11,988 research outputs found

    Deep Architectures and Ensembles for Semantic Video Classification

    Get PDF
    This work addresses the problem of accurate semantic labelling of short videos. To this end, a multitude of different deep nets, ranging from traditional recurrent neural networks (LSTM, GRU), temporal agnostic networks (FV,VLAD,BoW), fully connected neural networks mid-stage AV fusion and others. Additionally, we also propose a residual architecture-based DNN for video classification, with state-of-the art classification performance at significantly reduced complexity. Furthermore, we propose four new approaches to diversity-driven multi-net ensembling, one based on fast correlation measure and three incorporating a DNN-based combiner. We show that significant performance gains can be achieved by ensembling diverse nets and we investigate factors contributing to high diversity. Based on the extensive YouTube8M dataset, we provide an in-depth evaluation and analysis of their behaviour. We show that the performance of the ensemble is state-of-the-art achieving the highest accuracy on the YouTube-8M Kaggle test data. The performance of the ensemble of classifiers was also evaluated on the HMDB51 and UCF101 datasets, and show that the resulting method achieves comparable accuracy with state-of-the-art methods using similar input features

    Classification of time series by shapelet transformation

    Get PDF
    Time-series classification (TSC) problems present a specific challenge for classification algorithms: how to measure similarity between series. A \emph{shapelet} is a time-series subsequence that allows for TSC based on local, phase-independent similarity in shape. Shapelet-based classification uses the similarity between a shapelet and a series as a discriminatory feature. One benefit of the shapelet approach is that shapelets are comprehensible, and can offer insight into the problem domain. The original shapelet-based classifier embeds the shapelet-discovery algorithm in a decision tree, and uses information gain to assess the quality of candidates, finding a new shapelet at each node of the tree through an enumerative search. Subsequent research has focused mainly on techniques to speed up the search. We examine how best to use the shapelet primitive to construct classifiers. We propose a single-scan shapelet algorithm that finds the best kk shapelets, which are used to produce a transformed dataset, where each of the kk features represent the distance between a time series and a shapelet. The primary advantages over the embedded approach are that the transformed data can be used in conjunction with any classifier, and that there is no recursive search for shapelets. We demonstrate that the transformed data, in conjunction with more complex classifiers, gives greater accuracy than the embedded shapelet tree. We also evaluate three similarity measures that produce equivalent results to information gain in less time. Finally, we show that by conducting post-transform clustering of shapelets, we can enhance the interpretability of the transformed data. We conduct our experiments on 29 datasets: 17 from the UCR repository, and 12 we provide ourselve

    EC3: Combining Clustering and Classification for Ensemble Learning

    Full text link
    Classification and clustering algorithms have been proved to be successful individually in different contexts. Both of them have their own advantages and limitations. For instance, although classification algorithms are more powerful than clustering methods in predicting class labels of objects, they do not perform well when there is a lack of sufficient manually labeled reliable data. On the other hand, although clustering algorithms do not produce label information for objects, they provide supplementary constraints (e.g., if two objects are clustered together, it is more likely that the same label is assigned to both of them) that one can leverage for label prediction of a set of unknown objects. Therefore, systematic utilization of both these types of algorithms together can lead to better prediction performance. In this paper, We propose a novel algorithm, called EC3 that merges classification and clustering together in order to support both binary and multi-class classification. EC3 is based on a principled combination of multiple classification and multiple clustering methods using an optimization function. We theoretically show the convexity and optimality of the problem and solve it by block coordinate descent method. We additionally propose iEC3, a variant of EC3 that handles imbalanced training data. We perform an extensive experimental analysis by comparing EC3 and iEC3 with 14 baseline methods (7 well-known standalone classifiers, 5 ensemble classifiers, and 2 existing methods that merge classification and clustering) on 13 standard benchmark datasets. We show that our methods outperform other baselines for every single dataset, achieving at most 10% higher AUC. Moreover our methods are faster (1.21 times faster than the best baseline), more resilient to noise and class imbalance than the best baseline method.Comment: 14 pages, 7 figures, 11 table
    • …
    corecore