perhaps 32×32 or 64×64, but small enough to not require additional off chip bandwidth.

One possibility is that the Hilbert reordering algorithm could be adapted to the stream

processing model.

3.4.3 Hashed reordering

Several authors (Indyk et al., 1997; Gionis et al., 1999) have explored hashing algorithms

for kNN searches, the core algorithm underneath a photon gather. This section introduces

a reordering algorithm that uses hashing functions with a different approach, one that

has low computation costs and manageable memory use. This algorithm is similar to

the ray-queue hashing of the GI-Cube (Dachille and Kaufman, 2000), introduced in

Section 2.5.

The GI-Cube is a volume rendering architecture that uses ray tracing to create global

illumination effects (Dachille and Kaufman, 2000). Rather than tracing each ray indi-

55



G1G1 G2G2 G3G3 G4G4 G5G5 G6G6 G7G7 G8G8 G9G9

G1G1

G2G2

G4G4

G5G5

G3G3

G6G6

G9G9

G1G1 G2G2 G3G3G4G4 G5G5 G6G6 G7G7 G8G8G9G9

Queue Selection

}

}}
Figure 3.8: The hashed reordering algorithm. As each photon gather request is generated,
it is assigned to a queue based on a three-dimensional hashing function. A single queue
is serviced until it is exhausted, when the then fullest queue is selected. The reordering
is restricted to a window of p× s photon gather requests.

vidually throughout the entire volume, potentially requiring a great deal of repetitive

memory accesses, the GI-Cube traces rays together as long as they remain in the same

portion of the scene. The scene is divided into blocks of volumetric data small enough to

fit entirely in the cache. Separate queues are established with multiple blocks assigned

to each queue. The mapping of blocks to queues is computed by a three-dimensional

hashing function.

Only those rays within a single queue are processed at a time. If during ray tracing

any ray leaves its current block, the ray is moved to the queue of the block it is entering.

The rays in a queue are processed until the queue is empty, when the queue with the

most entries is selected as the new active queue. This process achieves a tremendous

reduction in memory bandwidth.
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This algorithm is adapted to photon gather reordering as illustrated in Figure 3.8.

The entire scene is divided into a regular grid, according to system-wide parameters

that set the number of intervals along each dimension. Each gather location in Y is

compared to this grid to determine which three dimensional block it corresponds to. A

three-dimensional hashing function is applied to the block each photon gather request

falls in order to assign it to on of the p queues. Each queue is able to hold only s pending

photon gather requests, restricting the reordering to a window of p× s gather requests.

Photon gather requests are extracted from a single queue at a time and passed to the

photon gatherer. When the queue becomes empty the then fullest queue is selected and

processed. In this fashion the generated list of photon gather requests Y is reordered,

Y ′ = Hash(Y ).

There are three user controllable parameters that must be adjusted: the number of

hash buckets, the size of these buckets and the size of the uniform grid. Optimizing these

variables is difficult, and is a drawback of the method. In order to reduce the number of

structural collisions, it is important to choose a prime number of buckets.

A notable feature of the hashed reordering is that there is no need to wait until the

complete list Y has been enumerated. The incoming photon gather requests can instead

be processed in a streaming fashion. Because the queues only hold p×s gather requests,

the window of reordering is finite and usually far smaller than |Y |. Unfortunately, by

operating only on a small window, this algorithm is unable to perform large-scale re-

ordering by itself. It is therefore unsuitable when applied directly to the naive generative

ordering.

3.4.4 Tiled direction-binning Hashed reordering

The more coherent the initial list of search locations, the better the hash reordering

described in the previous section will perform. The hashed reordering algorithm can
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be combined with tiled direction-binning. Each generated list of gather locations for a

single tile, Y <i,j>, is already highly coherent. With hashed reordering applied to each tile

<M,N>, Y ′ = Hash(< Y <1,1> · · ·Y <M,N> >), the bandwidth requirement of the Cornell

box scene is slightly reduced from 13 GB to 12 GB, for a practical tile size of 16×16.

The additional reduction is small, as the tiled direction-binning reordering is able to

extract most of the available coherence. (The tiled Hilbert reordering required 9 GB.)

The Sponza scene experiences a more substantial reduction from 58 GB to 31 GB. This is

approximately half the possible difference between tiled direction-binning and the Hilbert

curve reordering.

The experiments in this dissertation were run with 17 hash buckets of 128 elements.

Increasing the number of buckets or the size of the buckets reduces the number of collisions

only marginally. For the Cornell scene we used a uniform grid with 5 intervals in all three

dimensions, while in the Sponza scene we used 8.

3.5 Cache parameters

The experiments in this dissertation use the previously described cache simulator, at-

tached to the pbrt rendering system. Like Ma and McCool (Ma and McCool, 2002),

off-chip memory is assumed to be relatively slow and to be accessed in chunks the size

of cache lines. Standard DRAM designs achieve peak bandwidth when the accesses are

coherent, long, and aligned to page boundaries. This means that reading individual

photons from scattered locations in memory is highly inefficient. The naive bandwidth

estimates of 50 GB and 367 GB are generated with 20 bytes reads of single photons

scattered across memory. Assuming 20 bytes per photon and standard 128 byte cache

lines (Intel, 2003), this means that about six photons fit in a cache line (with some extra

room for data structure bookkeeping). Efficient algorithms should make use of several, if

not all, of the six photons stored in a cache line. Several of the data structures that are
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Figure 3.9: The practical reordering algorithms described in this chapter experience di-
minishing returns on caches larger than 128 KB. The simple tiled algorithm will continue
to benefit as the cache size is increased. There is little difference for the tiled Hilbert
algorithm, as its working set is less than 32 KB. (Cornell box scene, NFG =100, kd -tree,
128B cache lines and 16×16 pixel tiles.)

discussed in Chapter 4 are explicitly organized in blocks that are the size of the cache

lines in order to maximize the utility of each read. In this chapter cache lines of 128 bytes

are used.

For the purpose of comparing the reordering algorithms in this section, we fixed the

cache to be 128 KB in size with 128 bytes cache lines. Figure 3.9 formed the basis for

our choice of cache size. For the Cornell box scene, increasing cache size beyond 128 KB

had no effect when a good ordering algorithm was used. The Sponza scene has a larger

working set and is able to make good use of a 256 KB cache, although larger sizes provide

little to no benefit.
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Reordering algorithm Bandwidth
Cornell Sponza

Tiled naive 50 GB 357 GB
Tiled direction-binning 13 GB 58 GB
Tiled direction-binning with hashed 12 GB 31 GB
Tiled Hilbert 9 GB 19 GB

Table 3.1: The bandwidth requirements to render a single frame of the modified Cornell
box, Figure 1.2 and the Sponza atrium, Figure 1.3, for the various reordering algorithms.
The combination of tiled direction-binning generative reordering and hashed deferred
reordering is able to reduce the bandwidth requirements by over an order of magnitude;
however the requirements for the Sponza Atrium are still more than the 24 GB/image an
8-chip system would provide. (128 KB cache, 128 byte cache lines, 16×16 tiles, kd-tree.)

3.6 Conclusion

Photon gather reordering reduces the memory bandwidth requirements of final gather

rendering using the photon map. Although the bandwidth can be reduced drastically

by fully sorting all gather requests for the entire image, this requires too much interme-

diate computation and storage. The combination of tiled direction-binning generative

reordering and the hashed deferred reordering is practical, easy to implement and highly

effective, achieving over an order of magnitude reduction in bandwidth requirements.

There are alternative reordering schemes to be investigated. For example, the ray trac-

ing process itself generally uses an acceleration data structure that divides space. There

are ways that this information could be harvested and reused to perform the deferred

reorder cheaply. The hope is to find a reordering able to more closely approximate the

superior results of the tiled Hilbert while remaining as cheap as tiled direction-binning.

Additional work extending that of Liu and Snoeyink could allow for the direct application

of the Hilbert curve algorithm itself, if the computational and added bandwidth costs

can be kept reasonable. The results in this chapter assumed that the conventional data

structure, the kd -tree was used. In the next chapter the potential benefit of alternative

data structures is examined.
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CHAPTER 4

DATA STRUCTURES

The memory bandwidth requirements of photon gathering are clearly dependent on the

specific data structure that the photon map has been stored in. Recall that each photon

gather involves a kNN search which requires finding the k photons closest to the point

where the reflected radiance is being calculated. In the extremely inefficient case of a

simple unordered list, each photon gather would require consulting every single photon

in the photon map. A single gather would therefore require O(NP ) memory accesses,

where NP is the number of photons in the map.

Spatial subdivision data structures can be used to reduce the number of photons that

must be examined and therefore the total memory accesses required to perform any one

gather. For example, the kd -tree data structure, discussed in Section 4.2, was originally

suggested by Jensen because only O(k+ln(NP )) memory accesses are generated (Jensen,

1996a). With the number of photons near or exceeding one million for high quality

indirect illumination, this can be a tremendous savings.

The traditional analysis of algorithms, and their data structures, uses the Random

Access Memory (RAM) model of computation and concentrates on the arithmetical com-

putation effort (Cormen et al., 2001). Under the RAM model, each basic arithmetic

operation costs exactly one unit of time, as do all memory accesses. In particular, the

RAM model does not correctly model those computer memory systems which have one

or more levels of cache. In such hierarchical memory systems, the cost of a single memory

access depends on the exact contents of the cache when a request is serviced, and can

vary by several orders of magnitude.



Algorithms and their data structures both can be modified to be more efficient in

the presence of a hierarchical memory system. In Chapter 3 the photon gathers were

reordered to promote cache efficiency. The strong spatial clustering of photon gathers

discussed in that chapter will favor data structures that store nearby photons close to each

other. In this chapter, four possible data structures for the photon map are considered,

the traditional kd -tree, kdB-tree, uniform grid, and Block Hashing. They have been

shown to have a direct impact on memory requirements (Christensen and Batali, 2004;

Jensen, 2001; Ma and McCool, 2002; Wald et al., 2004).

The experiments in this chapter were performed using a cache simulator, described in

Chapter 3, attached to a modified open-source renderer (Jarosz, 2004). The underlying

data structure code was modified to implement the different structures studied while

analyzing the stream of memory references generated. The results are reproduced in

Figure 4.1 and Table 4.1.

4.1 Uniform grid

Perhaps the simplest of all spatial decomposition data structures, the uniform grid is

easy to implement. The spatial extent of the scene is divided into uniformly sized cells

along a three-dimensional grid. (The intervals on each dimension need not be equal.)

As each photon is inserted into the structure, its thee-dimensional location is compared

against the grid and the proper cell selected. The photon is then stored in that cell.

During rendering, the kNN search starts by selecting the cell containing the point at

which radiance is being estimated, referred to as yi in final gather visualization, and

considers all the photons in that cell. If k photons are not selected, the neighboring

cells are considered in order of distance until enough photons are found that match the

criteria.

The efficiency of this data structure depends heavily on the distribution of the photons
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throughout the scene. Unfortunately, if participating media are not used, photons are

stored only on the surfaces of objects (Jensen, 2001). The result is that a large number,

sometimes a majority, of cells will in fact be empty while others will have large number

of photons. If the grid uses direct addressing, then each cell must be large enough to hold

the number of photons in the largest cell. This can be a huge waste of memory if the

grid is fine enough to be beneficial. Alternatively the grid could be implemented using

indirect addressing. With indirect addressing, the full three-dimensional grid contains

only pointers to lists of photons if there are any photons stored in that cell. This limits the

waste of memory, but does add a layer of indirection and delay to the memory accesses.

Both approaches were tried in the simulator described in the introduction to this

chapter. The direct addressing approach required so much memory that results were not

acquired. The indirect approach was too slow, due to the consideration of photons that

were not selected. Results were not obtained unless the grid was so fine that even the

grid of pointers required too much memory. The uniform grid has however been used

in a hardware photon map system that efficiently generated and rendered small photon

maps (Purcell et al., 2003). It was made practical in that application by restricting the

renderer to direct visualization and restricting the size of individual cells by discard-

ing similar photons. This produces good results for caustics which nearly saturate the

rendered pixels, but was insufficient for high quality general indirect illumination.

4.2 kd-tree

The kd -tree is a binary search tree. Starting from the root node a splitting plane, aligned

with one of the three natural axes, is defined. A balanced kd -tree selects the splitting

plane such that half of the photons under that node are on each side. Finding a single

photon therefore requires O(ln(NP )) memory accesses. Typically, the tree is complete

and stored as a priority heap to eliminate the need for pointer overhead.
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Jensen selected the balanced kd -tree (Bentley, 1975) for his implementation because

it enables kNN searches at a cost of O(k + ln NP ), as analyzed by the RAM model.

The kd -tree can be difficult to implement in hardware due to the deep chain of indi-

rection required while traversing the tree. This latency can be reduced if the portion

of the tree being traversed is able to stay in the cache, or if delay queues are used to

allow for the overlapping of requests. The SAARCOR ray tracing architecture provides

an efficient strategy and architecture for the traversal of a kd -tree (Schmittler et al.,

2002). Foley adapted the traversal algorithms directly, to be stack-free, and hence easier

to implement in multi-threaded hardware, but with performance reductions (Foley and

Sugerman, 2005).

As mentioned above, the RAM model analysis of the balanced kd -tree relies on the

assumption of a constant memory access time, which is not valid in hierarchical memory

systems. A memory request that can not be satisfied by the cache will require a memory

fetch of an entire cache line. Photons can be compressed to 20 bytes each (Jensen, 1996a),

so a typical 128 byte cache line is able to hold 6 photons with eight bytes available for

data structure overhead. If the kd -tree is stored in the standard priority heap structure,

which eliminates the overhead of storing pointers, only one photon per cache line will

typically be considered until the leaves of the tree are encountered. Although the kd -tree

performs decently for small cache lines, as shown in Figure 4.1, larger cache lines actually

require more memory bandwidth.

Wald analyzed the performance of the kd -tree and demonstrated an alternative to

balancing that achieves a speedup of 1.2 to 3.4 for kNN queries (Wald et al., 2004). This

improvement is similar in magnitude to that achieved with the kdB-tree.
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4.3 kdB-tree

The kdB-tree (Robinson, 1981) blends the advantages of the kd -tree with the classical B-

tree (Bayer and McCreight, 1972) by explicitly organizing the photons into cache-sized

blocks. The bounding volume of the photon map is recursively divided into mutually

exclusive rectangular regions. Each region contains a list of pointers to either another

region or to a leaf node. The leaf blocks contain a list of photons that are contained

within a bounding volume. The branching factor of the region nodes and the number of

photons that can be stored in each leaf node is dependent on the size of a cache line. (In

the original paper, the data structure was stored on disk and the size of a disk page was

the limiting factor.)

The kdB-tree was developed in the database community, which has extensively studied

the problem of kNN searches (Havran, 2000; Indyk et al., 1997). However, as noted by

Ma and McCool (Ma and McCool, 2002), many of these searches are designed for high-

dimensional data.

When implemented in the photon map renderer, the kdB-tree data structure was

found to reduce bandwidth below that of the kd -tree only when the cache lines are large.

Since each block of data imposes some overhead, as the block size shrinks the overhead

begins to dominate. Experiments showed that for the naive ordering, Figure 4.1a, the

crossover point was at 256B cache lines, with the kd -tree being a better choice for smaller

cache lines. Although larger cache lines favor the kdB-tree, the absolute bandwidth is

actually greater than with small cache lines because of unnecessary photons being brought

into the cache without ever being used.

When the photon gathers are already well ordered, as with tiled Hilbert reordering,

the kdB-tree is actually a poor choice of data structure, Figure 4.1b. This is explained by

the observation that the overhead of pointers and region nodes will reduce the number

of photons that fit into the cache. When multiple gathers are performed in succession in
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the same portion of the photon map, the more compact kd -tree data structure is able to

make better use of the fixed sized cache.

4.4 Block Hashing

Introduced by Ma and McCool (Ma and McCool, 2002), block hashing is an approximate-

kNN data structure that stores spatially coherent photons in cache-line sized blocks.

It was specifically designed for generating images from a pre-computed photon map.

The goal is to reduce memory latency by minimizing the number of dependent memory

requests compared to a hierarchical tree traversal, such as the kd -tree or kdB-tree.

In block hashing, photons are hashed into blocks based on a Locality-Sensitive Hash.

Each block is designed to fit within a single cache line, by restricting the number of

photons that are placed into leaf blocks, for fast memory access. There are several

parameters that must be adjusted for optimum performance, including hash-bucket size

and the number of hash tables. The experiments in this chapter follow the heuristics

outlined by Ma and McCool to select the parameters.

Block Hashing was designed to reduce the effects of long memory latency, not to

decrease memory bandwidth. However, it is competitive in terms of bandwidth with the

other data structures. Block Hashing was originally designed with a 256 byte cache line,

but the experiments here use 64 to 1024 byte cache lines for a fair comparison, so in the

cache line experiments the accuracy parameter was selected in the same spirit as Ma and

McCool (Ma and McCool, 2002). Since Block Hashing is an approximate kNN search,

an accuracy of A = 20 was used to better compare with the exact kNN searches. As

this parameter controls the number of blocks that are examined for each search query, it

directly impacts bandwidth. Ma and McCool suggest using A = 10 to A = 16, but these

lower values caused a large number of photon blocks to be orphaned at small cache line

sizes.
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kd -tree kdB-tree BH
Naive 23,045 11,755 73,523
Tiled Dir-Binned 3,927 4,397 20,316
Tiled Dir-Binned Hash 2,590 2,870 9,912
Tiled Hilbert 1,215 1,134 2,350
Hilbert 1.6 1.8 3.1

Table 4.1: The average number of memory-block fetches for different combinations of
data structures and reorderings. This number is directly related to bandwidth by the
size of the cache line. The difference between the data structures is most significant for
the naive order, and the effect is negligible for the Hilbert reordering. (Note in particular
the excellent performance of the kdB-tree when the naive ordering is used.) Regardless of
the data structure, memory efficiency is improved more by choosing a better reordering.
The block hashing data structure does not reduce bandwidth. It does however reduce
latency in the photon gather unit, leading to an implementation with less internal storage.
(Cornell box, 16×16 tiles, 128KB cache with 128B cache lines)

4.5 Conclusion

The data structure in which the photon map is stored can make a significant impact on the

bandwidth requirements of image generation when using the final gather visualization.

A study of three proposed data structures has demonstrated two important results: 1)

the choice of data structure is not as important as the ordering of photon gathers; and 2)

when an efficient reordering is used, the choice of data structure has a negligible impact.

Table 4.1 shows the interaction between the data structures and reordering algorithms

for one specific cache configuration. The block hashing data structure does not reduce

bandwidth, although it will reduce latency in the photon gather unit leading to an imple-

mentation with less internal storage. The kdB-tree reduces the bandwidth requirements

by a factor of two compared to the kd -tree only for the naive ordering.

With all the other reorderings, the original kd -tree actually requires slightly less

bandwidth than the other data structures. This is by virtue of having a more compact

representation. A larger portion of the photon map can be stored in the cache at any one

time. This can be seen clearly in Figure 4.1 where the cache line size is varied. The small
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Figure 4.1: Interaction between cache line size and bandwidth for various data structures.
With an effective reordering algorithm, such as the tiled Hilbert reordering, the data
structure choice has little impact on bandwidth regardless of cache line size. Large cache
lines actually increase the required bandwidth because unnecessary photons are brought
into the cache. Small cache line sizes, however, penalize block oriented data structures
that require storage for overhead for each block. (Cornell box, 128KB cache, 16×16 tiles)

68



cache line sizes penalize those data structures that use the cache line size as a block size

and incur overhead per block. Future research could look at alternative implementation

strategies that do not limit the block size to the cache line size. Additionally there are

other data structures as well as variations of those described in this chapter that should

be looked at in more detail. The choice of data structure becomes more complicated

when dynamic photon map generation is considered.

