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Abstract

T
HIS dissertation is divided into two main parts. The first part is concerned

with one of the most classical and central problems in Systems and Control
Theory, namely the factorization of rational matrix-valued spectral den-
sities, commonly known as the spectral factorization problem. Spectral

factorization is a fundamental tool for the solution of a variety of problems involving
second-order statistics and quadratic cost functions in control, estimation, signal
processing and communications. It can be thought of as the frequency-domain coun-
terpart of the ubiquitous Algebraic Riccati Equation and it is intimately connected
with the celebrated Kálmán–Yakubovich–Popov Lemma and, therefore, to passivity
theory. Here, we provide a rather in-depth and comprehensive analysis of this prob-
lem in the discrete-time setting, a scenario which is becoming increasingly pervasive
in control applications. The starting point in our analysis is a general spectral fac-
torization result in the same vein of Dante C. Youla. Building on this fundamental
result, we then investigate some key issues related to minimality and parametrization
of minimal spectral factors of a given spectral density. To conclude, we show how
to extend some of the ideas and results to the more general indefinite or J-spectral
factorization problem, a technique of paramount importance in robust control and
estimation theory.

In the second part of the dissertation, we consider the problem of estimating a
spectral density from a finite set of measurements. Following the Byrnes–Georgiou–
Lindquist THREE (Tunable High REsolution Estimation) paradigm, we look at spectral
estimation as an optimization problem subjected to a generalized moment constraint.
In this framework, we examine the global convergence of an efficient algorithm for the
estimation of scalar spectral densities that hinges on the Kullback–Leibler criterion.
We then move to the multivariate setting by addressing the delicate issue of existence
of solutions to a parametric spectral estimation problem. Eventually, we study the
geometry of the space of spectral densities by revisiting two natural distances defined
in cones for the case of rational spectra. These new distances are used to formulate a
“robust” version of THREE-like spectral estimation.
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Sommario

L
A tesi è divisa in due parti. La prima parte riguarda uno dei problemi più

importanti e classici della Teoria dei Sistemi e del Controllo, ossia la fattor-
izzazione di densità spettrali razionali a valori matriciali, meglio conosciuto
come problema di fattorizzazione spettrale. Quest’ultimo rappresenta uno

strumento fondamentale per la soluzione di una vasta gamma di problemi riguardanti
statistiche del secondo ordine e funzioni costo quadratiche nella teoria del controllo,
della stima, dell’elaborazione di segnali e delle comunicazioni. Il problema di fattoriz-
zazione spettrale può essere visto come la controparte nel dominio della frequenza
della soluzione di un’Equazione Algebrica di Riccati ed è strettamente connesso con
il famoso Lemma di Kálmán–Yakubovich–Popov e, di conseguenza, con la teoria dei
sistemi passivi. Questa prima parte fornisce un’analisi approfondita e completa del
problema di fattorizzazione spettrale nel caso a tempo discreto, uno scenario sempre
più diffuso nelle applicazioni del controllo. Il punto di partenza della nostra analisi è
un risultato generale sulla fattorizzazione spettrale che si ispira ad un approccio ideato
da Dante C. Youla. Basandoci su questo risultato, esaminiamo quindi alcuni aspetti
chiave legati alla minimalità e alla parametrizzazione dei fattori spettrali minimi di
una data densità spettrale. Per concludere, mostriamo come estendere alcuni idee e
risultati al caso più generale di fattorizzazione spettrale indefinita o fattorizzazione
J-spettrale, una tecnica di importanza primaria nella teoria del controllo e della stima
robusta.

