4,285 research outputs found

    Remote sensing and crowd-sourcing

    Get PDF
    Collection of ground truth to validate remote sensing classification and/or detection algorithms is rarely accounted for due to the inaccessibility of the sites or the elevated costs of such operations. In this paper some of the opportunities behind crowd sourcing are explored through the description of a remote sensing project on water quality monitoring in Africa where the ground truth was collected involving and training people from local communities

    Detecting animals in African Savanna with UAVs and the crowds

    Full text link
    Unmanned aerial vehicles (UAVs) offer new opportunities for wildlife monitoring, with several advantages over traditional field-based methods. They have readily been used to count birds, marine mammals and large herbivores in different environments, tasks which are routinely performed through manual counting in large collections of images. In this paper, we propose a semi-automatic system able to detect large mammals in semi-arid Savanna. It relies on an animal-detection system based on machine learning, trained with crowd-sourced annotations provided by volunteers who manually interpreted sub-decimeter resolution color images. The system achieves a high recall rate and a human operator can then eliminate false detections with limited effort. Our system provides good perspectives for the development of data-driven management practices in wildlife conservation. It shows that the detection of large mammals in semi-arid Savanna can be approached by processing data provided by standard RGB cameras mounted on affordable fixed wings UAVs

    Efficient Opportunistic Sensing using Mobile Collaborative Platform MOSDEN

    Get PDF
    Mobile devices are rapidly becoming the primary computing device in people's lives. Application delivery platforms like Google Play, Apple App Store have transformed mobile phones into intelligent computing devices by the means of applications that can be downloaded and installed instantly. Many of these applications take advantage of the plethora of sensors installed on the mobile device to deliver enhanced user experience. The sensors on the smartphone provide the opportunity to develop innovative mobile opportunistic sensing applications in many sectors including healthcare, environmental monitoring and transportation. In this paper, we present a collaborative mobile sensing framework namely Mobile Sensor Data EngiNe (MOSDEN) that can operate on smartphones capturing and sharing sensed data between multiple distributed applications and users. MOSDEN follows a component-based design philosophy promoting reuse for easy and quick opportunistic sensing application deployments. MOSDEN separates the application-specific processing from the sensing, storing and sharing. MOSDEN is scalable and requires minimal development effort from the application developer. We have implemented our framework on Android-based mobile platforms and evaluate its performance to validate the feasibility and efficiency of MOSDEN to operate collaboratively in mobile opportunistic sensing applications. Experimental outcomes and lessons learnt conclude the paper

    Living Innovation Laboratory Model Design and Implementation

    Full text link
    Living Innovation Laboratory (LIL) is an open and recyclable way for multidisciplinary researchers to remote control resources and co-develop user centered projects. In the past few years, there were several papers about LIL published and trying to discuss and define the model and architecture of LIL. People all acknowledge about the three characteristics of LIL: user centered, co-creation, and context aware, which make it distinguished from test platform and other innovation approaches. Its existing model consists of five phases: initialization, preparation, formation, development, and evaluation. Goal Net is a goal-oriented methodology to formularize a progress. In this thesis, Goal Net is adopted to subtract a detailed and systemic methodology for LIL. LIL Goal Net Model breaks the five phases of LIL into more detailed steps. Big data, crowd sourcing, crowd funding and crowd testing take place in suitable steps to realize UUI, MCC and PCA throughout the innovation process in LIL 2.0. It would become a guideline for any company or organization to develop a project in the form of an LIL 2.0 project. To prove the feasibility of LIL Goal Net Model, it was applied to two real cases. One project is a Kinect game and the other one is an Internet product. They were both transformed to LIL 2.0 successfully, based on LIL goal net based methodology. The two projects were evaluated by phenomenography, which was a qualitative research method to study human experiences and their relations in hope of finding the better way to improve human experiences. Through phenomenographic study, the positive evaluation results showed that the new generation of LIL had more advantages in terms of effectiveness and efficiency.Comment: This is a book draf
    • …
    corecore