23 research outputs found

    Near-optimal distributed edge coloring

    Get PDF

    Deterministic parallel algorithms for bilinear objective functions

    Full text link
    Many randomized algorithms can be derandomized efficiently using either the method of conditional expectations or probability spaces with low independence. A series of papers, beginning with work by Luby (1988), showed that in many cases these techniques can be combined to give deterministic parallel (NC) algorithms for a variety of combinatorial optimization problems, with low time- and processor-complexity. We extend and generalize a technique of Luby for efficiently handling bilinear objective functions. One noteworthy application is an NC algorithm for maximal independent set. On a graph GG with mm edges and nn vertices, this takes O~(log⁑2n)\tilde O(\log^2 n) time and (m+n)no(1)(m + n) n^{o(1)} processors, nearly matching the best randomized parallel algorithms. Other applications include reduced processor counts for algorithms of Berger (1997) for maximum acyclic subgraph and Gale-Berlekamp switching games. This bilinear factorization also gives better algorithms for problems involving discrepancy. An important application of this is to automata-fooling probability spaces, which are the basis of a notable derandomization technique of Sivakumar (2002). Our method leads to large reduction in processor complexity for a number of derandomization algorithms based on automata-fooling, including set discrepancy and the Johnson-Lindenstrauss Lemma

    Testing non-uniform k-wise independent distributions over product spaces (extended abstract)

    Get PDF
    A distribution D over Ξ£1× ⋯ ×Σ n is called (non-uniform) k-wise independent if for any set of k indices {i 1, ..., i k } and for any z1zki1ik, PrXD[Xi1Xik=z1zk]=PrXD[Xi1=z1]PrXD[Xik=zk]. We study the problem of testing (non-uniform) k-wise independent distributions over product spaces. For the uniform case we show an upper bound on the distance between a distribution D from the set of k-wise independent distributions in terms of the sum of Fourier coefficients of D at vectors of weight at most k. Such a bound was previously known only for the binary field. For the non-uniform case, we give a new characterization of distributions being k-wise independent and further show that such a characterization is robust. These greatly generalize the results of Alon et al. [1] on uniform k-wise independence over the binary field to non-uniform k-wise independence over product spaces. Our results yield natural testing algorithms for k-wise independence with time and sample complexity sublinear in terms of the support size when k is a constant. The main technical tools employed include discrete Fourier transforms and the theory of linear systems of congruences.National Science Foundation (U.S.) (NSF grant 0514771)National Science Foundation (U.S.) (grant 0728645)National Science Foundation (U.S.) (Grant 0732334)Marie Curie International Reintegration Grants (Grant PIRG03-GA-2008-231077)Israel Science Foundation (Grant 1147/09)Israel Science Foundation (Grant 1675/09)Massachusetts Institute of Technology (Akamai Presidential Fellowship

    Communication Primitives in Cognitive Radio Networks

    Full text link
    Cognitive radio networks are a new type of multi-channel wireless network in which different nodes can have access to different sets of channels. By providing multiple channels, they improve the efficiency and reliability of wireless communication. However, the heterogeneous nature of cognitive radio networks also brings new challenges to the design and analysis of distributed algorithms. In this paper, we focus on two fundamental problems in cognitive radio networks: neighbor discovery, and global broadcast. We consider a network containing nn nodes, each of which has access to cc channels. We assume the network has diameter DD, and each pair of neighbors have at least kβ‰₯1k\geq 1, and at most kmax≀ck_{max}\leq c, shared channels. We also assume each node has at most Ξ”\Delta neighbors. For the neighbor discovery problem, we design a randomized algorithm CSeek which has time complexity O~((c2/k)+(kmax/k)β‹…Ξ”)\tilde{O}((c^2/k)+(k_{max}/k)\cdot\Delta). CSeek is flexible and robust, which allows us to use it as a generic "filter" to find "well-connected" neighbors with an even shorter running time. We then move on to the global broadcast problem, and propose CGCast, a randomized algorithm which takes O~((c2/k)+(kmax/k)β‹…Ξ”+Dβ‹…Ξ”)\tilde{O}((c^2/k)+(k_{max}/k)\cdot\Delta+D\cdot\Delta) time. CGCast uses CSeek to achieve communication among neighbors, and uses edge coloring to establish an efficient schedule for fast message dissemination. Towards the end of the paper, we give lower bounds for solving the two problems. These lower bounds demonstrate that in many situations, CSeek and CGCast are near optimal

    Leveraging Physical Layer Capabilites: Distributed Scheduling in Interference Networks with Local Views

    Full text link
    In most wireless networks, nodes have only limited local information about the state of the network, which includes connectivity and channel state information. With limited local information about the network, each node's knowledge is mismatched; therefore, they must make distributed decisions. In this paper, we pose the following question - if every node has network state information only about a small neighborhood, how and when should nodes choose to transmit? While link scheduling answers the above question for point-to-point physical layers which are designed for an interference-avoidance paradigm, we look for answers in cases when interference can be embraced by advanced PHY layer design, as suggested by results in network information theory. To make progress on this challenging problem, we propose a constructive distributed algorithm that achieves rates higher than link scheduling based on interference avoidance, especially if each node knows more than one hop of network state information. We compare our new aggressive algorithm to a conservative algorithm we have presented in [1]. Both algorithms schedule sub-networks such that each sub-network can employ advanced interference-embracing coding schemes to achieve higher rates. Our innovation is in the identification, selection and scheduling of sub-networks, especially when sub-networks are larger than a single link.Comment: 14 pages, Submitted to IEEE/ACM Transactions on Networking, October 201

    Derandomization, Witnesses for Boolean Matrix Multiplication and Construction of Perfect Hash Functions

    Full text link

    Minimum and maximum entropy distributions for binary systems with known means and pairwise correlations

    Full text link
    Maximum entropy models are increasingly being used to describe the collective activity of neural populations with measured mean neural activities and pairwise correlations, but the full space of probability distributions consistent with these constraints has not been explored. We provide upper and lower bounds on the entropy for the {\em minimum} entropy distribution over arbitrarily large collections of binary units with any fixed set of mean values and pairwise correlations. We also construct specific low-entropy distributions for several relevant cases. Surprisingly, the minimum entropy solution has entropy scaling logarithmically with system size for any set of first- and second-order statistics consistent with arbitrarily large systems. We further demonstrate that some sets of these low-order statistics can only be realized by small systems. Our results show how only small amounts of randomness are needed to mimic low-order statistical properties of highly entropic distributions, and we discuss some applications for engineered and biological information transmission systems.Comment: 34 pages, 7 figure
    corecore