9,063 research outputs found

    Rendezvous of Heterogeneous Mobile Agents in Edge-weighted Networks

    Get PDF
    We introduce a variant of the deterministic rendezvous problem for a pair of heterogeneous agents operating in an undirected graph, which differ in the time they require to traverse particular edges of the graph. Each agent knows the complete topology of the graph and the initial positions of both agents. The agent also knows its own traversal times for all of the edges of the graph, but is unaware of the corresponding traversal times for the other agent. The goal of the agents is to meet on an edge or a node of the graph. In this scenario, we study the time required by the agents to meet, compared to the meeting time TOPTT_{OPT} in the offline scenario in which the agents have complete knowledge about each others speed characteristics. When no additional assumptions are made, we show that rendezvous in our model can be achieved after time O(nTOPT)O(n T_{OPT}) in a nn-node graph, and that such time is essentially in some cases the best possible. However, we prove that the rendezvous time can be reduced to Θ(TOPT)\Theta (T_{OPT}) when the agents are allowed to exchange Θ(n)\Theta(n) bits of information at the start of the rendezvous process. We then show that under some natural assumption about the traversal times of edges, the hardness of the heterogeneous rendezvous problem can be substantially decreased, both in terms of time required for rendezvous without communication, and the communication complexity of achieving rendezvous in time Θ(TOPT)\Theta (T_{OPT})

    Rational Multi-Agent Search

    Get PDF
    We study games in which players search for an optimal action profile. All action profiles are either a success, with a payoff of one, or a failure, with a payoff of zero. Players do not know the location of success profiles; instead each player is privately informed about the marginal distribution of success profiles over his actions. We characterize optimal joint search strategies.Search, Decentralization, Symmetry

    Time Versus Cost Tradeoffs for Deterministic Rendezvous in Networks

    Full text link
    Two mobile agents, starting from different nodes of a network at possibly different times, have to meet at the same node. This problem is known as rendezvous\mathit{rendezvous}. Agents move in synchronous rounds. Each agent has a distinct integer label from the set {1,,L}\{1,\dots,L\}. Two main efficiency measures of rendezvous are its time\mathit{time} (the number of rounds until the meeting) and its cost\mathit{cost} (the total number of edge traversals). We investigate tradeoffs between these two measures. A natural benchmark for both time and cost of rendezvous in a network is the number of edge traversals needed for visiting all nodes of the network, called the exploration time. Hence we express the time and cost of rendezvous as functions of an upper bound EE on the time of exploration (where EE and a corresponding exploration procedure are known to both agents) and of the size LL of the label space. We present two natural rendezvous algorithms. Algorithm Cheap\mathtt{Cheap} has cost O(E)O(E) (and, in fact, a version of this algorithm for the model where the agents start simultaneously has cost exactly EE) and time O(EL)O(EL). Algorithm Fast\mathtt{Fast} has both time and cost O(ElogL)O(E\log L). Our main contributions are lower bounds showing that, perhaps surprisingly, these two algorithms capture the tradeoffs between time and cost of rendezvous almost tightly. We show that any deterministic rendezvous algorithm of cost asymptotically EE (i.e., of cost E+o(E)E+o(E)) must have time Ω(EL)\Omega(EL). On the other hand, we show that any deterministic rendezvous algorithm with time complexity O(ElogL)O(E\log L) must have cost Ω(ElogL)\Omega (E\log L)

    Spartan Daily, October 25, 2001

    Get PDF
    Volume 117, Issue 40https://scholarworks.sjsu.edu/spartandaily/9745/thumbnail.jp
    corecore