Based on these results, the well known and analyzed kd -tree is used throughout the

rest of this dissertation, including the architecture presented in Chapter 7. The kd -tree is

simple, well-understood and the chains of indirect memory accesses can be hidden using

delay queues as have been implemented in proven architectures.
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CHAPTER 5

IRRADIANCE CACHING

In 1988, Ward et al. observed that indirect illumination tends to change slowly over a

surface and “should not be recalculated at each pixel, but should instead be averaged

over surfaces from a small set of computed values” (Ward et al., 1988). Suppose that the

indirect illumination at the point x′ in Figure 5.1 has been carefully computed and that

the result has been stored in a data structure that can be indexed by location. In many

situations it would be a waste to expend effort computing the indirect illumination at a

nearby point x. Instead, the data structure should be consulted, finding all the points

near x, such as x′. The stored illumination results can then be interpolated, providing

an estimate for the indirect illumination at x

This is an alluring tactic considering how expensive it can be to compute indirect

illumination using a high quality Monte Carlo integration, such as final gather visual-

ization with hundreds of secondary rays. In photon mapping, each ray not only must

be traced through the scene, but also requires a memory bandwidth intensive photon

gather. Both of these actions have computational and bandwidth costs, even when using

photon gather reordering, as was explored in Chapter 3.

In their paper, Ward et al. described a concrete implementation of this idea, the

irradiance cache. The irradiance cache algorithm is easy to implement because of an

important assumption that is made: the surfaces seen in the image are purely diffuse.

Because the reflectance function, fr(x, ~ωo, ~ωi), does not depend on the angle of incident

light, ~ωi, only a single cumulative value must be stored in each record to represent all

indirect illumination, the irradiance, at a single point. Unlike radiosity, not all the



Figure 5.1: As observed by Ward, indirect illumination tends to change slowly across a
surface. With the introduction of some bias, the indirect illumination that is expensively
calculated at x′ can be reused at x. Care must be taken to reduce the use of erroneous
values that do not share the same indirect illumination. For example, x′′ is shaded by
the balcony wall.

surfaces in the scene are required to be diffuse. However, irradiance caching is only able

to provide an advantage for those pixels of the scene that project to diffuse surfaces.

This chapter begins with a review of the details of irradiance caching. Two obstacles

to the implementation of irradiance caching in a parallel system, such as the architecture

described in Chapter 7, are described and novel solutions to each provided. The positive

interaction of irradiance caching with photon gather reordering is then explored. Finally,

results for the test scenes of Chapter 1 are presented and discussed.

5.1 The Irradiance Cache

The rendering equation, introduced in Chapter 2, provided a means for computing the

radiance reflected from a point x towards a viewer from all directions.

Lr(x, ~ωo) = Le(x, ~ωo) +

∫
Ω

fr(x, ~ωi, ~ωo)Li(x, ~ωi)(~ωi•~n)d~ωi (5.1)
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It is common to separate the computation of the incident radiance, Li, into two parts:

direct illumination, light arriving directly from the original light sources; and indirect

illumination, all other light. Throughout this chapter it is assumed the direct illumination

has already been calculated through the means described in Chapter 2, as they are

typically more efficient. Additionally, the term for emitted radiance, Le, is also removed

for clarity.

The central assumption of the irradiance caching algorithm is that the Bidirectional

Reflectance Distribution Function (BRDF) at x is purely diffuse. The consequence is

that for all ~ωi, fr(x, ~ωi, ~ωo) is a constant and can be pulled out of the integration and

replaced by a constant c:

Lr(x, ~ωo) =

∫
Ω

fr(x, ~ωi, ~ωo)Li(x, ~ωi)(~ωi•~n)d~ωi (5.2)

= c

∫
Ω

Li(x, ~ωi)(~ωi•~n)d~ωi (5.3)

= cE(x) (5.4)

A second consequence of the diffuse surface assumption is that the reflected radiance,

as computed in Equation 5.3, is not dependent on the viewing direction ~ωo. The integral

portion of that equation is known as the irradiance at location x. Denoted as E(x), it

has units of watts per square meter. Irradiance measures the total power of the light

landing on an area. The irradiance at a point does not depend on what angle it is seen

from, and once computed it is no longer necessary to remember the angular distribution

of the incident light. Therefore, irradiance requires only a small amount of storage: 3

floating point numbers if the typical RGB spectrum is used. It is for these reasons that

the irradiance cache stores irradiance values as opposed to the full incident radiance

function.

As discussed in Section 2.3.3, the rendering equation can not usually be evaluated

analytically, because Li can only be evaluated for specific directions, so Monte Carlo
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integration is often used. The same situation arises with computing the irradiance at

point x, and Monte Carlo integration can be used here as well1:

E(x) =

∫
Ω

Li(x, ~ω)(~ω · ~n)dω (5.5)

E(x) =
2π

N

N∑
j=1

Li(x, ~ωj)( ~ωj · ~n) (5.6)

Note the close similarity between Equations 5.6 and Equation 2.5 which described the

final gather. They are both the weighted averages of the sampled incident radiance

Li(x, ~ωi). The irradiance can easily be computed at the same time as a final gather at

very little additional cost.

5.1.1 Error Estimate

When the reflected radiance from a particular point x is required, a decision must be

made. Either a new irradiance value must be computed, using the expensive Monte Carlo

final gather, or the current records in the irradiance cache can be interpolated together to

approximate the irradiance. The algorithm presented in the next section uses a heuristic

error model to make this determination. Specifically, Ward introduced the split-sphere

model, Figure 5.2, to approximate the error, εx′(x), of using the irradiance stored at x′

at x:

εx′(x) = E(x′)

(
4

π

||x− x′||
Ravg

+
√

2− 2~nx · ~nx′

)
(5.7)

The split-sphere model is of course only a heuristic because it can not know the true

1Equation 5.6 is valid only if the the directions ~ωi are sampled uniformly from the hemisphere Ω. In
the more general case where importance sampling is used (see Chapter 6) and the samples are drawn
from a probability distribution function, the equation must be modified as follows:

E(x) =
1
N

N∑
j=1

Li(x, ~ωj)( ~ωj · ~n)
p( ~ωj)
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Figure 5.2: Ward’s split-sphere model computes an estimate of how likely indirect illumi-
nation is to vary at points near x. The assumption is that the farther away the geometry
in the scene is, the smaller that changes to visibility will be and hopefully also illumi-
nation. Consider for example the change in the amount of additional sky that becomes
visible if x′′ is moved slightly, compared to x′. This distance is measured by applying the
harmonic mean to the length of the final gather rays to compute Ravg.

irradiance at x. The error term does however take four important factors into account:

1) change in the normal between the two points; 2) Euclidian distance between x and

xi; 3) irradiance at x′; and 4) how far away the rest of the scene is, Ravg. The first two

factors convey a sense of the geometric change present in the scene, without relying on an

analysis of the actual geometry, which might be complicated or procedural. The last term

approximates the rest of the scene as residing on a sphere of radius R centered at x′. The

further away the sphere is, the further x can be from x′ without introducing significant

error. Since the scene is not actually a sphere, an estimate is made by averaging the

distance to all surfaces seen during Monte Carlo integration. The harmonic mean is

used, as it considers high values to be outliers and concentrates on smaller, i.e. closer,

values. This presents a conservative estimation, analyzed in the original paper.

Ravg =
N

1
R1

+ 1
R2

+ 1
R3

+ . . . 1
RN

(5.8)

Although the split-sphere model is used in this dissertation, there are other error

models that could be used. Irradiance gradients, for example, have been shown to pro-

duce images of lower variance at the cost of a more complicated formulation (Ward and
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Heckbert, 1992). However, initial investigations indicate that it will be more difficult to

apply irradiance gradients to a parallel system.

5.1.2 The Algorithm

The irradiance cache must be updated and queried during the rendering of a single image.

Like the photon map, it must be efficient to perform a kNN search to find the nearby

candidate points x′ that have pre-computed values of irradiance. However, unlike the

photon map, the irradiance cache must be updated continuously whenever a new value

is computed. As a compromise between these two requirements, Ward et al. proposed

using the octree data structure (Samet, 1990).

When the pixel-driven rendering algorithm (Algorithm 2.1) is used to generate images

using final gather photon map visualization, the use of the irradiance cache requires two

straightforward modifications. Before a final gather is performed at any point x, the

irradiance cache is queried to find all records, S, that are in the irradiance cache and

potentially close enough to x to be useful. Each record j ∈ S contains: the location xj;

the irradiance at xj, E(xj); the surface normal at position xj, ~nxj
; and the calculated

value of Ravg at xj.

For every element j ∈ S, the error model is evaluated with respect to x. If the

estimated error is greater than a user specified maximum threshold value, εxj
(x) > εmax,

then that record is discarded from S. If an insufficient number of records remains after

this process, a final gather uses Equation 5.6 to compute E(x), and the result is stored

as a new record in the irradiance cache.

If, however, a sufficient number of records do have a low enough estimated error, they

can be interpolated to compute E(x), thereby avoiding the high cost of a final gather.

Interpolation requires the selection of appropriate weights. The interpolation weight that
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point j ∈ S, has at point x is wxj
(x):

wxj
(x) =

1

εxj
(x)

=
1

||x−xj ||
Ravg

+
√

1− ~nx · ~nxj

(5.9)

The value Ravg is the stored value at xj. The interpolation is then very straightforward,

the weights are normalized and the results accumulated for all records in S to compute

the estimate of E(x):

E(x) =

∑
j∈S wxjj(x)E(wj)∑

j∈S wxjj(x)
(5.10)

There are additional heuristic tests that Ward describes in the paper to decrease the

likelihood of interpolating across separate surfaces. However, they are only heuristics as

the full geometry is not known.

5.1.3 Discussion

The irradiance cache works best for scenes that are predominately diffuse and have low

geometric complexity. An extreme example is the empty modified Cornell Box in Fig-

ure 5.3. The top row shows the box rendered using the irradiance cache for a variety of

user specified maximum errors, εmax. The second row is a visualization of the rendering

process, the sites in the scene where this irradiance cache could not be used and a new

final gather was performed are set to white, while all other pixels are black. Observe

that the majority of final gathers are performed near the corners where Ravg is small,

indicating that indirect light will change rapidly due to close geometry (in this case it is

the wall). This can also be seen on the floor. The wall behind the viewer is significantly

farther away than the side walls, hence there are more gathers performed on the portions

of the floor close to the front wall than at the bottom of the image.

The Sponza atrium shown in Figure 5.4 is also purely diffuse, but has a somewhat

more complicated geometric design. In particular, the areas near the ornamentation on
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(a) εmax = 0.0125 (b) εmax = 0.025 (c) εmax = 0.05

(d) εmax = 0.0125, RIC = 45% (e) εmax = 0.025, RIC = 76% (f) εmax = 0.05, RIC = 91%

Figure 5.3: By increasing the user specified maximum allowed error, more pixels are
able to make use of the irradiance cache. The white pixels in the bottom row indicate
where a final gather was performed. Ravg was calculated directly during the final gathers.
Irradiance caching is very effective for this scene, at all values of εmax as shown by the
large proportion of pixels able to use the irradiance cache, RIC .

the walls, and the columns are almost incapable of using the irradiance cache at all.

Fortunately, the flat walls are able to utilize the irradiance cache significantly, presenting

an overall reduction in final gathers. This combination of intricate detail and large flat

walls is common to architectural walkthroughs.

Some scenes can present greater difficulties to the irradiance caching algorithm than

the ones examined so far. In Figure 5.5 the geometry of the modified Cornell box is

modified by the inclusion of geometrically modeled bushes with simple diffuse material

properties. The maximum error is kept constant as the number of instances of the bush is

increased. This is a particularly difficult scene because there are many small gaps in the
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(a) εmax = 0.0125 (b) εmax = 0.025

(c) εmax = 0.0125, RIC = 66% (d) εmax = 0.025, RIC = 82%

Figure 5.4: By increasing the user specified maximum allowed error, more pixels are
able to make use of the irradiance cache. The white pixels in the bottom row indicate
where a final gather was performed. Ravg was calculated directly during the final gathers.
Irradiance caching is very effective for this scene, at all values of εmax.
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(a) Bare box (b) A few bushes (c) Lots of bushes

(d) Bare box, RIC = 91% (e) A few bushes, RIC = 69% (f) Lots of bushes, RIC = 57%

Figure 5.5: When the geometry is more complicated, the three tests: Euclidean distance,
normal and in front of, will fail much more often. This reduces the proportion of pixels
able to use the irradiance cache, RIC . (εmax = 0.05) Bush model by 3DPlants.com.

foliage and the normals vary extensively. The portion of the image covered by the bushes

is unable to make much use of the irradiance cache despite a relatively high maximum

error threshold.

The irradiance cache as has been described makes its decisions on a pixel by pixel

basis. Each pixel potentially uses all the previously computed values for the entire

image. This imposes a sequential dependency between pixels. This dependency breaks

the natural parallelism of photon mapping by imposing two separate obstacles. The first

is that the image can not be computed as independent tiles, as was suggested for query

reordering in Chapter 3. The second is that the computation of Ravg must be computed

for a new record in the irradiance cache before a subsequent pixel can decide to make use
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of the result. This also presents a problem when reordering is used.

In this chapter I propose two simple techniques that eliminate these two dependen-

cies without significantly reducing the effectiveness of irradiance caching or noticeably

changing the generated images. These techniques will allow the architecture described in

Chapter 7 to render the image in independent tiles on separate processors and to process

all the pixels in a single tile at the same time using photon gather reordering.

5.2 Tiled irradiance caching

The architecture in Chapter 7, like most of those described in Chapter 2, will process the

image in small independent tiles. The tiles are processed in parallel on different chips

in an unpredictable order with no communication allowed. Instead of a single shared

irradiance cache, which would require a large and expensive interconnect, I investigated

the impacts of starting each tile with an empty cache. The irradiance caching algorithm

is conservative. If it is not able to access all the sites it ordinarily would, it will simply

perform more final gathers than it would optimally.

The impact of the reduced size irradiance cache was found to be insignificant, unless

the maximum allowed error is so high that the sphere of influence of any one record

projects to an area on the screen larger than the size of a tile. Figure 5.6 shows this

exaggerated case. In this example, 16×16 tiles were used, each containing 256 pixels,

but the maximum error was set so high that the tile boundaries became visible because 2

records were typically computed per tile and used throughout the entire tile. As a result

the shape of the irradiance cache artifacts become square instead of the small smooth

circles usually expected. This is only a significant problem when εmax is so large as to

provide otherwise unacceptable results. The effect of the independent irradiance caches

is negligible for smaller irradiance values.

The key motivation for the separate irradiance caches was the high cost of maintaining
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(a) Standard irradiance cache (b) Ttiled irradiance cache

(c) Standard irradiance cache (d) Tiled irradiance cache

Figure 5.6: Irradiance caching with a new cache for each 16×16 tile. In this demonstration,
the maximum allowed error is set very high, εmax = 0.3, which provides the large circular
blurring of the indirect illumination in the standard image. This blurring is restricted
to the tile size when independent caches are used, giving more jarring square artifacts.
In practice, the maximum error is not allowed to be this large and the effects of tiled
irradiance caching are negligible.
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an accurate shared copy among many independent processors. There is therefore never

a copy of an irradiance cache for the whole image. A consequence is that it can not be

reused in the next frame; the cache will start empty for each tile for each frame.

5.3 Pre-computing the harmonic mean distance

The irradiance cache algorithm as previously described requires the computation of the

value Ravg for each irradiance value before it is inserted as a record into the cache.

Typically, this value is computed during a final gather by computing the harmonic mean

of the distances to the scene in the directions sampled, see Section 5.1. This value is then

used to approximate the error that other points would experience if they used the value

of this record instead of recomputing the indirect illumination.

The standard irradiance cache algorithm fully evaluates each pixel, potentially per-

forming this final gather and computing E(x) and Ravg(x), before moving on to the next

pixel. However, the reordering schemes that will be used in the proposed architecture,

fully described in Chapter 3, requires that all sites that will use final gathers be identi-

fied before any of the final gathers for that tile are performed. Since the value Ravg is

typically computed as a byproduct of the final gather, a new method must be found.

As the rendering of a tile begins, an initial pass over the entire tile is performed to

determine which pixels will use interpolated values and which must perform full final

gathers. Those that can interpolate a value add themselves to a linked list at the pixel

performing a final gather. In this manner, when the final gather is eventually performed

the resulting irradiance value can be applied to all the pixels that decided to use that

irradiance value.

There is a difficulty however. The irradiance cache starts empty for each tile. As it

is determined that pixels can not use interpolation and must perform a full final gather,

they need to be added to the irradiance cache so that neighboring pixels can choose
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(a) Direct Computation of Ravg (b) Pre-computing Ravg for a subset of photons

Figure 5.7: Pre-computing Ravg at a subset of photons. Using pre-computed values
of Ravg instead of the directly computed values does not noticeable change the results.
(εmax = 0.05)

to use them. However, this has to happen before any final gathers take place in order

to allow for the reordering. Not only is the irradiance value, E(x), not yet computed,

but Ravg as previously described required the final gather. Inspired by Christensen’s

approach to storing irradiance directly on the photon’s themselves (Christensen, 1999),

I propose pre-computing Ravg at a subset of the photons before any image generation

begins.

During the initial pass over the tile, an extra photon gather at the location x is

performed, but only the closest photon to x that has a pre-computed value of Ravg is

consulted with the result used in order to insert the pixel x into the irradiance cache.

A minor change to the computation of εxj
(x) must be made. The value of E(xj) can

not be known at the time that it is needed to make the irradiance caching decision. It

can however be conservatively removed from the error term. This is conservative because

higher values of E(x) would reduce the number of pixels that need to compute a full final

gather. Performing unnecessary final gathers will only reduce the observed variance in
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the image.

This technique does not noticeably change the observed results as shown in Figure 5.7.

This is because, unlike indirect illumination which can change sharply without regard

for geometry, at a shadow boundary for example, the distance to the rest of the scene

changes smoothly. The cost of the extra photon gather required to find the value of Ravg

is not significant because only one per pixel is required and they are highly coherent.

The upfront cost of pre-computing the values compares favorably to tracing 100 rays

to sample the visibility at every pixel before tracing the final gather rays for the final

gather.

5.4 Interaction with photon gather reordering

The architecture presented in Chapter 7 will combine photon gather reordering with

irradiance caching. The difficulties of implementing them together have been discussed

and addressed earlier in this chapter. It is a separate issue to consider the consequences

on bandwidth requirements of using these techniques together. This interaction was

studied in two ways.

For the first method, the bushy Cornell boxes in Figure 5.5 were studied while varying

the parameters for both irradiance caching and photon gather reordering. The addition

of progressively more bushes creates high geometric complexity. In particular there are

holes that the eye rays can intermittently pass through. This feature of the scenes will

cause the irradiance cache heuristics to reject most cache points in the bushy box, causing

more final gathers to be computed.

As shown in Table 5.1, query reordering is compatible with and complementary to

irradiance caching. In scenes that are very compatible with irradiance caching, such as

the bare Cornell box, irradiance caching will provide a greater overall reduction than
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Tiled
Tiled Dirbin Tiled

Naive DirBin Hash Hilbert
Bare Cornell box
Without Irradiance Cache 100.0% 12.7% 9.6% 5.6%
With Irradiance Cache 1.8% 1.2% 1.2% 1.1%
Two Sets of Bushes
Without Irradiance Cache 100.0% 23.0% 11.4% 6.3%
With Irradiance Cache 8.5% 3.8% 2.9% 2.4%
Many Bushes
Without Irradiance Cache 100.0% 23.9% 12.0% 6.0%
With Irradiance Cache 12.6% 5.4% 3.7% 2.9%

Table 5.1: Interaction between irradiance caching and query reordering. The bandwidth
for each combination of scene, irradiance caching, and query reordering technique is
shown as a percentage of the naive ordering without irradiance caching. Query reordering
is effective both when irradiance caching is and is not used. Irradiance caching is always
more effective than just query reordering for simple scenes, such as the bare Cornell box.
However, as the geometric complexity increases, irradiance caching by itself becomes
less effective than the query reordering techniques, as highlighted by the bold figures.
(Modified Cornell box, kd -tree, 128B cachelines, 128KB cache and 16×16 tiles.)

even the best query reordering algorithm. Query reordering does, however, provide the

same proportional benefit to irradiance caching as it does without it.

As the scene becomes more complex, however, query reordering is more powerful

than irradiance caching alone. Consider the Cornell box with two sets of bushes; the

tiled Hilbert reordering is more effective than irradiance caching at reducing bandwidth.

For example, in the scene with two sets of bushes, the tiled Hilbert reordering requires

6.3% of the bandwidth compared to 8.5% for irradiance caching. The difference is even

starker for the scene with many bushes, as shown in the bold numbers. This reduction is

possible without any of the potential quality problems inherent to the irradiance cache

algorithm.

