10 research outputs found

    On the well-posedness of multivariate spectrum approximation and convergence of high-resolution spectral estimators

    Full text link
    In this paper, we establish the well-posedness of the generalized moment problems recently studied by Byrnes-Georgiou-Lindquist and coworkers, and by Ferrante-Pavon-Ramponi. We then apply these continuity results to prove almost sure convergence of a sequence of high-resolution spectral estimators indexed by the sample size

    A new family of high-resolution multivariate spectral estimators

    Full text link
    In this paper, we extend the Beta divergence family to multivariate power spectral densities. Similarly to the scalar case, we show that it smoothly connects the multivariate Kullback-Leibler divergence with the multivariate Itakura-Saito distance. We successively study a spectrum approximation problem, based on the Beta divergence family, which is related to a multivariate extension of the THREE spectral estimation technique. It is then possible to characterize a family of solutions to the problem. An upper bound on the complexity of these solutions will also be provided. Simulations suggest that the most suitable solution of this family depends on the specific features required from the estimation problem

    A globally convergent matricial algorithm for multivariate spectral estimation

    Full text link
    In this paper, we first describe a matricial Newton-type algorithm designed to solve the multivariable spectrum approximation problem. We then prove its global convergence. Finally, we apply this approximation procedure to multivariate spectral estimation, and test its effectiveness through simulation. Simulation shows that, in the case of short observation records, this method may provide a valid alternative to standard multivariable identification techniques such as MATLAB's PEM and MATLAB's N4SID

    Time and spectral domain relative entropy: A new approach to multivariate spectral estimation

    Full text link
    The concept of spectral relative entropy rate is introduced for jointly stationary Gaussian processes. Using classical information-theoretic results, we establish a remarkable connection between time and spectral domain relative entropy rates. This naturally leads to a new spectral estimation technique where a multivariate version of the Itakura-Saito distance is employed}. It may be viewed as an extension of the approach, called THREE, introduced by Byrnes, Georgiou and Lindquist in 2000 which, in turn, followed in the footsteps of the Burg-Jaynes Maximum Entropy Method. Spectral estimation is here recast in the form of a constrained spectrum approximation problem where the distance is equal to the processes relative entropy rate. The corresponding solution entails a complexity upper bound which improves on the one so far available in the multichannel framework. Indeed, it is equal to the one featured by THREE in the scalar case. The solution is computed via a globally convergent matricial Newton-type algorithm. Simulations suggest the effectiveness of the new technique in tackling multivariate spectral estimation tasks, especially in the case of short data records.Comment: 32 pages, submitted for publicatio

    On the Geometry of Maximum Entropy Problems

    Full text link
    We show that a simple geometric result suffices to derive the form of the optimal solution in a large class of finite and infinite-dimensional maximum entropy problems concerning probability distributions, spectral densities and covariance matrices. These include Burg's spectral estimation method and Dempster's covariance completion, as well as various recent generalizations of the above. We then apply this orthogonality principle to the new problem of completing a block-circulant covariance matrix when an a priori estimate is available.Comment: 22 page

    A Maximum Entropy Enhancement for a Family of High-Resolution Spectral Estimators

    Full text link

    Generalized Moment Problems for Estimation of Spectral Densities and Quantum Channels

    Get PDF
    This thesis is concerned with two generalized moment problems arising in the estimation of stochastic models. Firstly, we consider the THREE approach, introduced by Byrnes Georgiou and Lindquist, for estimating spectral densities. Here, the output covariance matrix of a known bank of filters is used to extract information on the input spectral density which needs to be estimated. The parametrization of the family of spectral densities matching the output covariance is a generalized moment problem. An estimate of the input spectral density is then chosen from this family. The choice criterium is based on the minimization of a suitable divergence index among spectral densities. After the introduction of the THREE-like paradigm, we present a multivariate extension of the Beta divergence for solving the problem. Afterward, we deal with the estimation of the output covariance of the filters bank given a finite-length data generated by the unknown input spectral density. Secondly, we deal with the quantum process tomography. This problem consists in the estimation of a quantum channel which can be thought as the quantum equivalent of the Markov transition matrix in the classical setting. Here, a quantum system prepared in a known pure state is fed to the unknown channel. A measurement of an observable is performed on the output state. The set of the employed pure states and observables represents the experimental setting. Again, the parametrization of the family of quantum channels matching the measurements is a generalized moment problem. The choice criterium for the best estimate in this family is based on the maximization of maximum likelihood functionals. The corresponding estimate, however, may not be unique since the experimental setting is not "rich" enough in many cases of interest. We characterize the minimal experimental setting which guarantees the uniqueness of the estimate. Numerical simulation evidences that experimental settings richer than the minimal one do not lead to better performance

    Novel Results on the Factorization and Estimation of Spectral Densities

    Get PDF
    This dissertation is divided into two main parts. The first part is concerned with one of the most classical and central problems in Systems and Control Theory, namely the factorization of rational matrix-valued spectral densities, commonly known as the spectral factorization problem. Spectral factorization is a fundamental tool for the solution of a variety of problems involving second-order statistics and quadratic cost functions in control, estimation, signal processing and communications. It can be thought of as the frequency-domain counterpart of the ubiquitous Algebraic Riccati Equation and it is intimately connected with the celebrated Kálmán-Yakubovich-Popov Lemma and, therefore, to passivity theory. Here, we provide a rather in-depth and comprehensive analysis of this problem in the discrete-time setting, a scenario which is becoming increasingly pervasive in control applications. The starting point in our analysis is a general spectral factorization result in the same vein of Dante C. Youla. Building on this fundamental result, we then investigate some key issues related to minimality and parametrization of minimal spectral factors of a given spectral density. To conclude, we show how to extend some of the ideas and results to the more general indefinite or J-spectral factorization problem, a technique of paramount importance in robust control and estimation theory. In the second part of the dissertation, we consider the problem of estimating a spectral density from a finite set of measurements. Following the Byrnes-Georgiou-Lindquist THREE (Tunable High REsolution Estimation) paradigm, we look at spectral estimation as an optimization problem subjected to a generalized moment constraint. In this framework, we examine the global convergence of an efficient algorithm for the estimation of scalar spectral densities that hinges on the Kullback-Leibler criterion. We then move to the multivariate setting by addressing the delicate issue of existence of solutions to a parametric spectral estimation problem. Eventually, we study the geometry of the space of spectral densities by revisiting two natural distances defined in cones for the case of rational spectra. These new distances are used to formulate a "robust" version of THREE-like spectral estimation

    Remarks on Control Design With Degree Constraint

    No full text
    evaluation in presence of unknown but bounded error: Linear families of models and estimators, ” IEEE Trans. Autom. Control, vol. AC-27, no. 2, pp. 408–414, Apr. 1982. [19] M. Milanese and A. Vicino, “Estimation theory for nonlinar models and set membership uncertainty, ” Automatica, vol. 27, pp. 403–408, 1991. [20] S. H. Mo and J. P. Norton, “Recursive parameter-bounding algorithms which compute polytope bounds, ” in Proc. 12th IMACS World Congr

    SUBMITTED TO IEEE TRANSACTIONS ON AUTOMATIC CONTROL 1 Remarks on Control Design with Degree Constraint

    No full text
    Abstract — The purpose of this note is to highlight similarities and differences between two alternative methodologies for feedback control design under constraints on the McMillan degree of the feedback system. Both sets of techniques focus on uniformly optimal designs. The first is based on the work of Gahinet PSfrag replacements and Apkarian, and Skelton, Iwasaki, Grigoriades and their coworkers, while the other is based on earlier joint work of the authors with C. I. Byrnes
    corecore