8 research outputs found

    On the Integral of Fractional Poisson Processes

    Full text link
    In this paper we consider the Riemann--Liouville fractional integral Nα,ν(t)=1Γ(α)0t(ts)α1Nν(s)ds\mathcal{N}^{\alpha,\nu}(t)= \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1}N^\nu(s) \, \mathrm ds , where Nν(t)N^\nu(t), t0t \ge 0, is a fractional Poisson process of order ν(0,1]\nu \in (0,1], and α>0\alpha > 0. We give the explicit bivariate distribution Pr{Nν(s)=k,Nν(t)=r}\Pr \{N^\nu(s)=k, N^\nu(t)=r \}, for tst \ge s, rkr \ge k, the mean ENα,ν(t)\mathbb{E}\, \mathcal{N}^{\alpha,\nu}(t) and the variance VarNα,ν(t)\mathbb{V}\text{ar}\, \mathcal{N}^{\alpha,\nu}(t). We study the process Nα,1(t)\mathcal{N}^{\alpha,1}(t) for which we are able to produce explicit results for the conditional and absolute variances and means. Much more involved results on N1,1(t)\mathcal{N}^{1,1}(t) are presented in the last section where also distributional properties of the integrated Poisson process (including the representation as random sums) is derived. The integral of powers of the Poisson process is examined and its connections with generalised harmonic numbers is discussed

    Hilfer-Prabhakar Derivatives and Some Applications

    Full text link
    We present a generalization of Hilfer derivatives in which Riemann--Liouville integrals are replaced by more general Prabhakar integrals. We analyze and discuss its properties. Further, we show some applications of these generalized Hilfer-Prabhakar derivatives in classical equations of mathematical physics, like the heat and the free electron laser equations, and in difference-differential equations governing the dynamics of generalized renewal stochastic processes
    corecore