In both cases however, the two algorithms can work together to produce superior

results. The implementation of query reordering is an orthogonal system-design decision

to that of irradiance caching. Unless it is known that irradiance caching will be ineffective
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for all desired scenes, the combination of the two methods is the best strategy.

An alternative method for evaluating the interaction is to repeat the experiments of

Section 3.2 with irradiance caching enabled. The results are shown in Figure 5.8, and

should be compared to those presented in Figure 3.5. The implications are the same;

photon gather reordering and irradiance caching are complementary techniques and do

not interfere with each other. A sensible system will implement both to reduce memory

bandwidth requirements.

5.5 Possible Extensions

The irradiance cache as defined is restricted to diffuse surfaces. Radiance caching, intro-

duced by Křivánek, permits a process like irradiance caching on glossy surfaces (Křivánek

et al., 2005). This is performed by storing an approximation of Li(x, ~ω) as a set of spher-

ical harmonic coefficients instead of a single irradiance value. When the radiance cache

site is then used by another pixel, the spherical harmonic coefficients are evaluated. The

spherical harmonics are used to reduce the storage size of the radiance cache. However,

by approximating the sparse evaluation of radiance in spherical harmonics some informa-

tion will be lost. Additionally, finding the coefficients takes computational effort. These

drawbacks could be overcome by an implementation that follows the general process

described in this chapter.

In order to break the sequential dependency between pixels, it was necessary to de-

cide before each final gather which other pixels will use the computed irradiance value.

This could be further adopted by sending to the unit performing the final gather the

information, such as local surface normal, about all the pixels which wish to make use

of the photons found in the final gather. The single kNN search could then be approxi-

mately used as the photon gather for all these pixels at once. The computation burden is

higher then irradiance caching, but the bandwidth requirements would remain the same.
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(a) Modified Cornell Box, NFG = 33, εmax = 0.25
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(b) The Sponza Scene, NFG = 200, εmax = 0.00625

Figure 5.8: This graph shows the same experiment as in Figure 3.5, but with irradiance
caching. Reordering remains effective when combined with irradiance caching, although
the magnitude of the improvement is smaller. Reordering alone creates a more significant
reduction in bandwidth than irradiance caching, even for these two scenes that are highly
compatible with irradiance caching.
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Configuration Bandwidth
Cornell Sponza

Tiled naive 50 GB 357 GB
Tiled naive w/ Irradiance caching 24 GB 193 GB
Tiled direction-binning with hashed 12 GB 31 GB
Tiled direction-binning with hashed w/ Irradiance caching 9 GB 21 GB

Table 5.2: The bandwidth requirements to render a single frame of the modified Cornell
box, Figure 1.2 and the Sponza atrium, Figure 1.3, with and without irradiance caching
and reordering. The combination of tiled direction-binning generative reordering with
hashed deferred reordering and irradiance caching brings the bandwidth requirement to
just above the maximum that an 8-chip system would provide; 24 GB per image at 30
frames per second. (128 KB cache, 128 byte cache lines, 16×16 tiles, kd-tree.)

Overall system bandwidth will actually decrease because it will now be possible to use

indirect illumination interpolation on glossy surface which were previous ineligible for in-

terpolation. However, intermediate storage needs are increased and the implementation

becomes more complex.

Finally, another possible extension to the methods described in this chapter is to build

upon Christensen’s approach to improving the speed of photon mapping(Christensen,

1999). At the same time that values of Ravg are computed on some photons during

a pre-process, the incident irradiance at purely diffuse points can be pre-computed and

stored as well. The normal photon gathers that take place during a final gather are then

replaced with a search for the closest photon with a stored irradiance value. This does

not reduce the number of photon gathers, but does reduce the number of photons that

must be fully processed at a compromise in image correctness.

5.6 Conclusions

The irradiance cache is an effective technique for reducing the computational and band-

width requirements of photon mapping. It is only effective for diffuse surface with low

geometric complexity. It can successfully be adapted to the organizational structure
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required by the architecture presented in this dissertation by two simple modifications:

breaking the image into independent tiles with separate irradiance caches and then break-

ing the sequential dependency between pixels. Irradiance caching is compatible with

photon gather reordering, providing significant further reductions in memory bandwidth.

However, the requirements are still steep. In the next chapter another technique for

reducing not the number of final gathers but the number of final gather rays is explored.
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CHAPTER 6

IMPORTANCE SAMPLING

This chapter presents the third technique of the dissertation for reducing the memory

bandwidth requirements of generating images using a photon map with final gather vi-

sualization. Chapters 3 and 4 examined algorithmic and data structure alternatives that

reduced the costs without modifying the photon gathers performed or the resulting im-

ages. Chapter 5 presented irradiance caching as a way to reduce the number of final

gathers actually performed, by interpolating previously computed results across multiple

pixels of the final image. By contrast, this chapter examines a method for reducing the

cost of those final gathers that must be performed. This technique will also improve

the quality of the generated images, especially for scenes with glossy material proper-

ties or uneven indirect illumination, conditions that are particularly difficult for global

illumination algorithms.

The Monte Carlo integration technique, introduced in Section 2.3.4 as a means for

evaluating the rendering equation, forms the basis of the final gather as used to gener-

ate images from a photon map. NFG secondary final gather rays are sampled from the

hemisphere of visible directions and the incident radiance is evaluated, forming an esti-

mate of the reflected radiance. The intuitive idea of importance sampling is to carefully

choose those NFG directions such that they sample the portion of the incoming light

that will contribute greatly to the reflected radiance. This will allow for the generation

of higher-quality, lower-variance images for the same number of samples. Alternatively,

fewer samples are needed to achieve the same image quality as before.

This chapter begins with some background, first revisiting Monte Carlo integration



and examining why it can take extremely high values of NFG to generate images with

sufficiently low variance. The concept of importance sampling is then introduced and

explained through a one-dimensional example. Multiple importance sampling, which

forms the basis of many computer graphics sampling algorithms is also reviewed.

Importance sampling is then applied to the rendering equation, in particular to the

context of final gather photon map visualization. I review existing methods that lever-

age the knowledge of the incident radiance that is stored in the photon map. Existing

techniques are reviewed, but they are found to be either too costly or not provide a suf-

ficient reduction in variance. This leads to the presentation of a novel scheme, combined

importance sampling. The schemes are compared in terms of variance reduction perfor-

mance, intermediate storage and computational cost. Combined importance sampling is

found to be effective yet requires approximately one fiftieth the computation and little

intermediate storage.

Combined importance sampling is then used to generate actual images using varying

number of final gather rays and the resulting image quality and bandwidth requirements

are compared. In addition to those scenes presented in Chapter 1, scenes that are more

difficult for global illumination algorithms, such as those with glossy surfaces and no

direct lighting, are tested as they are only practical with importance sampling because

the number of final gather rays is otherwise too high for an interactive system. Finally,

the implications for the implementation in a parallel system utilizing query reordering

and irradiance caching are considered.

6.1 Background

Numerical integration was introduced in Section 2.3.3 as a technique for calculating an

estimate, Θ̂, for the integral of a function which can not be solved analytically for its true

value, Θ. The integral is replaced by the weighted sum of N discrete point evaluations
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Figure 6.1: This simple piecewise constant function g(x) is used as an example integrand

throughout this section. By inspection, Θ =
∫ 1

0
g(x)dx = 2.75.

of the integrand, g(s), as shown in Equation 6.2. There are an entire family of numerical

integration estimators that differ in their selection of the points, Si, at which g(s) is

evaluated and the weights, Wi, which describe how they are combined.

Θ =

∫
Ω

g(s)dµ(s) (6.1)

Θ̂ =
N∑

i=1

Wig(Si) (6.2)

Before considering the numerical integration of the rendering equation later in this

chapter, a simple example is used to explain why importance sampling works. Figure 6.1

shows a one dimensional piecewise constant function g(x). This function was chosen as

it is simple to analytically integrate, allowing the various estimators introduced in this

section to be directly compared to the true value Θ. The region of integration is Ω = [0, 1]

and dµ(x) is simply dx. The integral is the area under the function, Θ =
∫ 1

0
g(x)dx =

2.75.

Section 2.3.4 introduced Monte Carlo integration. The samples Xi are chosen ran-

domly from the region of integration, Ω. The generic Monte Carlo estimator FN is shown

in Equation 6.3. Since all the weights in Monte Carlo estimators have a common term
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(b) Expected error of N sample

Figure 6.2: Although the large spike from .75 to 1 contributes most of the value of the
integral of g(x), only a few of the uniformly random samples in Figure (a) happen to
find it. For these particular samples, blind Monte Carlo integration finds a value for Θ̂
of 2.12, quite far from the correct value of 2.75. Figure (b) repeats this experiment 500
times for each value of N between 1 and 50. Although larger values of N can be expected
to give results closer to Θ, the rate of convergence is low, O( 1√

N
). 40 samples is only

twice as good as 10.

of 1
N

, this has been factored out of the summation.

FN =
1

N

N∑
i=1

Wig(Xi) (6.3)

If Wi = 1 and every point in Ω has the same probability of being sampled by Xi then

this is called the blind Monte Carlo estimator. In the simple one-dimensional example,

Xi = ζi, where ζi is uniform random variable from the range [0, 1]. In Figure 6.2a, Ω has

been sampled 25 times, as marked by the crosses. At each sample point, the value g(Xi)

has been evaluated. Blind Monte Carlo integration with this particular set of samples

gives an estimated integral of Θ̂ = 2.12. This estimate will change for different sample

locations.

Although Blind Monte Carlo is very straightforward, you simply need to uniformly

pick random samples in the domain, it can take a large value of N to have confidence in

the estimate. The rate with which FN will converge to Θ is O( 1√
N

) (Rubinstein, 1981).
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To reduce the error by half, four times as many samples must on average be taken. This

is clear in Figure 6.2b where for each sample size N , 500 different trials were run for each

sample size and the average standard deviation from the true value of Θ was computed.

Quadrupling N = 10 to N = 40 only reduced the error by one half.

Some regions of a function contribute more to the true value of the integrand than

others. In our example, the region [.75, 1] contributes 2, while the larger region [0, .75]

contributes only .75. It can be argued that blind Monte Carlo integration in Figure 6.2a

wasted a large number of samples on the region [0, .75].

To reduce the variance of the estimate Θ̂, it is logical to focus the samples where g(x)

is large, as they will contribute more to the final answer. This is because a small relative

variance in the important regions will alter the total estimated value more than the same

relative variance in those regions which have a small value of g(x). In general, Monte

Carlo integration performs best if f(x) is a constant function. However, we are rarely

interested in integrating constant functions.

6.1.1 Importance sampling

The goal of importance sampling is to choose the N samples such that it is more likely

that a sample Xi will contribute significantly to Q̂ = FN . Importance sampling requires

prior knowledge. Suppose we were informed, somehow, that g(x) in the range [0.5, 1] will

contribute more to the final result than [0, 0.5] will. We would like to put more samples

in that part of the domain. This prior knowledge is expressed in terms of a probability

density function (p.d.f.) p(x). A potential p(x) for our example function is shown in

Figure 6.3a. Making use of this knowledge to construct a new Monte Carlo estimator

requires us to do two things. The first is to pick the set of samples, Xi, not uniformly

but according to p(x). They should still be random, but no longer uniformly distributed.

For the p(x) in Figure 6.3a we would expect many more sample locations above 0.5 than
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Figure 6.3: Importance sampling chooses the samples Xi = c−1(ζi) where ζi is a uniform
random variable. For this example probability distribution function p(x), only a quarter
of the samples are expected to be below 0.5, as is reflected in the cumulative distribution
function c(x). The construction of c−1(x) enables fast selection of samples according to
p(x).

below it.

Choosing a sample Xi according to p(x) is easy if p(x) is known. The first step is to

find the cumulative distribution function (c.d.f.), c(x), that corresponds to p(x). This is

shown in Figure 6.3b. This function is then inverted to form c−1(x), Figure 6.3c. The

idea is to sample c−1(x) with uniformly random numbers ζi to find the samples Xi that

will be used. In our example, only one quarter of the random numbers are mapped to

the range [0, 0.5]. The other three quarters are instead mapped to the second half of the

range of g(x). If ζi is a uniform random variable in [0, 1], then let the set of samples

Xi = c−1(ζi). This changes the function presented to the Monte Carlo algorithm from

g(x) to g(c−1(x)).

Simply using the different samples will result in a biased answer unless the weights

are also adjusted. By inspection of Figure 6.4a we see that
∫ 1

0
g(c−1(x))dx = 3.625, a

significant error from the correct value of 2.75. By setting Wi = 1
p(Xi)

we can correct

for this error. The more likely we were to choose a specific sample, the less we should

take its result into account. On the other hand, a sample that was chosen despite a low

probability but has a high value g(Xi) should count highly in the estimate.

It is easiest to visualize importance sampling by studying what happens if we use
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Figure 6.4: The sampling strategy described in this section generates samples according
to p(x). Using these samples directly in the Monte Carlo estimator without adjusting
the weights would however lead to a biased result. Setting Wi = 1

p(Xi
is equivalent to

using blind Monte Carlo integration on the new function g(c−1(x))
p(x)

.

blind Monte Carlo integration of the function g(c−1(x))
p(x)

, as presented in Figure 6.4c. By

inspection it can be verified that
∫ 1

0
g(c−1(x))

p(x)
dx = 2.75 as expected. When this new

function is sampled using 25 uniform random numbers we get the results shown in Fig-

ure 6.5a. The estimated result is closer to the true value Q. Indeed, Figure 6.5b shows

that importance sampling with the little information given to us in p(x) requires fewer

than half the samples that blind Monte Carlo does for the same expected error.

The expected error of Monte Carlo integration using importance sampling can not

be expressed without knowing the specific function and probability distribution function.

However, the expected error is derived directly from the definitions:

O

(√∫
g2(X)

p2(x)
p(x)dx−Θ2

)
(6.4)

Intuitively we know that the more that p(x) resembles g(x) the lower the error will be.

Indeed, inspection of Equation 6.4 shows that the error would be zero if and only if

p(x) = kg(x) for some constant k. In practice, even a rough correlations between p(x)

and g(x) is good enough to provide a reduction in variance (Veach, 1997).

Figure 6.6 demonstrates graphically why importance sampling works. Recall that
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Figure 6.5: Using importance sampling, the same number of samples will result in a
smaller error from the true value. In Figure (a), 25 samples computed a estimate of 2.32,
closer to 2.75 than the blind Monte Carlo estimator achieved with the same number of
samples. Repeating the experiment from Figure 6.2, importance sampling is shown to
be significantly better than blind Monte Carlo. Fewer than half the number of samples
are required for equivalent results.
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Figure 6.6: Importance sampling works because it attempts to integrate a function that
is closer to being a constant. The average standard deviation of g(x) from 2.75 over the

range [0, 1] is 3.03, while it is merely 2.29 for g(c−1(x))
p(x)

.
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blind Monte Carlo works best when the integrand is as close to a constant function as

is possible. One way to measure the uniformity of a function is to compute the average

standard deviation to the average value throughout the domain. For our example the

average value is Θ. The average standard deviation of g(x) from 2.75 is 3.03, while that of

the modified function g(c−1(x))
p(x)

is 2.29. The function as modified by importance sampling

is therefore a more constant value, allowing the blind (standard) Monte Carlo method to

perform better.

6.1.2 Multiple importance sampling

For complicated integrands, it is unlikely that there will be known a single p.d.f. p(x) that

contains all the prior information that is known about the integrand. Instead, we might

be presented with a series of M probability density functions each of which recognize

the contribution of a specific important section of Ω. Consider for example the rendering

equation, a rough idea of both Li and fr might be known, while the dot product is known

perfectly. This provides three separate sampling strategies, each expressed as a separate

p.d.f., pj(x). If the budget for generating and evaluating samples allows only N samples,

they could be allocated between the M sampling strategies, such that N =
∑M

j=1 Nj, to

create a new Monte Carlo estimate:

FM,N =
M∑

j=1

1

Nj

Nj∑
i=1

Wj(Xi,j)
g(Xi,j)

pj(Xi,j)
(6.5)

In this estimate, sample Xi,j is the ith sample chosen according to strategy j, using pj(x).

This approach was studied by Veach, who labeled it multiple importance sampling

(Veach and Guibas, 1995). The difficult task is assigning the weights Wj(Xi,j) to each

sample to minimize the error. Veach showed that using a constant weight for each

sampling strategy pj(x), does not lead to better convergence and instead proposed a

heuristic, which he proved to be near optimal.

98



The Balance Heuristic (Equation 6.6) however computes an individual weight for each

sample Xi,j as generated by sampling strategy j. The weight compares the probability

that Xi,j was generated by pj(x) to the probability that the other distributions would

have generated the same sample.

Wj(Xi,j) =
Njpj(Xi,j)∑
k Nkpk(Xi,j)

(6.6)

The samples that have a large probability of being selected by one p.d.f. but were in

fact selected by another, that only had a low probability, will not have undue influence

on the final result. As explored by Veach, this greatly approach reduces erroneously large

values from being effecting the estimated. The Balance Heuristic does however require

that all M p.d.f.s be evaluated for all N samples. If any of the p.d.f.s are expensive to

compute, this can become a large computational burden.

6.2 Sampling the rendering equation

The final gather in photon mapping uses Monte Carlo techniques to numerically evaluate

the rendering equation, reproduced from Section 2.3.2 in Equation 6.7. The integral in

the rendering equation is the product of three terms: the incident radiance Li(x, ~ωi) (the

light arriving at a point x from the direction ~ωi), the Bi-directional Reflection Distribution

Function (BRDF) fr(x, ~ωi, ~ωo), and a cosine term (dot product between ~ωo and the surface

normal.

Lr(z, ~ωo) = Le(z, ~ωo) +

∫
Ω

fr(z, ~ωi, ~ωo)Li(z, ~ωi)(~ωi•~n)d~ωi (6.7)

Reducing variance in final-gather global-illumination algorithms is a well established

field of research. Szmirmay-Kalos has published a particularly through survey (Szirmay-

Kalos, 1999). This chapter focuses on the importance sampling technique just introduced.
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(a) Incident Radiance (b) BRDF

Figure 6.7: The captured incident radiance at a point and the evaluated BRDF for the
given viewing direction, represented by the red dot, on a glossy surface. Global impor-
tance sampling considers both of these when generating samples in order to maximize
the contribution of each sample towards the reflected radiance. (The beach lightprobe
used by permission of Paul Debevec (Debevec, 1998))

Typically when importance sampling is applied to the rendering equation, it is applied

to only two of the three terms. (The cosine term is easy to incorporate into either the

incident radiance or BRDF.) In contrast, global importance sampling techniques are able

to importance sample according to all aspects of the integrand.

The utility of global importance sampling can be seen in the Figure 6.7. The entire

hemisphere of incoming directions was captured by a physical camera. The portion with

the sky is very bright in comparison to the rest of the scene. Sampling according to a p.d.f.

that captures this knowledge would have us sample that portion of the sky much more

than the rest as shown in Figure 6.8a. The BRDF, however, is very glossy and because of

the position of the virtual camera, is strong in a different part of the hemisphere, facing

the ground this time. Sampling according to a p.d.f. based on the BRDF alone dedicates

most of the samples in that region of the sky as shown in Figure 6.8b. Clearly it would

be best to take both into account, as demonstrated in Figure 6.8c.
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(a) Incident Radiance (b) BRDF (c) Global

Figure 6.8: Sample directions generated with importance sampling according to different
p.d.f.s. Global importance sampling will result in lower variance by taking both incident
radiance and reflectance into account.

6.2.1 Sampling the BRDF

It has long been common practice in computer graphics to generate samples according

to the product of the cosine and BRDF terms (Blasi et al., 1994; Dutré, 1994; Lange,

1991). Figure 6.8b shows a representative sampling according to the BRDF shown in

Figure 6.7. This requires the computation of a transform, or warp, T (u, v) with a den-

sity that matches the value of the BRDF. For example, the Lambertian BRDF can be

importance sampled using the transform

T (u, v) = (φ = arccos(
√

u), θ = 2πv) (6.8)

where u and v are uniform random variables and (φ, θ) is the generated sample direc-

tion (Shirley, 1992).

BRDFs composed of one or more cosine lobes and a diffuse component, including all

those derived from the Phong BRDF (such as Lafortune’s) can be sampled analytically

using a two step scheme (Lafortune and Willems, 1993). A lobe is chosen and its exponent

is used to generate a sample in the coordinate space of the lobe. The sample is then

transformed into the shared local coordinate system of x. The cost of computing the
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probability of having chosen the sample is directly proportional to the number of lobes.

This is because the lobes may overlap, and therefore any particular sample might have

been generated by multiple lobes.

The BRDF composed of multiple lobes must be sampled carefully. The naive sampling

strategy would randomly choose a lobe for each sample and then a random sample on

that lobe. A subsequent sample would likely pick a different lobe, most likely generating

a sample with a significantly different direction. This will reduce the amount of coherence

that is available, and hence increase memory bandwidth requirements. To maximize the

coherence of sampled directions, generate all the samples for each lobe before considering

the next lobe. Further discussion of the interaction with photon gather reordering is

found in Section 6.5.

More complicated BRDFs, such as those that are fitted to directly acquired data, can

not be analytically importance sampled and are difficult to sample efficiently. There are

however some recent works tackling this problem. Lawrence has proposed a scheme that

factors BRDFs for sampling purposes (Lawrence et al., 2004). He also has proposed a

method using a curve approximation of the c.d.f. to reduce the size the multidimensional

table of acquired BRDFs (Lawrence et al., 2005).

6.2.2 Sampling the incident radiance function

It can be difficult to importance sample the incident radiance Li because, as was discussed

in Section 2.3.3, it is the very function for which we are solving! In some constrained sit-

uations, however, the radiance function at a specific point in the scene is provided as an

environment map and assumed to be true for all points nearby (Greene, 1986). Environ-

ment maps can be used for importance sampling by constructing a large table to compute

the inverse c.d.f. Several authors have shown how to pre-process an environment map

with a specific BRDF to enable efficient importance sampling using structured sampling,

102



spherical harmonics and wavelets (Agarwal et al., 2003; Ramamoorthi and Hanrahan,

2001; Clarberg et al., 2005). Bidirectional Importance Sampling is a recent two-step

algorithm that improves the quality of samples generated according to the product of an

environment map and a BRDF (Burke et al., 2005).

Adaptive techniques are an alternative solution to global importance sampling. By

storing previously generated samples into a hierarchical data structure, a coarse approxi-

mation of the radiance is built up, which is then used to guide future sampling (Bustillo,

1997; Lafortune and Williams, 1995).

In the remainder of this section, three published strategies for importance sampling

in the context of photon mapping are presented. By taking advantage of the sparse

representation of incident radiance stored in the photon map, they are able to generate

sample directions that will likely provide a large contribution to the reflected radiance.

The methods differ in how they use the photon map and how and if they also incorporate

information from the BRDF. It is found that while the existing methods all have their

strengths, they either do not produce samples of sufficiently high quality, or are simply

too expensive for use in an interactive system. This motivates my proposed method as

presented in Section 6.3.

6.2.3 Jensen’s method

Jensen originally described the use of a photon map for importance sampling (Jensen,

1995). Since the photon map is a coarse approximation of incident radiance throughout

the scene, it can be used to establish a useful probability distribution function for im-

portance sampling. The original technique suggested by Jensen was simple and effective.

Before each final gather is performed, a preprocess is performed, Algorithm 6.1. The

photon map is queried at point x for k photons that meet certain criteria for relevance.

The direction associated with each photon is projected onto the unit square using the
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(a) (b)

Figure 6.9: Jensen’s technique divides the hemisphere above x into bins, Figure (a),
which are projected onto a unit square. A kNN search is performed, and each bin
accumulates the energy carried by the photons that arrive from directions within the
bin. By normalizing the energy table, a tabular p.d.f. is obtained, Figure (b). (The
(θ, φ) mapping has placed those bins facing the sun in Figure 6.7a to the bottom right of
the table.) Th p.d.f. is then turned into an inverse c.d.f and sampled, generating samples
like those shown in Figure 6.8a.

inverse transformation T−1(θ, φ) defined by the BRDF importance sampling. The unit

square is divided into a grid of CJ cells. Jensen found that a grid of size 4×8 was often

suitable.

Any cells with zero energy are given a small amount; although there doesn’t appear to

be much light arriving from those directions based on this small sampling, it would cause

bias if the cell is assumed to be completely dark. The amount of energy donated to these

cells is user specified. The implementation used in this dissertation follows the suggestions

in Jensen’s paper. The accumulated energy in each cell is then normalized so that they

sum to one. The resulting table is a tabular p.d.f., giving a discrete approximation

of how important each segment of the hemisphere above x is. Using any well-defined

order, such as row-major, the probabilities in the cells are summed together, forming a

one-dimensional array storing the c.d.f..

To generate each sample, following Algorithm 6.2, a random number ζ is uniformly
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// Find k nearest photons and project their energy into a 2D array of the hemisphere
queryResult← kNN(x)
for each P ∈ queryResult do

[u, v]← T−1(Pθ, Pφ)
energyTable[u, v]← energyTable[u, v] + Pe

totalEnergy← totalEnergy + Pe

end for
// Donate a small portion of the total energy to any empty cells
energyDonation← 0.05× totalEnergy/CJ

for each cell [u, v] ∈ energyTable do
if energyTable[u, v] == 0 then

energyTable[u, v]← energyDonation
totalEnergy← totalEnergy + energyDonation

end if
end for
// Normalize the energy table, producing the p.d.f.
for each cell [u, v] ∈ pdfTable do

pdfTable[u, v]← energyTable[u, v]/totalEnergy
end for
// Construct a 1D c.d.f. array
cdfArray[0]← 0
for i = 1 to CJ + 1 do

cdfArray[i]← cdfArray[i− 1] + pdfTable[i]
end for

Algorithm 6.1: Jensen’s method for importance sampling begins with a kNN search in
the indirect photon map. These photons are then used to compute a low-resolution 2D
table of incident radiance. Only k photons are used, leaving the possibility that a dim
region of the hemisphere will appear totally dark. Those cells are given a small amount
of energy to prevent bias. The energy table is then normalized to create a 2D p.d.f.,
the prefix sum of which forms a 1D c.d.f. function that can be directly sampled with a
uniform random number from the range [0, 1].
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for i = 1 to NFG do
// Choose which portion of the hemisphere to sample
ζ1 ← RandomUniformInRange(0, 1)
idx← BinarySearch(cdfTable, ζ1)
[u, v]← TranslateIndex(idx) // Which 2D cell does idx correspond to
// Generate a sampling direction within the portion of the hemisphere [u, v]
ζ2 ← RandomUniformInRange(0, 1)
ζ3 ← RandomUniformInRange(0, 1)
(θ, φ)← T ([u, v], ζ2, ζ3)

end for

Algorithm 6.2: Generating the final gather rays using Jensen’s method begins by choosing
a single cell according to the inverse of the c.d.f.. A random ray within that cell is then
generated and given the probability indicated by pdfTable[u, v].

chosen in the range [0, 1]. The cell in the c.d.f. containing ζ is selected, and a random

direction is generated within the region of the hemisphere represented by that cell. This

is performed by applying two additional random uniform numbers to T (u, v), although

their range is restricted to that of the cell under question. The probability of having

chosen this sample is found directly from the p.d.f. of the cell. In Figure 6.8a the

samples were generated with Jensen’s technique and clearly favor those portions of the

hemisphere that have strong incident radiance. Storage requirements can be reduced by

discarding the p.d.f. table after the c.d.f. array is calculated. Any entry of the p.d.f. can

be reconstructied directly from the c.d.f. table.

In his paper, Jensen only demonstrated his technique for diffuse surfaces. This appears

to be because if the transform is fixed for the entire image and does not depend on viewing

direction, then the inverse transform can be performed by a simple table lookup. The

technique can only be extended to more complicated BRDFs if T−1(θ, φ) can be defined

and easily computed. However, this is difficult for acquired BRDFs or those composed of

multiple Phong lobes. In fact, is unclear how to handle even a simple BRDF composed

of both a diffuse term and a single Phong lobe, because any specific direction (θ, φ) could

have been generated by either the diffuse term or the Phong lobe. Therefore no inverse

function can exist.
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The method works well as long as the grid is fine enough to capture the essence of

the incident radiance and there are enough photons collected so that the p.d.f. table is

generated with sufficiently low variance. It will have trouble however if there are very

small but bright regions of the sky. Although the correct general area of the sky will be

focused on, many of the generated final gather rays would miss the light source.

6.2.3.1 Resource requirements

Jensen’s method requires the intermediate storage of CJ cells to hold the c.d.f. As

described above, the p.d.f. can be recovered directly from the c.d.f. as required. Following

the original paper, the experiments were performed with a 4×8 grid and each element

stored a 32-bit float for a total of 128 bytes. This storage requirement is listed in Table 6.1

where it is compared to the following algorithms.

To present a comparison of the computational cost of the methods in Table 6.2, each

operation is assigned a specific cost. Projecting each photon into a specific bin can be

performed using precomputed tables. This turns the operation into a 2D integer binary

search and is assigned the equivalent of a single FLOP. The energy from each photon must

then be added to the cell and a cumulative sum must be kept, at the cost of 2 FLOPs

per photon. Each cell of the table then must be: 1) checked to see if an energy donation

is required; 2) normalized to generate the p.d.f. table; and 3) accumulated to generate

the c.d.f. table. Altogether, this is a cost of 3 FLOPS per cell. To generate each sample,

a random number is used in a binary search of the c.d.f., at the cost of approximatly

1 FLOP. Generating a sample within a specific cell requires 5 FLOPS. The probability

of the sample is evaluated by subtracting the neighboring entries of the c.d.f. table, at

1 FLOP. The final cost is approximated as 3P + 3CJ + 7NFG.
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Figure 6.10: Hey and Pharr’s methods generate a sample by first performing a kNN
search at x, selecting a photon and constructing a cone around the direction, ~ωp, that
the photon arrived from. A direction within that cone, ~ωc, is then selected randomly.

6.2.4 Hey’s method

Hey and Purgathofer described a sophisticated method for importance sampling incident

radiance using the photon map (Hey and Purgathofer, 2002). Like Jensen, they begin

with a kNN search to sample incident radiance. Also as in Jensen’s method, the photons

are projected onto a 2D unit grid divided into cells. The paper suggests CH = 32×32

cells. Instead of summing the energy arriving in each cell, as Jensen did, the 3×3 circle

of cells around the project direction is identified and each cell incremented by one. This

table will be used to estimate the density of photon arriving from any given direction.

However, unlike Jensen’s method, this table is not directly used to generate final

gather rays; it plays only a secondary role. The complicated details are carefully laid out

in their paper. There are two fundamental ways in which their algorithm departs from

Jensen’s. This first is that the actual list of photons found by the kNN search is kept

and used while generating final gather directions.

The list of photons is sampled, with the probability of choosing a particular photon

defined by the amount of energy it carried compared to the others. Once a specific photon

p is selected, a cone is generated from x along the direction the photon arrived from, ~ωp.

A random direction, ~ωc, within this cone is then sampled as shown in Figure 6.10.

The angle subtended by the cone is calculated using an estimate of photon density
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from the 2D table. This allows the algorithm to tightly mold the generated samples to

the incident radiance function. If a photon has many neighbors, its cone will subtend a

small solid angle and the samples will stay close to the photon’s direction. If, however,

the photon is far from its neighbors it will generate samples covering a large portion of

the visible hemisphere.

Importance sampling requires not only that the samples X be generated, but also that

the probability of having selected X, p(X), be known. Because the cones around each

photon may overlap and be arbitrarily large, X could have been generated by multiple

photons. Therefore, computing p(X) requires a test to determine if X lies within the

cones of any of the P photon. This test requires P dot-products per sample.

The second difference between this method and Jensen’s is the use of Veach’s multiple

importance sampling. The number of final gather rays, NFG, is divided with NB allocated

to BRDF sampling, as described in Section 6.2.1, and NP using the strategy outlined

here. This does however impose a significant additional cost, because the probability of

having chosen a sample according to both methods must be determined for every sample.

For each of the NB final gather rays sampled according to the BRDF, the probability

of having selected them using the photons must be computed. This can be a costly

operation because, as just described, the cone around all P photons must be compared

against. For a total of NFG samples, this will require NFG × P dot products. Unless the

computations of the BRDF are very expensive this will be the dominating cost of Hey’s

method.

6.2.4.1 Resource requirements

Hey’s technique requires more storage since it must keep the list of P photons. In addition

to the 96 bytes per photon, using Jensen’s compact representation, Hey’s algorithm must

store three 32-bit values for each photon. (The alternative would be recomputing these

values before each sample is generated, an expensive strategy.) Additionally, a table of
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size CH = 32×32 is stored as 32-bit floating point numbers. The total of 6,256 bytes is

presented in Table 6.1. Although this is significantly more storage than Jensen’s method

requires, as long as P is not excessively large, it is not a prohibitive problem.

During the preprocess stage the photon density table is constructed, reflected radiance

for each photon computed, the c.d.f. that will be used to choose each photon is built, and

the footprint radius and height for every photon is computed. (See the original paper for

more details.) This preprocessing alone requires P (8 + BRDF) + 2CH FLOPS.

The computational costs of generating the samples is however more significant. NB

samples are generated according to the BRDF. NP samples are generated by picking a

photon using a binary search in the c.d.f. for 1 FLOP, and then generating a sample

in the cone surrounding the photon for 5 FLOPS. For all NFG samples, their proba-

bilities according to both the BRDF and all P photons must be computed. This costs

(BRDF)NB + 6NP + (1 + 5P + BRDF)NFG.

For the purposes of a concrete comparison, it is assumed that all three operations

involving the BRDF (evaluation, importance sampling, and evaluating the p.d.f) cost 10

FLOPS. The results shown in Table 6.2 are high, over an order of magnitude higher than

Jensen’s method.

6.2.5 Pharr’s method

In an update to his pbrt system, Pharr proposed, but did not analyze, a simple ap-

proximation to Hey’s algorithm (Pharr, 2005). The density estimate was assumed to be

constant and a cone subtending a user-specified angle was used for all photons (10 degrees

was recommended). This algorithm was not expected to perform as well as Hey’s but

is cheaper because the photon density and the related measures need not be estimated.

However Pharr’s method still requires NFG×P dot products to determine the probability

of having chosen the generated samples, with or without multiple importance sampling.
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6.2.5.1 Resource requirements

Pharr’s method only stores the list of found photons, at 96 bytes per photon using

Jensen’s compact representation. Pharr’s method also avoids all the preprocessing work

of Hey’s method. Further, during sample generation the photon is chosen randomly

without regard to the energy it brought with it, eliminating the need to build a c.d.f.

table of the photons. The computational cost is therefore reduced to (BRDF)NB +5NP +

(1 + 5P + BRDF)NFG.

6.3 Combined importance sampling

The methods of Hey and Pharr improved upon that of Jensen in two ways: 1) they

incorporated information about non-diffuse BRDFs into their sampling using multiple

importance sampling; and 2) by sampling from within cones around the photons they

achieve a tighter fit of the generated samples to the limited knowledge about the incident

radiance function. In exchange for these improvements they incurred a large computa-

tional cost. In this section I present a novel algorithm that incorporates knowledge of

glossy BRDFs without a direct implementation of multiple importance sampling, keep-

ing costs low while performing nearly as well as Hey and Pharr’s methods for the scenes

described in Chapter 1.

In multiple importance sampling, the samples are generated according to two separate

sampling strategies and the balance heuristic required computing a joint probability by

consulting all M p.d.f.s. These requirements taken together require that information for

both sampling strategies be stored throughout the sampling process and that many of

computations be performed. Combined importance sampling, however, integrates the

strategies together as a pre-process, leaving a single strategy to generate all NFG samples

and a single p.d.f. to evaluate (Steinhurst and Lastra, 2006). The result is the same but
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can only be performed when it is possible to directly combine the M p.d.f.s. As will be

shown shortly, this approach is simple when the p.d.f.s are expressed in a tabular form.

The balance heuristic (Equation 6.6) can be substituted into the MIS estimator (Equa-

tion 6.5) to obtain the estimator used by Hey and Pharr (Equation 6.9).

FM,N =
1

N

M∑
i=1

Ni∑
j=1

f(Xi,j)∑
k

Ni

N
pk(Xi,j)

(6.9)

Observe that this equation uses multiple sampling strategies. When restricted to two

strategies, BRDF and photon-map-based incident radiance, the denominator can be

rewritten as

p̂(x) =
NB

N
pB(x) +

NP

N
pP (x) (6.10)

where pB(x) and pP (x) are the p.d.f.s for selecting according to the BRDF and photon

tables respectively.

FN =
1

N

N∑
i=1

f(Xi)

p̂(Xi)
(6.11)

Note that p̂(x) is the weighted average of pB(x) and pP (x). This gives the reduced

estimator (Equation 6.11) the appearance of the standard importance sample estimator,

presented earlier in this chapter. Most importantly, there is a single sampling strategy

and only a single evaluation of p̂(x) is required.

This new strategy can be easily applied to final gather ray generation using the

photon map by building upon Jensen’s method. The following explanation is outlined

in Algorithm 6.3. The starting point is a p.d.f. table constructed based on the incident

radiance exactly as was performed in Jensen’s preprocessing. The transformations for

the diffuse BRDF, T (u, v) and T−1(θ, φ), are used, regardless of the true BRDF.

A second p.d.f. table is generated according to the following rule. For each cell,

a single ray, ~ωc, is generated through the middle of the corresponding portion of the

hemisphere. The BRDF is then evaluated, f(x, ~ωc, ~ωo), and stored in the cell. Cells with
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Pre-condition: pdfLiTable is computed as described in Algorithm 6.1
// Compute evaluatedBRDFTable
for each cell [u, v] ∈ evaluatedBRDFTable do

~ωc ← centerDirectionOfCell(u, v)
evaluatedBRDFTable[u, v]← f(x, ~ωc, ~ωo)
totalReflectance← totalReflectance + f(x, ~ωc, ~ωo)

end for
// Donate a small portion of the total reflectance to any empty cells
donation← 0.05× totalReflectance/CJ

for each cell [u, v] ∈ evaluatedBRDFTable do
if evaluatedBRDFTable[u, v] == 0 then

evaluatedBRDFTable[u, v]← donation
totalReflectance← totalReflectance + donation

end if
end for
// Normalize the reflectance table, producing the p.d.f.
for each cell [u, v] ∈ pdfBRDFTable do

pdfBRDFTable[u, v]← evaluatedBRDFTable[u, v]/totalReflectance
end for
// Average the two p.d.f. tables
for each cell [u, v] ∈ pdfCombinedTable do

pdfCombinedTable[u, v]← (pdfLiTable[u, v] + pdfBRDFTable[u, v])/2
end for
// Construct a combined 1D c.d.f. array
cdfArray[0]← 0
for i = 1 to CJ + 1 do

cdfArray[i]← cdfArray[i− 1] + pdfCombinedTable[i]
end for

Algorithm 6.3: The preprocessing stage for combined importance sampling begins with
that of Jensen’s (Algorithm 6.1). A second p.d.f. table is constructed and the results
averaged to form a single p.d.f. table to sample from. A visual representation in shown
in Figure 6.11.
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(a) Incident radiance p.d.f. (b) BRDF p.d.f. (c) Combined p.d.f.

Figure 6.11: Combined importance sampling generates as a preprocess a tabular p.d.f.
for both the incident radiance and the BRDF. These two p.d.f.s are then combined by
averaging the values in each cell independently. Only one strategy for generating samples
is therefore required and p(X) is simple to compute. An example of the samples generated
using this p.d.f. is shown in Figure 6.8c.

Storage Bytes
Jensen 4CJ 128
Combined 4CJ 128
Pharr 96P 960
Hey 4CH + 128P 6,256

Table 6.1: The intermediate storage cost for each of the global importance sampling
techniques. We assume that P photons were gathered for the radiance estimate, and
that there were NB samples generated according to the BRDF and NP samples generated
according to the incident radiance for a total of N samples. Jensen’s and the combined
technique require storage of tables with CJ cells, while Hey used tables of size CH .

non-positive values are given a small positive value and finally, the table is normalized

in order forming a p.d.f. table.

Following Equation 6.10, the two p.d.f. tables are then directly averaged together

to form a single p.d.f. that is used for sampling. This process is shown in Figure 6.11.

The combined p.d.f. table is converted into a c.d.f. table as before. Samples are then

generated using the same process as in Algorithm 6.1. Only a single operation is required

to determine the probability of having generated a particular sample.
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6.3.0.2 Resource requirements

The combined importance sampling method has costs similar to that of Jensen’s. The

storage requirements are exactly the same, as is the cost to generate samples. The

preprocess has additional costs however. They mostly arise from the evaluation of the

BRDF for each cell; creating the additional p.d.f. table and averaging the two together

are both relatively cheap. The total cost formula is 3P + (3 + BRDF)CJ + 6NFG.

6.3.0.3 Discussion

Combined importance sampling is simple and efficient. It will be shown in the next

section that it is effective for the scenes where the BRDF is not too glossy or the incident

radiance too sharp. These two limitations both arise from the use of a low-resolution

table to express the p.d.f. and are explained using the same rationale as was used for

Jensen’s technique: samples within a single cell are generated purely randomly, so they

can miss a particularly small feature in the integrand. Although it will consequently not

be able to capture highly specular surfaces perfectly, these surfaces are often sampled

specially in path tracers (Shirley, 2000). Experiments show that a 4×8 table is adequate

for glossy surfaces. (Those equivalent to a Blinn-Phong cosine lobe of n=16.)

An important benefit of this approach, beyond the reduction in computational cost, is

that the BRDF does not have to be sampled, only evaluated. Therefore neither T (u, v)

nor T−1(θ, φ) need be known, or easy to evaluate. As was discussed in Section 6.2.1,

those functions can be difficult to specify and evaluate for acquired reflectance functions.

6.4 Results

The effectiveness of the combined importance sampling is demonstrated in this section in

two ways. First, an extensive point-response analysis was performed to carefully compare

both the variance and the convergence of the techniques in a controlled experiment. Based
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Computation FLOPS
Jensen 3P + 3CJ + 7NFG 1096
Combined 3P + CJ(4 + BRDF) + 7NFG 1,448
Pharr NB×BRDF + 5NP + NFG(BRDF + 5P + 1) 51,850
Hey (P (8 + BRDF) + 2CH)+ 55,748

(NB×BRDF + 6NP + NFG(BRDF + 5P + 1))

Table 6.2: The computational cost for each of the global importance sampling tech-
niques. See the text for details on the assumptions behind the cost of operations. The
BRDF evaluations are separated out so that the impact of complicated BRDF models
is apparent. Hey’s algorithm is by far the most expensive in terms of both storage and
computation. Both Pharr’s and Hey’s require N×P dot products and comparisons to
compute the probability of the generated samples. For even modest values of N and P
their product gives rise to a dominating cost.

on the positive results of these experiments, and the cost advantages described in the

previous section, combined importance sampling was chosen for implementation in the

architecture presented in Chapter 7. Images generated by the architecture simulation

are therefore presented here to demonstrate the benefit when applied in the proposed

context.

6.4.1 Comparison of variance

In order to evaluate these importance sampling techniques with realistic incident radi-

ance, a series of acquired lightprobes was used (Debevec, 1998). Each light probe contains

a high dynamic range and low distortion view of one hemisphere. The construction and

consultation of the photon map was simulated by choosing pixels of the light probe pro-

portional to their energy and solid angle subtended. This simulation of photon tracing

and a kNN search was verified against an open-source photon map implementation (Pharr

and Humphreys, 2004). Although the combined importance sampling technique is di-

rectly extensible to complicated analytical and acquired BRDFs, this experiment was

restricted to a BRDF with a simple combination of pure diffuse and a single modified

Phong cosine lobe. This allowed direct comparison of the performance of the various
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techniques using the photon map to an analytical importance sampling of the BRDF.

One difficulty in comparing these algorithms, is the selection of specific parameters

that must be supplied by the user. In most cases the values used were those suggested

by the original authors. The most sensitive was the ratio of the number of cells, CJ and

CH , to the number of photons gathered. Jensen’s paper found CJ = 4×8 cells to be

good for a variety of scenes where only 50 photons were gathered. This however works

out to fewer than 2 photons on average per bin, which causes a high variability in the

estimated p.d.f. Performing a kNN query for 100 photons was found to perform better

in these experiments, and was convenient as the photon gathers in the simulator also use

100 photons per search.

Figure 6.12 shows the average standard variation across 500 trials for the various

importance sampling techniques for 2 different lightprobes and 3 different surfaces: pure

diffuse, a sharp Phong lobe, and a mixture of those two. The combined importance sam-

pling technique was compared with naive sampling, analytical BRDF sampling, Jensen’s

method, and both Hey and Pharr’s methods. The exponent of the glossy cosine lobe was

set to 16, which is quite sharp while remaining glossy and not highly specular.

In the scene illuminated with the beach lightprobe, the viewer was positioned so that

the reflected glossy lobe faced the ground away from the sun. In the kitchen scene, the

viewer looked down at a glossy table such that the reflection was in the general direction

of the bright window. An algorithm is said to perform better than another if fewer

samples are required to achieve the same variance. None of the importance sampling

techniques exhibited bias.

As expected, Hey’s algorithm performs best under nearly all conditions because it

is able to focus so effectively on areas of high contribution in the photon map while

using multiple importance sampling incorporates knowledge from the BRDF. While only

approximating Hey, Pharr’s method achieves almost similar performance under standard

lighting conditions, a room lit by a window as opposed to a pinhole. Its performance
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(a) Beach: Pure Diffuse
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(b) Kitchen: Pure Diffuse
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(c) Beach: 1/2 Glossy
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(d) Kitchen: 1/2 Glossy
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(e) Beach: Pure Glossy

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

Samples

Av
g 

St
d 

De
v

Naive
BRDF
Jensen
Combined
Pharr
Hey

(f) Kitchen: Pure Glossy

Figure 6.12: The convergence rates for the beach and kitchen lightprobes for three dif-
ferent surface BRDFs. The convergence rate was established by averaging the stan-
dard deviation from the expected result for 500 trials. Particularly interesting cases are
(c) and (d) where information from both the BRDF and the photon map’s approximation
of incident radiance allows for better convergence than either alone.
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would drop if the incident radiance function has higher frequency components. The

combined importance sampling technique provides performance comparable to Pharr’s

and is always much closer to Hey’s than to Jensen’s while having an implementation cost

close to Jensen’s.

6.4.2 Generated image quality

Combined importance sampling was shown to have competitive performance, significantly

cheaper computational cost, and a simple implementation. For these reasons it was

selected for inclusion in the architecture presented in this dissertation (see Chapter 7).

Comparing the results of the functional simulator allows us to compare the techniques

as used to generate actual images.

All three test scenes shown in this section are illuminated almost entirely by indirect

light. This will require the importance sampling to perform well to achieve acceptable

results. In Chapter 7 it will be shown that importance sampling works well in scenes

with less dramatic lighting as well.

The dome scene, used in the experiments in Figure 6.13, is a square surrounded by a

dome. Two spot lights are pointed at the dome, one straight above and one in front. The

light then reflects towards the square, acting as small area light sources, although purely

indirect. This scene was imaged nine times, with varying surface reflectance properties

and importance sampling methods. From each generated image a thin strip was removed,

with the results grouped by surface reflectance.

When the square is fully diffuse, the combined importance sampling method is indis-

tinguishable from Jensen’s. When the square is fully glossy, the combined importance

sampling method performed almost as well as analytically sampling the BRDF. For more

general surfaces, that are partially diffuse and glossy, combined importance sampling is

the best option. These visual observations are confirmed by examining the variance
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(a) Pure Diffuse (128 Gathers)
L→R: BRDF, Jensen, Com-
bined

(b) 1/2 Glossy (128 Gathers)
L→R: BRDF, Jensen, Com-
bined

(c) Pure Glossy (128 Gathers)
L→R: BRDF, Jensen, Com-
bined
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(d) Pure Diffuse
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(e) 1/2 Glossy
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(f) Pure Glossy

Figure 6.13: The nine experiments described in the text are visualized by extract-
ing vertical strips and group into a montage by importance sampling strategy in Fig-
ures (a) through (c). Combined importance sampling is visually the best overall choice,
which is confirmed by examining the observed variances in Figures (d) through (f).

graphs in Figures 6.13d through 6.13f.

A modified Cornell box with a half-diffuse and half-glossy floor is shown in Figure 6.14.

This set of images shows the tradeoffs a designer must make when using importance

sampling. An image of equivalent quality can be generated using fewer samples, about

one quarter in this case, or a significantly better image can be generated with the same

number of final gathers.

Combined importance sampling supports more complicated BRDF functions, as long

as they do not contain particularly sharp peaks. In Figure 6.15 the curved foreground

object has a reflectance defined by a three lobe Lafortune model fitted to acquired data.

The benefits of importance sampling do not rely on the scene containing a glossy surface,
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(a) Combined
32 Gathers

(b) Cosine weighted
128 Gathers

(c) Combined
128 Gathers

Figure 6.14: The floor of this modified Cornell box is half diffuse and half glossy. The
lighting is entirely indirect, a spot light aimed at the ceiling. For low variance images
in this scene, final gather rays must be selected on the basis of both incident radiance
and the local surface reflectance. The combined importance sampling method produces
an image of similar quality using one quarter of the samples. Alternatively, a superior
image is generated with the same sample budget.

(a) Cosine weighted sampling
33 Gathers

(b) Combined importance sampling
33 Gathers

Figure 6.15: In this view of the Sponza atrium, the light is purely indirect, the walls
are diffuse and the curved object in the foreground has a three lobe Lafortune BRDF fit
to acquired data. The curved geometry of the foreground object benefits greatly from
importance sampling according to the BRDF. Presented with the diffuse walls, combined
importance sampling is the exact same as Jensen’s algorithm.
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(a) n = 1 (b) n = 16 (c) n = 128

Figure 6.16: The interaction of importance sampling with query reordering was inves-
tigated using a modified Cornell box. A glossy floor was created with a BRDF that is
a combination of Lambertian and a single Phong cosine lobe of the indicated exponent.
During experiments, the camera was zoomed so that the floor filled most of the image.

of course. Presented with a diffuse surface, such as the walls in the same scene, combined

importance sampling is the exact same as Jensen’s algorithm.

6.5 Interaction with gather reordering

The non-uniform sampling of final gather ray directions that arise from importance sam-

pling not only reduces the variance of the computed reflected radiance but also changes

the spatial distribution of the photon gathers that must be performed. This will have a

direct impact on bandwidth requirements, and in this section we examine the magnitude

of this effect and its interaction with both query reordering and irradiance caching.

To clearly examine the effect of a glossy surface on these other bandwidth reducing

techniques, a modified version of the Cornell box scene was used that with a viewpoint

focused on a glossy wooden floor. The BRDF in this experiment is composed of two

separate terms. The first is a simple uniform Lambertian. The second is a single Phong

cosine lobe. The resulting images are shown in Figure 6.16 for several values of n, the

glossy exponent of the Phong illumination model.
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(a) Without Irradiance Caching
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(b) With Irradiance Caching

Figure 6.17: As the exponent of the glossy lobe is sharpened the required bandwidth
for naive photon mapping is reduced. This effect is minor or non-existant for reordering
techniques that are already successfully exploiting coherence. For a fair comparison, the
naive and direction-binned techniques are shown here with analytical BRDF sampling.
(Modified Cornell Scene, 16×16 tiles, kd -tree 128KB cache, 128B cachelines, εmax =
0.025)

Surfaces with a higher glossy exponent were found to require less bandwidth for

the naive ordering than those that are more diffuse (Figure 6.17a). This is because the

sampled final gather rays are clustered in a small portion of the hemisphere, corresponding

to the expected contribution.

The effect is less pronounced, or even non-existant, for the higher quality reordering

algorithms. When the photon queries have already been reordered, however, there is no

reduction in bandwidth as the glossy exponent increases. This is because the reordering

have already captured most of the available coherence.The pattern held true both with

and without irradiance caching (Figure 6.17b).

Although glossy surfaces require less photon gather bandwidth than uniform diffuse

surfaces, the improvement due to importance sampling is minor compared to that ob-

tained from query reordering. This experiment shows that query reordering is compatible

with importance sampling and irradiance caching, exploiting the additional potential co-

herence among the photon gathers.
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6.6 Conclusion

Combined importance sampling is a simple global importance sampling algorithm that re-

duces variance in generated images for scenes demonstrated at a low cost. It is compatible

with photon gather reordering and irradiance caching. It therefore can be incorporated

into a system which utilizes those techniques to reduce memory bandwidth.

The low cost is due to a preprocessing stage where multiple p.d.f.s are combined

together, leaving a single sampling strategy to be used during final gather ray generation.

Although combining p.d.f.s is not always possible, it is easy in the application presented

in this chapter because the p.d.f. of incident radiance when captured by a kNN search in

a photon map is naturally expressed in a table. Not all functions, such as sharp BRDFs,

are well represented this way however. If two more general p.d.f.s were expressed in

different ways, varying basis functions for example, that could prevent the application of

combined importance sampling.
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CHAPTER 7

ARCHITECTURE

The most significant impediment to interactive image generation using the photon map-

ping algorithm is the memory bandwidth requirement of photon gathering. The previous

chapters of this dissertation have presented several techniques that were shown to be

successful at reducing the memory bandwidth requirements: photon gather reordering,

irradiance caching and combined importance sampling. Irradiance caching reduces the

number of final gathers that must be performed. Importance sampling reduces the num-

ber of final gather rays and subsequent photon gathers that must be generated. Finally,

photon gather reordering increases the coherence of the memory request stream generated

while servicing those photon gathers that remain to be performed. Together these tech-

niques will reduce the memory requirements of image generation by almost two orders of

magnitude.

The algorithms and data structures to accomplish these reductions were designed with

care to neither impose significant additional computation nor hide the natural parallelism

of the original photon map algorithm. Further, it was shown that the techniques are

compatible; not only can they be implemented in a single rendering system but their

benefits build on each other. In this chapter, the techniques are combined into a single

proposed hardware architecture that could be practically implemented by 2010. An

implementation small enough to fit in a standard desktop PC will be shown via simulation

to have sufficient performance to support the interactive rendering of scenes with difficult

indirect illumination at 30 frames per second.

In the first section of this chapter, the goals of the architecture and the implementation



constraints imposed by current semiconductor technology are revisited. The architecture

is then described at a high level before a careful examination of each component. The

required bandwidths, computations and internal storage are shown to be well within

the expected performance of the targeted implementation technology. A functional sim-

ulation of the architecture is presented and used to verify both the correctness of the

architecture and evaluate the expected performance under a variety of conditions. Fi-

nally, scalability, deadlock and load balancing are addressed along with limitations and

potential design alternatives.

7.1 Goals and constraints

It is the goal of this dissertation to present a feasible hardware architecture for interactive

image generation using the photon mapping algorithm. Chapter 2 established an overall

vision for the system, based on reducing overall system complexity and cost. From this

vision, the following goals are obtained: 1) the entire system will be packaged as one or

more expansion cards that can be inserted into a standard commodity workstation; 2)

no more than one major custom ASIC design will be required; 3) no inter-chip commu-

nication will be allowed; and 4) only semiconductor technologies that are expected to be

commercially available in the next three years should be used.

A standard commodity workstation will be used as a host. It will handle all the

generic tasks such as program loading and execution, input/output, and management of

the hardware system. This frees the hardware architecture to focus on the tasks directly

related to image generation. This arrangement is typical for both consumer graphics

cards, such as the GeForce 6800 (Montrym and Moreton, 2005), and also large high-end

research systems, such as PixelFlow (Eyles et al., 1997). Limiting the implementation

to a small number of expansion cards reduces the overall system complexity. Whole

classes of subsystems such as a power supply, chassis, and host interface do not have to
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be designed or tested.

Each custom ASIC that must be designed for the system represents a large devel-

opment and testing cost. This is particularly true of high performance designs that use

recent semiconductor technologies. To limit this cost, the architecture will use only a

single custom chip design. Although the development and testing of a design is expen-

sive, the per unit cost is relatively low. Therefore, multiple instances of the chip will be

used together for higher performance. This provides greater flexibility in deployment.

Models offering different performances can be constructed from the same components at

different price points.

There are several advantages to prohibiting inter-chip communication. The first is

that the majority of the rendering chip’s communication resources can be dedicated to

high speed memory links. The second advantage is that the expansion cards do not

need to support a bus or routing system between the chips. Instead, a simple tree

communication structure with the host will suffice. System testing is also easier, as each

chip performs its duties in isolation from the others. Finally, this lack of communication

removes one of the largest barriers to system scalability in terms of rendering chips. This

last aspect is addressed in more detail in Section 7.4.3.

It will be shown in Section 7.3.4 that the bulk of the computations in this architecture

are highly parallel, regular, and exhibit few control flow dependencies, thus permitting

deep pipelining. This allows the resources on the chip to be allocated to processing

elements instead of control, routing and large memories. These are also the characteristics

of commodity GPUs which enable them to perform so much useful computation on a

single chip, as compared to a CPU. In Section 2.2 it was shown that it is a conservative

estimate that GPUs will be performing 500 GFLOPS by 20101.

Even without photon gather reordering, irradiance caching, or combined importance

1Recall from Chapter 2 that the total number of FLoating point OPerations to perform an operation
is abbreviated as FLOPs, while the rate of FLOPs over time is denoted as FLOPs per second, FLOPS.
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sampling, generating 512×512 images of Sponza Atrium at 30 FPS will be shown, in

Section 7.4, to require 7.4 TFLOPS. This burden can be handled by less than sixteen

chips, which can fit on a small number of expansion boards.

It has long been lamented that the memory bandwidth available to a single chip

is increasing at a much slower rate than the computational performance of that same

chip (Dally and Poulton, 1998). High end commodity chips such as GPUs are expected

in 2010 to have a usable bandwidth of at least 90 GB/s (see Section 2.2). The naive

photon mapping algorithm, as originally described in Chapter 2, has been shown to

require 11 TB/s to generate 512×512 images of the Sponza atrium at 30 FPS. Dividing

that bandwidth across twelve dozen chips is simply not feasible for a workstation sized

machine. The techniques presented in this dissertation are therefore required for a feasible

architecture.

Because memory bandwidth is the limiting factor, the description and initial analysis

of the architecture concentrates on that. Once it has been established how many tiles per

second can be performed on a single chip, using the 90 GB/s permitted, it is then verified

that the corresponding computation and internal storage for the ray casting, irradiance

caching, importance sampling, and the photon gathers themselves are reasonable. During

initial discussions, this chapter will assume that the target output is 30FPS for 512×512

images with a single sample per pixel.

Performance is, of course, a function of many variables. Some are set by the users,

some fixed by the architecture as described here, and some depend on the exact scene.

Table 7.1 defines the notation used throughout the rest of the chapter to discuss these

costs. Nominal values are shown with references to where they are discussed. Those

values that are observed characteristics of certain scenes, such as the proportion of pixels

that can use irradiance caching, are given as an expected range with a conservative value

used during calculations unless otherwise noted.
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Nominal
Notation Description Value Reference
P Number of pixels in a tile 16×16 Chapter 3
T Number of tiles in (512×512) image 1024 Chapter 1
F Number of frames per second 30 Chapter 1
NFG Number of final gather rays 33-100–200 Chapter 2
k Number of photons searched for 100 Chapter 2
NS Number of shadow rays 8 Chapter 2
CJ Number of importance sampling bins 4×8 Chapter 6
NPM Number of photons in indirect map .5–6×106 Chapter 2
RIC Ratio of pixels using irradiance cache 0–60–95% Chapter 5
RFG Ratio of pixels using full final gather 100%-RIC Chapter 5
LIC IC records interpolated per pixel 4 Section 7.3.3
CB1 Partial evaluation of fr (Stage 1) 12 FLOPs Section 7.3.2
CB2 Partial evaluation of fr (Stage 2) 10 FLOPs Section 7.3.2
CRayCast Intersecting ray with scene 330 FLOPs Section 7.3.2

CG Gathering the k nearest photons 2,389 FLOPs Section 7.3.4
SB Size of partially evaluated BRDF 13 bytes Section 7.4

Table 7.1: The notation used throughout the rest of the chapter to discuss the cost of
photon mapping in terms of both bandwidth and FLOPs. Nominal values are shown with
references to where they are discussed. Those values that are observed characteristics of
certain scenes, such as the proportion of pixels that can use irradiance caching, are given
as an expected range with a conservative value in bold that is used during calculations
unless otherwise noted.

7.2 System overview

Figure 7.1 shows the proposed system at a high level. The host machine contains one or

more expansion cards. Each card contains up to four identical and independent custom

designed chips, each with its own matching high-speed commodity memory. A typical

implementation would provide 256 MB of memory to store a replication of the scene

geometry and the photon map. The rendering chips on each card are connected to a

shared PCI-Express bridge. The bridge allows for broadcasting information from the

host to all chips as well as for individual responses from each chip back to the host.

This simple board design does not, however, allow for communication between rendering

chips, communication is solely with the host.

129



Host

Rendering
Chip

Rendering
Chip

Rendering
Chip

Rendering
Chip

PCI-Express
Bridge

Figure 7.1: A host can have multiple rendering boards for greater performance. In
addition to constructing the photon map, the host is responsible for allocating tiles to
the rendering chips. Each rendering chip is independent and can not communicate with
another. Each chip is provisioned with dedicated memory that holds a replication of the
scene geometry and photon map, as broadcast from the host. As the tiles are finished,
the resulting image is returned to the host where all tiles are assembled and displayed
using a conventional graphics device.

7.2.1 Duties of the host

The duties of the host fall into two categories. Before rendering begins, the host performs

all necessary pre-processing and hardware configuration. The scene geometry is broadcast

to each rendering chip where it is stored in the memory for use during ray tracing. The

host is also responsible for the generation and broadcast of the photon map. Additionally,

the computation of Ravg, as described in Section 5.3, for irradiance cache calculations is

performed by the host.

During interactive rendering, the host divides each image into fixed size tiles and
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dynamically assigns the tiles to rendering chips as they become free. When a tile has

been completed, the partial image is returned to the host and a new tile is assigned. Each

chip maintains a small queue of tiles to prevent stalls waiting for the host. The tiles are

then assembled and displayed by the host using a conventional graphics system.

7.2.2 Interconnect bandwidth

The interconnect between the card(s) and the host does not need to have a particu-

larly high bandwidth. For the retained mode operation envisioned for this system, the

scene geometry and photon map are broadcast to all chips only infrequently, as the

scene changes. During active rendering, the host simply instructs each chip which tile

it is to compute. This takes 2 bytes per tile for a total of 2TF = 60 KB/s. Each

tile is then returned to the host as a high dynamic range image, with each pixel repre-

sented using 16-bit RGB components. This requires a total bandwidth to the host of

PTF (3×2 bytes) = 45 MB/s. The current industry standard, PCI-Express 1.1, is able

to provide a bandwidth of 4 GB/s to a card, while the new 2.0 specification will obtain

up to 8 GB/s (PCISIG, 2007), far exceeding the needs of this architecture.

7.3 The rendering chip

The internal structure of the rendering chip is shown in Figure 7.2. The only communi-

cation link provided is to the host via the PCI-Express bridge. Each chip has dedicated

off-chip memory divided into four banks to maximize bandwidth while requiring no more

pins on the package than currently in common use. Each chip maintains a replication

of the entire scene geometry and photon map. This allows a tile to be rendered without

communication to other processors. A typical implementation will provide 256 MB of

memory.

The on-chip communication between the components is point-to-point, buffered by
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Figure 7.2: Each rendering chip has its own associated commodity DRAM memory
large enough to store both the scene and the photon map. The three major portions
communicate using packets tagged with the address of the destination pixel, allowing
internal reordering and out of order processing.

small queues, eliminating the need for routing devices or a bus structure. Inspired by the

GI-Cube architecture (Dachille and Kaufman, 2000) the communication is partitioned

into packets. A packet represents a request to the component receiving it; examples are

a ray to be traced, an indirect photon gather to be performed, or a partial result to be

accumulated for output. Each packet is tagged with the pixel address it will eventually

contribute to. The allows for a component to process the incoming stream of requests in

the most efficient order.

This section begins by following the life cycle of a tile as it is rendered by the chip,

concentrating on the overall structure of the rendering chip and the division of labor

between the three main components. Each component is then examined in turn, with

a detailed analysis of the computation and internal storage requirements. Further, the
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composition and size of the various packet types between each component are presented,

allowing for a careful consideration of the inter-component bandwidths.

7.3.1 The rendering of a tile

The controller maintains a small queue of tiles that have been assigned to this chip by the

host. When the chip is free to begin a new tile2, the ray caster is told to generate and trace

the eye rays through the scene. The ray tracing is terminated at the first intersection with

a surface that is not highly specular. The ray caster partially evaluates the BRDF at the

intersection point x as both location and viewing direction are now known. Any required

texture lookups, for example, can be performed at this time. This reduces the amount

of shading information that must be passed along. Direct illumination is computed at

this time using shadow rays generated from x towards the light sources.

This intersection data is then returned to the controller, where it is stored for future

use. The controller issues two separate requests to the photon gatherer. The first is for

a photon gather at x in the caustic map3. The second request is for a special purpose

photon gather in the indirect map. This gather serves two purposes. The first is to

retrieve a value of Ravg for irradiance caching decisions. The second is to retrieve the

accumulated table of photon energy used to create the p.d.f for importance sampling.

These requests are sent to the photon gather unit where they are separated into two

queues until processed. The nature of the queuing system is discussed in Section 7.3.4,

but at some point each of these requests is dequeued and processed. Two packets are

returned to the controller, one containing the contribution to the final image due to

caustics and the second containing the value Ravg, used in irradiance caching decisions,

2The proposed architecture actually will have two tiles being processed at the same time to increase
utilization. This detail has been removed from this overall description for clarity.

3Recall from Chapter 2 that a special photon map is created that is specialized for rendering caustics.
Caustics are rendered by performing direct visualization on this caustic photon map.
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and the accumulated energy table from the indirect gather, used in combined importance

sampling.

At the controller, these packets are received and their information placed into the

same data structure holding the intersection data. The packets may arrive in any order.

Processing begins when they are all accounted for. First, the irradiance caching algorithm

from Chapter 5 is applied to each pixel to determine if a final gather must be performed.

This determination can be made before the final gathers only because the pre-computed

values of Ravg have been found. Instead of a traditional irradiance cache data structure,

those pixels that will interpolate the irradiance results to be computed at other pixels

are added with an interpolation weight to a list in the tile data structure, to be consulted

when the results arrive later. More details of this process are presented in Section 7.3.3.

For those pixels that do require a final gather, the energy table returned by the

importance sample photon gather request is converted to a p.d.f., combined with an

evaluation of the partially-evaluated BRDF, and stored as part of the intersection results

determined earlier, as was described in Chapter 6. The combined p.d.f. and c.d.f. are

used to generate the NFG sample directions. With these sample directions now known,

the BRDF is evaluated and a weight is calculated for each gather ray. This weight is sent

in a packet along with the intersection point and sample direction to the ray caster. Note

that the final gather rays are generated using the direction-bin reordering algorithm, see

Chapter 3.

The final gather rays are now processed by the ray casting unit. They are traced

through the scene until they encounter the first surface that is not purely specular. Once

again the BRDF is partially evaluated. The details of these intersections are formed into

a packet and sent to the photon gather unit, where standard indirect photon gathers at

these secondary intersections, yi, will be performed.

As the indirect packets arrive from the ray casting unit they are inserted into a

set of queues kept in on-chip memory. These queues are used to perform the additional
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reordering provided by the hashed technique described in Chapter 3. Details are provided

in Section 7.3.4. The queues are drained one a time. For each photon gather request

that is part of a final gather two values are computed and returned in a packet to the

controller. First is the partial contribution that this gather provides to the destination

pixel in the tile. While computing this value, the contribution to the irradiance at that

pixel is also calcuated. This will be used by all the pixels dependent on the irradiance

cache record for this destination pixel. Finally, when these values are returned to the

controller they are accumulated into the respective pixels of the frame buffer, which is

sent to the host when the tile is complete.

7.3.2 Ray casting unit

There are three duties of the ray casting unit: 1) generating and tracing the eye rays

for each tile; 2) calculating direct illumination using shadow rays; and 3) tracing final

gather rays to determine photon gather locations. All three duties use ray casting as the

core kernel of operation. The internal structure of this unit can be a slightly restricted

implementation of the SaarCOR architecture (Schmittler et al., 2002). That architecture

has been validated by an FPGA implementation of a reduced version (Schmittler et al.,

2004). The techniques described in their series of publications reduce the computational

and bandwidth cost of ray-casting, as discussed shortly.

For each tile, the ray caster samples the image plane P times to generate the eye rays,

(e, ~ωe). These rays will be highly coherent as they share a common origin and similar

directions. Each ray is traced through the scene until it intersects with a surface at a

point x that is not purely specular, as per the photon mapping algorithm laid out in

Chapter 2. However, even those rays that do reflect off a specular surface will maintain

a high degree of coherence (Chalmers et al., 2002). Note that glossy surfaces are treated

as non-specular, their reflections will be computed with a final gather instead of a single
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Size Explanation
Valid 1 bit Did this eye ray actually intersect the scene
Tag 1 bit Which of the two current tiles this packet belongs to
(xo, yo) 1 byte Pixel offset within current tile (2×4 bits)
x 6 bytes Intersection location (3×16 bits)
~n 4 bytes Surface normal at x (2×16 bits)
~ωo 4 bytes Direction of viewing ray arriving at x (2×16 bits)
Ld(x, ~ωo) 6 bytes Direct Illumination, RGB (3×16 bits)
Wacc 6 bytes Accumulated attenuation on path, RGB (3×16 bits)
fp(~ωi) SB Partially evaluated BRDF

Table 7.2: Ray caster to controller packet. ~ωo will point from x towards the eye, un-
less a purely specular reflection or refraction occurred. If that case, the accumulated
attenuation along the path from the eye to x is passed as Wacc. Each packet requires
(28 + SB) bytes.

reflected ray.

At each intersection point x, the BRDF is partially evaluated by fixing the viewing

direction, ~ωo, as this is now known. This has the effect of reducing the seven dimen-

sional f(x, ~ωi, ~ωo) reflectance function to fp(~ωi), a two dimensional function. For almost

all BRDF representations, this reduces the amount of data required to represent the re-

flectance. For example, because x is now fixed, all texture evaluations can be performed

and merged into a single resulting RGB color. This partial-evaluation reduces the size

of the packet that will be returned to the other units, as well as any storage that may

be necessary. The exact size of the partially evaluated reflectance function, SB, depends

on the exact BRDF on the surface. The simulator described in Section 7.4 supports

Lambertian and Phong lobe materials, which require only 13 bytes to represent fp(~ωi).

The computational cost of performing the partial evaluation is CB1 = 12 FLOPs.

If the eye ray did reflect or refract on highly specular surfaces then each of those

interactions reduces the amount of light that will eventually reach the eye. To account

for this, the reflectance at each specular interaction is computed and the product is

returned to the controller as a weight. Generally, this weight will be 1.

For each eye ray that does eventually intersect with the scene, the direct illumination,
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Ld(x, ~ωo), at the intersection x from the light sources is computed using shadow rays. The

number of shadow rays required, NS, depends on the complexity of the illumination. Area

light sources of a large number of point sources can be accommodated using importance

sampling (Szirmay-Kalos, 1999). The experiments in this dissertation use NS = 8. Note

that the shadow rays for the entire tile are expected to be be highly coherent as they

are traced through the scene, because they share similar origins and direction. This

reasoning is the same as was used in the discussion of tiled direction-binning photon

gather reordering in Chapter 3. The results of tracing all P eye rays and computing the

direct illumination are returned to the controller in individual packets. The composition

and size of these packets is laid out in Table 7.2.

The third task of the ray caster is to trace the final gather rays that will be generated

by the control unit. As was discussed in Chapter 3, tiled direction-binned reordering

will tend to generate final gather rays in an order with similar origins and directions.

Importance sampling will further increase the expected coherence of these rays, by con-

centrating them on a smaller portion of the hemisphere (see Chapter 6). Like eye rays,

the final gather rays are traced until the first non purely specular intersection. The re-

flectance is evaluated at each intervening specular surface, with the product reducing the

accumulated weight sent by the controller.

Direct illumination is not performed, but the BRDF is partially evaluated as before.

Far more final gather rays will be cast than eye rays and shadow rays combined. The

resulting intersection points, partially evaluated BRDF and adjusted weights are sent to

the photon gatherer as requests for indirect photon gathers. The composition and size

of the packets is presented in Table 7.3.

Two tiles are being processed by each rendering chip at any one time. Each packet

contains a one bit flag to establish which tile it belongs to. The ray casting of final

gather rays from the older tile takes precedence over the generation and tracing of eye

rays for the newer tile. This preference helps to establish the guarantee of progress made
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Size Explanation
Valid 1 bit Did this final gather ray actually intersect the scene
Tag 1 bit Which of the two current tiles this packet belongs to
(xo, yo) 1 byte Pixel offset within current tile (2×4 bits)
yi 6 bytes Intersection location (3×16 bits)
~n 4 bytes Surface normal at yi (2×16 bits)
~ωo 4 bytes Direction of viewing ray arriving at yi (2×16 bits)
Wacc 6 bytes Accumulated reflectance on path, RGB (3×16 bits)
WIC 2 bytes Irradiance weight, directly transfered (1×16 bits)
fp(~ωi) SB Partially evaluated BRDF

Table 7.3: Ray caster to photon gatherer packet. These packets are similar to those
returning to the controller, Table 7.2, except: 1) no direct illumination is performed; 2)
instead of the original eye intersection point x, the location of the final gather, yi, is
sent; 3) The value of Wacc provided in the request by the controller is updated with any
intersected surfaces; and 4) an additional weight is transfered directly from the request,
to the transmitted request. The total size per packet is (24 + SB) bytes.

in Section 7.5.3.

7.3.2.1 Computation

The FPGA implementation of the SaarCOR rendered 1024×768 images of interesting

scenes at 13.5 FPS using some portion of the 4 GFLOPS provided by the FPGA chip.

A conservative estimate of the average computation required per ray cast, both eye and

shadow rays, is CRayCast = 330 FLOPs, although the actual number is certainly lower

because they did not utilize 100% of the FPGA resources.

Taking into account both the eye rays and the final gather rays, the entire system

must cast FTP (1 + RFGNFG + NS) = 385 million rays per second during the inter-

active rendering. For the values listed in Table 7.1, this works out to approximately

100 GFLOPS. Considering that multiple rendering chips will be used, only a portion of

this computation need be performed by a reduced version of the SaarCOR architecture

on each rendering chip (see Section 7.4).
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7.3.2.2 Memory bandwidth

The SaarCOR architecture was shown to render approximately 100 million rays per

second using only 1 GB/s of bandwidth to the scene description, including bilinear tex-

turing (Schmittler et al., 2004). For 385 million rays per second, this requires a system

wide bandwidth of approximately 4 GB/s. Spread across multiple chips, this becomes

inconsequential next to the memory bandwidth requirements of photon gathering.

7.3.2.3 Storage

The only internal storage required is the cache used by the SaarCOR architecture to

reduce the memory bandwidth requirements of ray tracing. As described in their paper,

the cache is a specially designed set of mailboxes managed directly by the traversal and

intersection units. The SaarCOR FPGA implementation achieved extremely low external

bandwidth to the scene description using only a total of 75 KB of cache, divided among

several uses.

7.3.3 Controller

The controller handles a wide range of activities. At a high level it communicates with

the host, tracks which tiles are currently being processed, maintains the state of every

pixel and generates the final gather rays using both irradiance caching and importance

sampling. Central to the controller is a large table of information kept about each pixel

of the current tile. A key feature of the design is that requests to other units are sent in

packets with the pixel offsets, allowing them to be matched with the proper pixel when

they are returned, potentially out of order.

As eye rays are generated, cast through the scene, and have their direct illumination

computed, the results are sent to the controller as packets described in Table 7.2. This

data is stored in the central table. Immediately two separate requests are sent to the
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Size Explanation
Tag 1 bit Which of the two current tiles this packet belongs to
Type 1 bit Caustic or importance sampling/Ravg

(xo, yo) 1 byte Pixel offset within current tile (2×4 bits)
x 6 bytes Intersection location (3×16 bits)
~ωo 4 bytes Direction of viewing ray arriving at x (2×16 bits)
Wacc 6 bytes Accumulated reflectance on path, RGB (3×16 bits)
fp(~ωi) SB Partially evaluated BRDF at x

Table 7.4: Controller to photon gatherer packet. This packet is used for two types of
requests, as indicated by the type bit. The requests for caustic gathers have a total size
per packet is (18 + SB) bytes. The importance-sampling/Ravg gathers omit both Wacc
and fp(~ωi) for a packet of 12 bytes.

photon gatherer unit. The first is for a caustic photon gather. The request packet is

described in Table 7.4, and contains mostly a subset of what was originally received from

the ray caster. The second request is for a kNN search to be performed, with the closest

value of Ravg returned along with the computed energy table to be used for combined

importance sampling.

At some later time, the results of these requests will be returned by the photon

gatherer, using the packets described in Table 7.6. The RGB color returned by the

caustic gather will be directly added to the indicated pixel in the central frame-buffer.

As the values of Ravg are returned it becomes possible to begin the irradiance caching

procedure.

The pixels are considered in the order they are received. The small initially-empty

on-chip irradiance cache is consulted to see if there are sufficient useable records currently

in the irradiance cache. If there are, the irradiance caching can be used. However, there

are no irradiance values stored yet. Instead, a linked list is kept for each pixel that will

perform a final gather. All pixels that determine that they will use that pixel’s to-be-

computed irradiance value are added to the list along with an weight. See Chapter 5 for

details.

For those RFG pixels that can not use the irradiance cache, a final gather will be
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Size Explanation
Tag 1 bit Which of the two current tiles this packet belongs to
(xo, yo) 1 byte Pixel offset within current tile (2×4 bits)
x 6 bytes Origin of final gather ray (3×16 bits)
~ωi 4 bytes Direction of final gather ray (2×16 bits)
Wacc 6 bytes Accumulated reflectance on path, RGB (3×16 bits)
WIC 2 bytes Irradiance weight (1×16 bits)

Table 7.5: Controller to ray caster packet. Each generated final gather ray is sent to the
ray caster to be traced throughout the scene. Two weights are included so that upon
return to the controller the results can be directly applied to the frame buffer. The total
size per packet is 20 bytes.

performed using combined importance sampling. The photon gatherer has at this point

returned the information needed to construct the p.d.f. table for incident radiance. Using

the technique of Chapter 6 and the partially evaluated BRDF at x, the energy table is

prepared into a combined p.d.f. table suitable for generating final gather ray directions.

The controller’s next task is to generate, using the reordering algorithms of Chapter 3,

the final gather rays and pass them to the ray caster. A total of PRFGNFG final gather

rays are generated for each tile using the combined importance sampling technique. In

order to apply the tiled direction-binned photon gather reordering, it would be best

to loop over the tile once for each bin and generate just those directions that fit the

current bin. However, this is difficult when using importance sampling because the

bins used by the importance sampling strategy are locally defined to the hemisphere

around the normal. Nearby pixels can easily have greatly different normals. Therefore,

the importance sampling bins can not be used directly in direction-binned reordering.

Instead, the controller generates and stores all PRFGNFG rays, then loops over them

multiple times, sending a portion to the ray caster.

The final gather rays are sent to the ray caster using the packets defined in Ta-

ble 7.5.There are NFG final gather rays in the Monte Carlo integration and each is

attributed a different weight, Wacc. Because it would be difficult to recreate this weight

and expensive to store it until the result of the photon gather is returned the weight
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is sent along in the request packet. This weight also accounts for any attenuation that

might have occurred during the casting of the eye ray, as reported by the ray caster

originally and stored in the central table. Additionally, a single floating point weight,

WIC, is sent. It will be used to properly weight the contribution that this final gather

ray will have to the irradiance value of this pixel.

The final gather photons will be returned out of order because of the hashed reorder-

ing that will be performed in the photon gatherer. Because the packets, described in

Table 7.6, contain the pixel offset and the values have been modulated by the weights

sent with them through the ray casting, they can be added directly to the frame buffer.

If the linked list of pixels dependent on this pixel for an irradiance value is not empty,

then the returned irradiance value will be applied to those pixels accordingly.

7.3.3.1 Computation

Compared to the other units, the jobs of the controller are varied and the computations,

while not great, are not as regular. It is envisioned that instead of dedicated custom-

designed hardware, a general purpose embedded CPU would be used.

Accepting the incoming packets from the ray caster and issuing the initial requests

to the photon gatherer requires no computation, simple the copying of data. The cost

of octree manipulation is highly variable, as it depends on the qualities of the scene and

viewing parameters. The task can be simplified by the recognition that there can be no

more than P records inserted, and far fewer if irradiance caching is effective. The octree

data structure can therefore be replaced by a simple unordered list for small values of P .

Adding a record to the list requires no computation. With a conservative estimate

that all pixels are eventually added to the list, there are on average no more than P
2

entries during each lookup. Before a record is selected for use, it must be checked that it

is closer than a maximum distance and that the normal does not vary too far from that of

the current pixel, for a cost of 5 FLOPs per search record considered. The entire search
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process for all P pixels of the tile therefore requires at most P (5P
2
) FLOPs per tile. More

efficient data structures and search algorithms may be used, but this computation is not

significant compared to the other operations as it occurs only once per tile.

The combined PDF table is created and sampled as described in Chapter 6, at a

cost of PRFG(3k + CJ(4 + CB2) + 7NFG) FLOPs per tile. An additional division and

three multiplications are required per final gather ray to incorporate the probability with

the previously accumulated reflectance and the 1
NFG

term from Monte Carlo integration.

Reordering the gathers then requires only integer comparisons.

When the partial results are returned from the photon gatherer, the indirect and

caustic illumination values are added to the frame buffer with 3 floating point additions,

3P (1 + RFGNFG). The irradiance values are multiplied by the stored wight in each

element of the linked list and then added to the appropriate pixel, 4PRFGLIC , The

computational requirements are summarized in Table 7.7.

7.3.3.2 Storage

The central table in the controller maintains a record for each pixel of the tile. Initially

this contains the information returned by the ray caster, less the direct lighting value and

the now implicit tile and pixel offset fields, for a total of (21+SB) bytes per pixel. To this is

added the RGB frame-buffer, initialized to direct illumination; it accumulates value until

the tile is finished and returned to the host for display. This requires 3×16 bits = 6 bytes

per pixel.

As described above, the irradiance cache is implemented with an unordered list instead

of an octree, due to the small number of potential records. Each record is embedded

in the central tile store and contains the value of Ravg (see Chapter 5), which adds

1×16 bits = 2 bytes per pixel.

Experimentally it has been observed that when reasonable values of εmax are used for

irradiance caching, the linked list of irradiance cache links will have on average LIC = 4
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links per pixel. The linked list needs to store the offset of the dependent pixel, 1 byte,

and the weight, 6 bytes, as well as the link to the next element, 2 bytes, for a storage

cost of 9PLIC bytes. For the expected values from Table 7.1, this is only about 9 KB.

The temporary storage of the final gather rays during reordering requires PRFGNFG

rays each composed of a (θ,φ) pair and a probability of having chosen that direction,

stored as 5×16 bits = 10 bytes. This will require 33 KB for the expected parameter

values. (The value grows to 100 KB if NFG = 100 is required for satisfactory image

quality.)

Although there will be two tiles in progress at any time, requiring the central table to

be duplicated, there will only be a single tile performing final gathers at any one time, so

some structures are only needed once. This brings the total internal storage requirements

of the controller to 2P (27 + SB) + 9PLIC + 10PRFGNFG + 2P .

7.3.4 Photon gatherer

The internal structure of the photon gatherer is shown in Figure 7.3. Inspired by the

GI-Cube architecture (Dachille and Kaufman, 2000), the three types of incoming gather

requests are sorted into a series of queues. Those arriving from the ray casting unit

are for final gathers, and are assigned to a subset of the queues using a hash function

as explained in Section 3.4.3. The simulation results presented in this chapter use 17

queues with 128 slots each for the hashed reordering. Note that the queues are able to

hold only a small portion of the photon gather requests required to render a single tile.

Therefore, only a sliding window of requests are reordered. It is worth noting however

that any specific gather may take a very long time to be processed if its queue is never

the most full. However because of guarantees discussed in Section 7.5.3, at the end of

every tile the hash queues will be emptied, ensuring that every request is processed.

The two types of photon gather requests from the controller are handled differently.
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Figure 7.3: The photon gatherer treats a series of queues as hash buckets to perform
additional sorting on the gather requests. The caustic photon gathers and importance-
sampling/Ravg requests are however given their own queues. A single queue is drained
until empty before another queue is selected. This serves to improve memory cache
efficiency. Several gathers are processed independently. Although a large number of
floating point operations are required, they are very regular and simple.

Two separate queues are provided for each of the caustic photon gather requests and the

importance-sampling/Ravg requests. These requests are given their own queues because

the locations of their requests are very coherent; they take place at the intersection points,

x, of a single tile. Furthermore, the caustic photon gather requests actually are serviced

out of an entirely different photon map, which would severely pollute the cache if mixed

with photon gathers from the indirect map.

Multiple photon gather processors, with a shared cache, work in tandem to process

the requests stored in a single queue. When there are no more entries in the currently

selected queue, the sizes of all queues are compared and the one that has the most

requests is selected. In order to eliminate one cause of deadlock the queues holding final
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gather requests are given priority over the queues holding both caustic requests and the

importance-sample/Ravg requests, regardless of how full the queues are (see Section 7.5.3).

Those indirect photon gathers that belong to a final gather are processed as follows.

First a kNN search is performed by traversing the indirect photon map, stored as a

kd -tree. This traversal is based directly on the technique laid out in the SaarCOR

architecture (Schmittler et al., 2002). The direct traversal of the kd -tree is performed

using integer operations. This results in a stream of candidates for the kNN search. Each

potentially usable photon is checked to see if it is within the maximum radius and if the

normal is close enough to the normal at x. If the photon is valid, it is inserted into the

priority list maintained using the parallel sorter introduced in the GI-Cube (Dachille and

Kaufman, 2000).

When the final k photons have been identified, the energy they carry is reflected to

the viewed direction by finishing the evaluation of the BRDF at yi (begun in the ray

casting unit). This result is the amount of light reflected from this particular photon

gather location towards the original intersection point x. This value is returned to the

controller in two forms after being multiplied with the two weights provided in the request

packet, Table 7.3. The first represents the contribution that this value has on the actual

pixel performing this final gather. The second is the weight that this reflected value

should have on the estimate of the irradiance value at the same pixel. This will be used

by those other pixels that are interpolating the irradiance of this pixel.

Caustic photon gather requests are handled in a similar fashion. However they use the

caustic photon map for their kNN search and do not generate partial irradiance values.

The third type of photon gather request performs the kNN search in the indirect map and

then performs two quick operations. First, an energy table, as described in Chapter 6,

is built. Secondly, the closest photon with a pre-computed Ravg value is found, this is

easy as the kNN search had to order the photons already. The results of all requests are

returned to the controller for processing, using the packets described in Table 7.6.
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Size Explanation
Tag 1 bit Which of the two current tiles this packet belongs to
Type 2 bits Final gather, caustic or importance-sampling/Ravg

(xo, yo) 1 byte Pixel offset within current tile (2×4 bits)
FPpart 6 bytes Partial contribution to frame-buffer, RGB (3×16 bits)

Epart 6 bytes Partial contribution to irradiance value, RGB (3×16 bits)

Ravg 2 bytes Average distance to scene, (2×16 bits)
pLi

2CJ Incident radiance energy table for combined importance sampling

Table 7.6: Photon gatherer to controller packet. The packet size varies depending on the
type of gather request that has been serviced. A caustic gather omits Epart, Ravg and
pLi

for a packet size of 10 bytes. The gathers that are part of a final gather omit Ravg

and pLi
for a total of 16. Finally the importance-sampling/Ravg gathers omit FPpart

and Epart for a total of 6 + 2CJ .

7.3.4.1 Computation

To find k photons in a photon map with NPM photons, O(k + ln(NPM)) photons must

be examined (Jensen, 2001). Experiments showed that a reasonable rule of thumb is

that 1.2k photons must be examined. 13 floating point operations are required to check

against the radius and normal. The photons are then partially sorted to select the k

closest photons that are acceptable. The cost of choosing the nearest k=100 photons, is

approximately CG = 13(1.2k) + 1.2klog2(1.2k)) = 2, 389 FLOPs.

Both caustic and indirect photon gathers must compute the amount of light reflected

back along the viewing ray for each chosen photon. Since the BRDF has already been

partially evaluated by the ray caster, only CB2 = 10 FLOPs are required for each gather

now that the incident radiance direction, ~ωp, is known. In indirect gathers, the two

separate weights are multiplied at the cost of 2 FLOPs. (Caustic gathers only require 1

multiplication as they are not involved with irradiance caching.)

The computational cost for performing an indirect gather, CG + k(CB2 + 2) FLOPs,

becomes significant in the context of the large number of indirect gathers performed,

FTPRFGNFG. For importance-sampling/Ravg gathers, instead of computing the BRDF,

the flux carried by each photon is simply accumulated in a table as described in Chapter 6.
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(The assignment of each photon to a bin is performed by an inexpensive integer table

lookup.)

The regular nature and high performance requirements of the photon gatherers leads

to the decision to implement them with dedicated hardware. The kd -tree traversal is

patterned on the SaarCor’s architecture. Because the gathers are expected to be highly

coherent, the memory accesses are expected to be fulfilled primarily by the cache, allowing

the traversal unit to be highly utilized. The partial BRDF evaluation, however, will be

implemented in a simple programmable processing element in order to support a user

defined BRDF. The table lookup of photons to energy table locations can be performed

very cheaply using integer compares in dedicated hardware.

7.3.4.2 Storage

There are two large sources of storage requirements in the photon gatherer unit. The first

is the large set of queues used to reorder the gather requests. There are 19, each of which

holds 128 requests. Each request requires the storage of the complete packet sent from

either the ray caster or the controller. The larger of these two require (24 + SB) bytes.

The queues therefore use 19×128×(24 + SB) bytes, or 88 KB for the nominal value of

SB.

The simulation results presented throughout this chapter use a single shared memory

cache in the photon gatherer of 128 KB. Large caches were shown in Chapter 3 to reduce

bandwidth requirements for particularly complicated scenes, but 128 KB provided most

of the potential benefit for the scenes investigated in this dissertation.

7.3.4.3 External bandwidth

The photon gather unit is, of course, the source of the tremendous bandwidth require-

ments. Multiple gather units work in unison to drain a single queue at a time. This

increases the coherence of the direction-binned importance-sampled gather locations. It
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Operation FLOPs per tile
Ray casting P (1 + RFGNFG + NS)CRayCast
Partial evaluation of BRDF P (1 + RFGNFG)CB1

Caustic gather P (CG + k(CB2 + 1))
IS/Ravg gather P (CG + k)
Indirect gathers PRFGNFG(CG + k(CB2 + 2))
Irradiance cache decisions 5P (P/2)
Compute combined c.d.f. PRFG(3k + CJ(CB2 + 4))
Generate final gather rays 7PRFGNFG

Accumulate gathers 3P (1 + RFGNFG)
Accumulate irradiance links 4PRICLICNFG

Table 7.7: A summary of the computational cost of using photon mapping to generate
a single tile with the architecture laid out in this section in terms of the notation laid
out in Table 7.1. The most significant terms are those of ray casting and the indirect
gathers.

is particularly important for the two special queues. The caustic requests are in an en-

tirely separate photon map, and would otherwise pollute the cache. The requests stored

in the importance sample queue will all generally be very close to each other due to the

way eye rays intersect the scene. The bandwidth generated by the architecture is studied

in Section 7.4.

7.3.5 Summary of costs

The architecture laid out in this chapter requires significant resources beyond external

memory bandwidth: the computational requirements in the various units, the commu-

nication rate between each unit and the required on-chip storage must all be feasible

with predicted semiconductor technology. In this section these various requirements are

summarized for the processing of a single tile. Section 7.4.3 uses these formulas, along

with experimental results for external bandwidth, to determine the maximum number of

tiles that a single rendering chip can render. That value in turn leads to the number of

rendering chips and boards required to display images at 30 frames per second.

Table 7.7 lists the computational requirements, in FLOPs, of rendering a single tile.
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Link Packet Size Count
Raycaster—Controller SB + 28 bytes P
Raycaster—Gatherer SB + 24 bytes PRFGNFG

Controller—Raycaster 20 bytes PRFGNFG

Controller—Gatherer
Caustic gathers SB + 18 bytes P
IS/Ravg gathers 12 bytes P

Gatherer—Controller
Caustic gathers 10 bytes P
IS/Ravg gathers (6+2CJ) bytes P
Indirect gathers 16 bytes PRFGNFG

Table 7.8: A summary of the inter-unit bandwidths in the architecture laid out in this
section to generate a single tile in terms of the notation laid out in Table 7.1. The most
significant links are those handling the final gather photon gather requests.

Due to the large number of final gather rays, even when using irradiance caching and

importance sampling, the two highest cost operations are ray casting and the indirect

photon gathers. Fortunately, these two operations are both highly regular and require

no communication. This enables the architecture to take full advantage of the increases

in semiconductor performance, as its requirements are more like a GPU than a CPU.

The architecture is designed on the assumption that all rendering units are on the

same die. This assumption permits high bandwidth communication between the units

at low cost. Table 7.8 summarizes the expected bandwidths between all units. These

values are maximums. For example, if an eye ray does not intersect with the scene then

final gather rays will not be generated for that one pixel. The links that carry the most

data are those that are involved with the final gathers. No attempt has been made to

compress the interconnection between units.

The rendering algorithms laid out in this chapter require intermediate data structures

which must be stored on-chip if the external memory bandwidth is to be kept to a

minimum. Additionally, the memory caches, used to reduce memory bandwidth, must

also fit on the die. Table 7.9 enumerates these costs. Each rendering chip is allowed

to have two tiles being processed at the same time. The storage implications of this
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Location Purpose Storage Size
Ray caster Memory Cache 75 KB
Controller Irradiance Cache 2P
Controller Irradiance Links 9PLIC

Controller DirBin Lists 10PRFGNFG

Controller Central Table 2P (27 + SB)
Photon gatherer Hash Queues 19×128(24 + SB)
Photon gatherer Memory Cache 128 KB

Table 7.9: A summary of the on-chip storage requirements of the architecture laid out
in this section in terms of the notation laid out in Table 7.1. The most significant
usage are the caches and reordering queues in the photon gatherer, however compared to
commodity chips with 4-10MB on on board cache these values are reasonable. Allowing
two tiles to be in process at the same time requires that there be two copies of the central
table.

are that the central table in the controller must be duplicated. For reasonable values of

the parameters, such as those found in Table 7.1, these on-chip storage requirements are

reasonable, less than the multiple megabytes of cache used on high end CPUs.

7.4 Simulation and analysis

The architecture presented in Figure 7.2 has been validated and analyzed using a func-

tional simulator built on the pbrt rendering system (Pharr and Humphreys, 2004). Al-

though the core libraries and routines were used, the standard top-level rendering loop

was replaced with a collection of functional units corresponding to the ray caster, con-

troller and photon gatherer. The pre-processing of the photon map was extended to the

calculation and storage of Ravg for irradiance caching.

Communication between the units was constrained to the exchange of packets, as

defined in Tables 7.2 to 7.4. The internal storage of the units was limited to that presented

in Table 7.9. Each unit has been simulated to a different level of detail in order to show

the feasibility of the concept and that it has the correct interaction with the other units.

The ray caster is a reduced implementation of the SaarCOR architecture. As that
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architecture was validated in their second paper (Schmittler et al., 2004), the performance

figures are adopted from their work, and core pbrt routines are utilized to perform ray

casting. Their performance numbers, in terms of memory bandwidth and computation,

are actually conservative as the needs of the rays that are cast in this architecture are

strongly coherent (see Section 7.3.2).

The photon gatherer simulation concentrates on providing an accurate simulation of

the cache behavior of the memory accesses. The memory bandwidth is measured by

intercepting all memory references to the photon map and simulating a cache. (Using a

process identical to that of Section 3.2.) The hashed photon gather reordering queues

are augmented with the caustic and importance-sampling/Ravg queues, as described in

Section 7.3.4. A single photon processor was used during simulation.

The simulation of the control unit focuses on the detailed and complex coordinating

role that it plays in the architecture. The primary outcome of its simulation is the

validation that it has the correct information, when needed, in order to generate the final

gather rays. The irradiance cache process was simplified using the reduced data structure

described in Section 7.3.3.

After describing the characteristics of the specific scenes used during testing, the

measured memory bandwidth requirements are presented along with the calculated com-

putational requirements. It is these two factors that limit performance by establishing

an upper bound on the number of tiles per second that a single rendering chip can render

for each scene. This information is used to determine the number of rendering chips

required to meet the interactive goal of 30 frames per second for the test scenes.

7.4.1 Test scenes

Performance is highly dependent on the scene being rendered, the complexity of the

geometry, the complexity of the illumination, and how effective performance enhancing
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techniques such as irradiance caching, importance sampling and gather reordering can

be. The scenes from Chapter 1 provide the basis for a set of experiments in this section to

determine the expected performance of some typical implementations of the architecture.

The first scene is the modified Cornell box used throughout the dissertation. As

Figure 7.4a demonstrates, an acceptable image can be generated using only 33 final

gather rays per pixel without irradiance caching, importance sampling or photon gather

reordering. In Figure 7.4b the three techniques are applied. The irradiance cache is

highly effective, 62% of the pixels avoid the final gather process completely. Together

with photon gather reordering the bandwidth required to generate a single image is

reduced from 50 GB to 7.8 GB.

There is a very strong direct illumination component in the Cornell box. Except for

points in shadow, more radiance arrives from the overhead light than as the result of

reflections. As previously discussed, it is much more difficult to create low-noise images

for scenes that have predominately indirect illumination. For the bottom row of Figure 7.4

the overhead light has been replaced with a white diffuse circle, with a spot light located

below, targeted perfectly on the circle. The image in Figure 7.4c required 300 final gather

rays per pixel and still is not acceptable. In Figure 7.4d however importance sampling

allows for fewer samples to produce an image of greater quality with less than one tenth

the bandwidth requirements

Figure 7.5 shows a box with a glossy floor and a textured back wall for a set of similar

experiments. Because the camera has focused on the glossy floor, irradiance caching is

not very effective. Only 8% of the pixels are able to make use of the irradiance cache.

Combined importance sampling is, however, quite effective. In both of the cases of direct

and indirect illumination the number of samples per pixel can be reduced by a factor of

three while improving the quality of the generated images. The bandwidth requirements

are also reduced by over an order of magnitude when all three techniques are applied.

The Sponza atrium, shown in Figure 7.6, naturally has only indirect illumination.
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(a) Direct illumination, no optimizations, 50 GB
NFG = 33

(b) Direct illumination, all optimizations, 7.8 GB
NFG = 33, εmax = 0.035 (RIC = 62%)

(c) Inirect illumination, no optimizations, 391 GB
NFG = 300

(d) Inirect illumination, all optimizations, 23 GB
NFG = 200, εmax = 0.025 (RIC = 46%)

Figure 7.4: The top row shows the modified Cornell box with direct lighting. In the
bottom row, the light has been replaced with a reflected spotlight leaving only indirect
illumination, more difficult to render. In both cases the use of irradiance caching, im-
portance sampling and photon gather reordering enables images of higher quality to be
generated using substantially less memory bandwidth.
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(a) Direct illumination, no optimizations, 158 GB
NFG = 100

(b) Direct illumination, all optimizations, 10.5GB
NFG = 33, εmax = 0.035 (RIC = 8%)

(c) Inirect illumination, no optimizations, 426 GB
NFG = 300

(d) Inirect illumination, all optimizations, 22 GB
NFG = 100, εmax = 0.025 (RIC = 8%)

Figure 7.5: When the camera is focused on a glossy reflector, most pixels are unable
to use irradiance caching. Combined importance sampling, together with photon gather
reordering, however is able to significantly reduce the memory bandwidth requirements.
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(a) Direct illumination, no optimizations, 367 GB
NFG = 200

(b) Direct illumination, all optimizations, 10.5
GB
NFG = 100, εmax = 0.063 (RIC = 36%)

Figure 7.6: With the exception of the glossy red reflector, the Sponza atrium is purely
diffuse and irradiance caching is an effective technique. For those final gathers that must
be performed, combined importance sampling is effective at generating final gather rays
that find the central, well-lit atrium. Together the techniques reduce the bandwidth.

Although the surfaces are all purely diffuse, except for the red reflector, combined impor-

tance sampling is still able to provide a significant boost by generating more sample rays

out towards the central courtyard which receives sunlight. Irradiance caching is fairly

effective, and altogether the memory bandwidth requirements are reduced by a factor of

forty.

7.4.2 Single chip performance

The performance of a single chip implementation of the architecture is potentially limited

by either bandwidth or computational resources. Performance can be measured as the

number of tiles of a given scene that can be rendered in one second. Table 7.10 brings

the measured memory bandwidth results from the previous section together with the

calculated computational requirements of generating each test scene (Table 7.7).
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Scene GB
image

tiles
sec

GFLOPs
image

tiles
sec

Modified Cornell (Direct) 50 1,843 37 13,838
Modified Cornell (Direct, optimized) 7.8 11,815 16 32,000
Modified Cornell (Indirect) 391 236 312 1,641
Modified Cornell (Indirect, optimized) 23 4,007 115 4,452
Glossy floor (Direct) 158 583 106 4,830
Glossy floor (Direct, optimized) 10.5 9,701 34 15,059
Glossy floor (Indirect) 426 216 312 1,641
Glossy floor (Indirect, optimized) 22 4,189 98 5,224
Sponza atrium 265 348 209 2,450
Sponza atrium (optimized) 24 3,840 69 7,420

Table 7.10: Measured in tiles per second, the maximum performance of a rendering chip
varies by test scene and choice of optimizations. A 90 GB/s memory connection is able
to render at least 3,800 tiles per second for each test scene when all optimizations are
used. In every case the 500 GFLOPS capability of the single chip was able to support
the same tile rate as the memory.

There are 1,024 16×16 tiles in each 512×512 image. Therefore, a rendering chip

with 90 GB/s of memory bandwidth is able to render at least 3,800 tiles per second for

each test scene, when all the optimizations (irradiance caching, importance sampling and

photon gather reordering) are used.

The only case where the 500 GFLOPS capability of the single rendering chip is unable

to support the performance allowed by the memory is the modified Cornell box with

indirect lighting and all optimizations. In this case photon gatherer reordering was

particularly well suited to the scene, reducing memory requirements by a factor of twenty.

It is now particularly clear that irradiance caching, importance sampling and pho-

ton gather reordering should be used. Not only were the images of higher quality, but

performance was significantly better in terms of memory bandwidth and computational

cost.
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Frames/Sec

Scene tiles
sec 1Chip 2Chips 4Chips 8Chips

Modified Cornell (Direct, optimized) 11,815 12 23 46 92
Modified Cornell (Indirect, optimized) 3,765 4 7 15 30
Glossy floor (Direct, optimized) 9,701 9 19 38 76
Glossy floor (Indirect, optimized) 4,180 4 8 16 33
Sponza atrium (optimized) 3,840 4 8 15 30

Table 7.11: Based upon the maximum performance, in tiles per second, for each optimized
scene in Table 7.10, the system performance for multi-chip systems is presented here.
Those configurations achieving at least 30 frames per second are shown in bold.

7.4.3 Expected system performance

The architecture permitted no communication between rendering chips or between tiles.

A consequence is that the system scales in terms of rendering chips. The only limiting

factor is the number of tiles available for processing, and the host interconnect. As was

discussed in Section 7.2.2, the host interconnect has very low bandwidth requirements.

The system can certainly scale to the number of rendering chips that can be reasonably

inserted into a host workstation. The results of this linear scaling are shown in Table 7.11.

When using all the optimizations, all the test scenes can be rendered at 30 frames per

second or higher using eight rendering chips configured on two boards with four chips

each. Such an implementation can fit inside of a standard desktop workstation.

7.5 Discussion

A desktop-sized implementation of the architecture has been shown to be able to provide

the desired interactive performance. Using irradiance caching, importance sampling, and

photon gather reordering in combination, off-chip memory bandwidth, computational

requirements, on-chip intra-unit bandwidth, and internal storage are all practical on

near future semiconductor technology.

In this section the architecture is examined at a higher level, concentrating on concerns
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such as load balancing, scalability, avoidance of deadlock and the limitations imposed by

design choices along with some potential design alternatives.

7.5.1 Load Balancing

Any parallel system must establish a method for distributing work among its processors.

The goal is to ensure that the full potential of a system is being used. There are two

levels on which to think about load balancing in this architecture.

The first is the allocation of screen tiles to rendering chips. Images are often highly

uneven in their geometric and illumination complexity. The result is that some tiles will

take significantly longer than other tiles to compute. However, each tile is so expensive

to render that the task allocation can be performed dynamically. A simple, greedy

allocation process suffices. If a rendering chip is given a series of relatively easy tiles, it

will finish them quickly and be assigned more while other units work harder on fewer

tiles. Although there is plenty of bandwidth to the host, latency could be an issue as the

CPU might be busy. Each chip therefore maintains a very short list of assigned tiles.

Secondly, within each chip, the load balance question is with regards to the utilization

of the three components. The photon gatherer needs enough computational power to fully

saturate the available bandwidth to off-chip memory, but no more. The other units need

only be as powerful as they need to be to keep the photon gatherer busy. With two tiles

being processed at any given time, if the ray caster and controller get ahead of the photon

gatherer they can prepare requests for the gatherer as soon as it finishes the previous

tile.

7.5.2 Scalability

The architecture is scalable in several dimensions. Performance for a fixed scene can be

linearly improved by the addition of extra rendering chips, until communication or task
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allocation barriers arise. However, because there is no communication allowed between

tiles, the tiles can be processed independently on separate rendering chips, which are also

not permitted to communicate with each other. This is a direct advantage of rendering

with tiles, reordering with tiles, and using independent irradiance caches per tile with no

global sharing of results.

Because of the low bandwidth requirements between the rendering chips and the host,

several workstations connected in a local area network to a single host would be able to

support a large image, displayed interactively, of scenes where irradiance caching and

importance sampling were not particularly effective. Although such a machine would be

quite expensive, the implementation would be simple and not require custom cabinets,

power supplies, or interconnects.

Using similar a argument, the architecture is predicted to scale to larger image reso-

lutions. The only effect that will be noticed with the increase in the number of tiles to

be rendered is that if the field of view is kept constant there should be a mild increase in

the number of pixels able to use the irradiance cache, RIC , because the pixels will project

closer to each other in the scene.

A consequence of the full replication of the scene and photon map to the private

memory bank of each rendering chip is that the scene complexity is restricted to memory

available. The implementation proposed in this chapter provided 256 MB, to be shared

among geometry, texture and photon maps.

7.5.3 Progress and deadlock

A parallel system is said to be deadlocked if any component is waiting for an event that

will never occur (Chalmers et al., 2002). In the absence of deadlock there is said to be

progress. The architecture presented in this chapter presents a few areas of concern where

deadlock could potentially occur. First, the potential for deadlock when only one tile
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is being processed at any time on a rendering chip is considered. Then, the additional

complications of two tiles being processed concurrently is discussed.

The raycaster, controller and photon gatherer are connected by queues of bounded

size. If the queue between a unit A and a unit B becomes full, unit A will be unable to

perform any additional processing until unit B has partially drained the queue. This will

cause deadlock only if the units have a circular dependency. As an example, the photon

gatherer sends the results of final gather rays to the controller. If the controller were

still generating the final gather rays for this tile and was unable to process the photon

gatherer’s results, then the photon gatherer would be blocked from performing any more

work. This would in turn prevent the photon gatherer from accepting any more final

gather requests from the ray caster, which would be unable to absorb final gather rays

from the controller.

A simple answer to this problem, and all the others like it in the architecture, is

that each unit preferentially handles those requests that are the closest to contributing

to the frame buffer. For the photon gatherer this means that requests for caustic and

importance-sample gathers have a very low priority. The ray caster will preferentially cast

final gather rays over new eye rays, and the controller will process incoming results from

the photon gatherer before accepting packets from the ray caster. This approach can be

made more efficient in the controller by the addition of a small dedicated piece of hardware

to handle the blending of incoming final gather results, leaving the embedded CPU free

to generate final gather rays. Further experiments need to be conducted to establish that

this preferential treatment does not reduce utilization of upstream components.

If multiple tiles are being processed at the same time on a single rendering chip

(the architecture described in Section 7.3 has two tiles in process at a time), deadlock

can occur if the newer of the tiles is allowed to block a resource needed by the older

tile. This architecture avoids this problem by not starting a new tile until all of the

first tile’s primary eye rays have been generated, cast, and the caustic and importance
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sample/irradiance requests generated and sent to the photon gatherer. This does not

reduce performance as long as generating and processing final gather rays remains teh

dominate cost.

7.5.4 Limitations

There are several limitations to the overall system design, the specific architecture pre-

sented here, and its evaluation. The most serious is the requirement that the photon

map be pre-computed by the host and broadcast to each rendering chip. Depending on

host speed, this precludes dynamic scenes with moving objects or light sources; only the

camera is allowed to move. The cost of generating a photon map is significantly less

than that of rendering from it using final gather visualization, so it is possible that an

architecture could incorporate this task directly.

Although the architecture is not itself limited to Lambertian and Phong BRDFs, the

simulation and performance analysis is. There are two ways that the performance of the

system is sensitive to the choice of allowed BRDF. The computation costs of the BRDF

can be significant, but it is the cost of finishing the evaluation of the BRDF, CB2 FLOPs,

that is particular important as it is part of the photon gather cost for final gathers.

Secondly, the storage size of the partially evaluated BRDF, SB bytes, not only changes

the size of the packets emitted by the ray caster, but also the storage that the controller

and photon gatherer hold.

One area where the architecture does not scale well is with increases in either scene

complexity or photon map size. It is currently required that both of these data structures

be fully replicated to the dedicated memory of each rendering chip. Relaxing this would

require a complete redesign of the architecture.

Only a functional simulation was constructed. Each unit was written in a high level

language, accepts the specified input and emits the described output. Every operation
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performed was justified in terms of analyzed computation cost, but was implemented

with general purpose libraries. No effort was made to be cycle accurate, so there is no

simulated timing data. A logical extension of this research would be a low level simulator,

or implementation of key units on a FPGA to ensure validity of the design.
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CHAPTER 8

SUMMARY AND CONCLUSION

The growing demand for realistic image synthesis using global illumination is clear. Un-

fortunately, the interaction of light, in a general way, with multiple surfaces between

the light source and the viewer is very costly to simulate, as it involves a potentially

unbounded number of computations. This problem is particularly acute for interactive

applications such as video games and training simulators. These applications must gen-

erate a new image dozens of times a second.

The research presented in this dissertation provides one possible solution to the prob-

lem by providing a novel hardware architecture that interactively renders scenes using

the photon mapping algorithm. The photon mapping algorithm accurately renders many

of the visual effects that are expected in real scenes. However, the resources it requires

have precluded an interactive implementation of the full algorithm. In my dissertation,

I have addressed this issue by presenting several techniques that reduce the resource

requirements. A hardware architecture implementing this techniques was shown to be

promising, and presents a potential direction for the next generation of graphics hard-

ware.

8.1 Research Contributions

The research presented in this dissertation has made several contributions. These include

novel techniques to dramatically reduce the bandwidth cost of photon mapping. These



techniques were then combined into a feasible hardware architecture, which could be

built in the next three years, that supports interactive applications.

Specifically, the research contributions of my work include:

Low bandwidth photon gathers using reordering: I presented photon gather re-

ordering in Chapter 3. This technique generates the exact same images as the

standard photon mapping algorithm, but reorders the computations such that the

memory accesses become more coherent. The higher locality of reference increases

the efficiency of a cache, reducing the bandwidth requirements.

Several reordering algorithms were introduced and compared. While the Hilbert

reordering, applied to the entire image, reduced bandwidth requirements by four

orders of magnitude, it required a prohibitive amount of intermediate storage. The

combination of the tiled direction-binning generative reordering with the hashed

deferred reordering is practical, easy to implement and highly effective, achieving

over an order of magnitude reduction in bandwidth requirements, 357 GB to 31 GB

for the Sponza atrium image.

Tiled irradiance caching with pre-computed radius for split-sphere heuristic:

Irradiance caching reduces the number of final gathers by interpolating previously

computed values. Although it should only be used on purely diffuse surfaces, it can

be highly effective at reducing the computation and memory bandwidth require-

ments of photon mapping for some scenes. The conventional irradiance caching

algorithm, however, imposes a sequential dependency between the pixels of an im-

age, preventing efficient parallel execution.

In Chapter 5, I laid out two solutions that when implemented together allow irra-

diance caching to be used in a parallel rendering system. The first used a separate

irradiance cache for each tile, eliminating communication between processors. The

second stored a pre-computed value for Ward’s split-sphere heuristic, permitting
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the combination of irradiance caching with photon gather reordering. The mod-

ified irradiance caching algorithm was able to avoid up to half of all gathers in

compatible scenes.

Combined importance sampling: Global importance sampling, which generates final

gather rays in proportion to prior knowledge of both the incident radiance and the

surface reflectance, reduces the number final gather rays required to generate an

image. Previously published sampling algorithms maintained the prior knowledge

in two separate sampling strategies. Although providing superior sampling, this

raises costs.

Combined importance sampling was presented in Chapter 6 as a technique that

lowers computational and storage costs by merging multiple probability distribution

functions together, leaving only a single sampling strategy. Combined importance

sampling was demonstrated to be effective in common scenes while being cheap to

compute. For the test scenes shown in Chapter 7, with complex illumination and/or

glossy surfaces, the number of final gather rays are reduced by approximately one

third while generating higher quality images.

A complete photon mapping architecture: In Chapter 7, these three techniques

were combined into a complete hardware architecture, which was then function-

ally simulated. It was shown that this architecture would be capable of rendering

scenes with complex illumination from a static pre-computed photon map. A tar-

get implementation, using two expansion boards in a workstation with a total of

8 replications of a custom designed chip, would be expected to render images of

the test scenes at rates of at least 30 frames per second. As the scene geometry,

textures and photon map are replicated to each chip, they must fit in the dedicated

memory, proposed at 256 MB. This architecture was shown to be feasible, for the
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expected semiconductor technology of 2010, by measuring and/or calculating the

external bandwidth, computation, inter-unit bandwidth and storage requirements.

8.2 Limitations

The techniques and architecture presented in this dissertation are promising, but there

are limitations that should be addressed in future research. The first set of limitations

address the type of application and scenes that may be efficiently rendered. Because

the photon map is pre-computed and broadcast to each rendering chip, the scene and

the illumination must remain static. This presents an obstacle to applications where the

dynamic motion of objects, not just the viewpoint, is required.

A second limitation on the scenes is the permissible size of the scene representation.

The entire scene including material properties and textures must fit in the relatively

small, dedicated memories of each rendering chip. This will be a concern for larger

environments or scenes highly detailed with geometry or textures.

Scenes with many glossy surfaces or complicated geometry are unable to obtain a

significant benefit from irradiance caching. Outdoor natural scenes with leafy plants and

glass and chrome office interiors, for example, will require more final gathers. In contrast,

importance sampling works best when the surfaces are glossy or the illumination localized

to a few regions of the visible hemisphere. The current system relies on the operator to

select the number of final gather rays to be generated. An adaptive system would be

beneficial, but requires that some computations be fully resolved before determining if

others should be computed. It is therefore unclear how to incorporate adaptive sampling

with photon gather reordering.

A further limitation of combined importance sampling, as presented in this disser-

tation, is using a tabulated probability distribution function. High frequencies in the

surface reflectance or incident radiance functions are lost or aliased. This reduces the ef-
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ficiency of the sampling strategy. Research should be performed on applying the general

idea, of merging multiple sampling strategies into one, to p.d.f.s that can represent sharp

functions.

The architecture simulation was only performed at the functional level. A cycle-

accurate simulation of an actual hardware design would provide not only higher confi-

dence in the architecture but also a fuller sense of the cost of implementation, performance

of operation, and correctness of design.

8.3 Future Work

The simulated performance of the architecture presented in Chapter 7 is very promising

and suggests a possible direction for fifth-generation graphics hardware architectures.

However, the limitations just discussed show that there is more work that can and should

be performed to increase the quality and efficiency of realistic image generation. In this

section, I provide an brief glimpse of some of the areas I feel should be addressed, both

in and outside the context of the architecture.

Improved gather reordering algorithms: There are alternative algorithms for re-

ordering to be investigated. They must decrease memory bandwidth without in-

curring a significantly higher cost elsewhere in the system. An interesting possibility

leverages information already present in the architecture. To accelerate ray cast-

ing, the scene geometry is stored in a data structure which subdivides space. This

information could be harvested during ray traversal and used to reorder photon

gathers.

A second approach is to make direct use of the Hilbert reordering by adapting the

cache-efficient algorithm presented by Liu and Snoeyink for hardware implemen-

tation (Liu and Snoeyink, 2007). As with all fully deferred reorderings however,
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the entire list of photon gather requests must be computed and stored. For large

tile sizes this will require more intermediate storage than is practical to keep on-

chip, the benefit of streaming the requests to memory must be weighed against the

reduction of bandwidth allocated to photon gatherer.

Radiance caching: Radiance caching, like irradiance caching, is a process that reduces

the number of final gathers by interpolating previously computed values (Křivánek

et al., 2005). However, unlike irradiance caching, it can be used on glossy surfaces,

increasing the proportion of scenes that can significantly benefit from the reduction.

The tradeoff is an expensive compression step after each final gather to reduce

the storage costs until future pixels determine if they can use this value in their

interpolation.

When all final gathers are performed in parallel, as is done for a tile in the architec-

ture presented in Chapter 7, an alternative emerges. Each photon gather request

could carry a list of all the pixels that intend to interpolate this result, along with

their partially evaluated BRDF values. The effect would be the same as having

performed a full final gather for each pixel except that the final gather directions

are correlated, adding a bias also present in standard irradiance caching. Although

the computational requirements will not be reduced, bandwidth to the photon map

should be significantly reduced.

Other applications of combined importance sampling: The combined importance

sampling technique is notable for its simplicity. Following the example of Jensen it

could be implemented in a path-tracing renderer which uses the photon map only

for importance sampling (Jensen, 1995).

As used in this dissertation, combined importance sampling requires that each sam-

pling strategy be expressed as a table. For many functions with sharp features, a

tiny light source for example, this requires a tradeoff between an inefficient stor-
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age mechanism or loss of previously known information, reducing the quality of

generated samples. Although the probability distribution functions used in this

dissertation were represented as tables, the technique could be applied whenever

the p.d.f.s are expressed using the same basis functions. A method that shows

promise is to express the probabilities with spherical harmonics, which are linearly

fit, and average the components.

Further development of the architecture: The architecture in Chapter 7 has only

been functionally simulated. A lower level simulation should be performed in order

to directly measure expected performance. This will increase confidence in the

completeness of the architecture and suggest improvements.

A potentially serious limitation of the architecture is the current requirement for

strict replication of the entire photon map and scene among all rendering chips.

This places a hard limit on the complexity of the scene that can be rendered, re-

gardless of the total amount of memory in the machine. While processing each tile,

the final gather rays may need to be cast throughout the entire scene and photon

gathers performed throughout the entire photon map. This makes it inefficient to

use the host as a large virtual memory.

One possible solution, worth further examination, is to relax the rule against com-

munication between rendering chips. As final gather rays leave a region of the scene

they could be routed to a rendering chip which holds that portion of the scene. Load

balancing will however become an important issue, as a single overloaded rendering

chip could slow a large machine dramatially.

The architecture as presented is also limited to static scenes and illumination.

Many interactive applications require support for the dynamic motion of objects

in a scene. Recently there has been work on supporting interactive ray casting

in hardware (Woop et al., 2005). However, dynamic objects will also effect the
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illumination in a scene. The photon map must be either recreated from scratch

or updated every frame. The overall cost of creating a photon map is not high

compared to the cost of image rendering. It should be possible to extend the

hardware architecture to handle this task directly, instead of relying on the host.

8.4 Conclusion

It is not yet obvious which fundamental rendering algorithms will emerge in commercial

fifth-generation graphics hardware architectures. In this dissertation, I have presented

one possible system based on the photon mapping algorithm. The general approaches

from high performance computing that I have used, such as conserving memory band-

width by reordering computations, can be applied to other existing global illumination

algorithms. Alternatively, there is a compelling argument for new global illumination

algorithms designed from the outset for a finely-grained parallel implementation, recog-

nizing the high cost of memory accesses.

As dedicated architectures for more of these algorithms are developed, it may become

obvious that some specialized processing elements, such as the reordering queues and the

kd -tree traversal units, are common in order to achieve high performance. The trend in

current GPUs is towards greater programability. However, the addition of these common

processing elements could provide an evolutionary transitional step towards a single high

performance architecture supporting multiple global illumination algorithms.
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