Nella seconda parte della tesi, consideriamo il problema della stima di una densità
spettrale incognita a partire da un insieme finito di misure. Seguendo l’approccio
THREE (Tunable High REsolution Estimation) di Byrnes, Georgiou, e Lindquist, inter-
pretiamo il problema di stima spettrale come un problema di ottimizzazione soggetto
ad un vincolo sui momenti generalizzato. In questo contesto, studiamo la convergenza
globale di un algoritmo efficiente per la stima di densità spettrali scalari basata sul
criterio di Kullback–Leibler. Successivamente, ci spostiamo ad analizzare il caso multi-
variato, considerando un problema estremamente delicato riguardante l’esistenza di
una soluzione ad un problema di stima parametrico. Infine, analizziamo la geometria
dello spazio delle densità spettrali rivisitando due distanze naturali definite su coni
per il caso di spettri razionali. Queste nuove distanze verranno utilizzate per formulare
un problema di stima spettrale “robusta” simile all’approccio THREE.
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Ouverture

T
HE present dissertation focuses on two tightly connected problems which lie

at the heart of the engineering and mathematical sciences. Both problems
share a long and illustrious history and have been extensively studied and
applied in many areas of Systems and Control Theory.

The first one is the classical problem of spectral factorization. This problem un-
doubtedly represents one of the cornerstones of Systems and Control Theory. Starting
from the seminal works Kolmogorov [1939], Wiener [1949], it is almost impossible
to acknowledge all the works and all the branches of Systems and Control Theory in
which this classical problem has been studied and/or successfully applied. For the
time being, we will be content with mentioning that this problem has proved to be
fundamental in stochastic realization theory, Linear-Quadratic (LQ) optimal control,
and H∞ robust control. In spite of being a classical and largely investigated problem,
quite surprisingly, there are still a number of aspects of this problem which have not
satisfactorily been addressed in the literature. Their dissection will constitute Part I of
the present dissertation. This part starts off with a general overview on the problem
in Chapter 1. Then, inspired by the celebrated work Youla [1961], in Chapter 2-3-4,
we discuss a general result on the solution of the multivariate spectral factorization
problem in discrete-time and we elucidate some issues related to uniqueness and
parametrization of minimal spectral factors. Chapter 5 is devoted to present some
results concerning the more general J-spectral factorization problem. Ultimately, in
Chapter 6, we draw the conclusions and list some open problems.

Part I is mostly based on the following works:

[SF1] G. Baggio and A. Ferrante. On the factorization of rational discrete-time spectral
densities. IEEE Transactions on Automatic Control, 61(4):969–981, 2016a

[SF2] G. Baggio and A. Ferrante. On minimal spectral factors with zeroes and poles
lying on prescribed regions. IEEE Transactions on Automatic Control, 61(8):
2251–2255, 2016b

[SF3] G. Baggio and A. Ferrante. Parametrization of minimal spectral factors of
discrete-time rational spectral densities. Submitted for publication, 2017. [arXiv
preprint: arXiv:1609.02711]

[SF4] G. Baggio. On minimal discrete-time J-spectral factorizations. In preparation,
2017c



Ouverture

The following diagram depicts the dependencies between different chapters of
Part I together with the related works: A filled black arrow indicate the suggested
“natural” flow, whereas a dashed gray arrow a possible alternative flow.

Chapter 1

Chapter 6

Chapter 2
[SF1]

Chapter 3
[SF2]

Chapter 4
[SF3]

Chapter 5
[SF4]

Part I: Factorization of Rational Spectral Densities
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Ouverture

The second problem is, de facto, a class of problems which falls under the name of
generalized moment problems. As for spectral factorization, (generalized) moments
problems have a deep and rich history rooted in the early works of the great Russian
mathematician Čebyšëv and his students, who exploited them in connection with the
classical Central Limit Theorem towards the end of the 19th Century, cf. [Kreı̆n and
Nudel’man, 1977, pp. 166–171]. However, it is only in recent times that these problems
have been profitably employed in several areas of Systems and Control Theory, such as
interpolation theory, robust control, and approximation of covariances and spectral
densities. The merit for this must be attributed to the Byrnes–Georgiou–Lindquist
school who first brought to light the central role played by these problems in Control
Theory, cf. Byrnes and Lindquist [2008] and references therein. Among the plethora of
applications of generalized moment problems, in Part II of the dissertation we will
focus on the subclass of problems dealing with estimation of spectral densities. After
a brief introduction on generalized moment problems contained in Chapter 1, we
review in Chapter 2 the particular problem of scalar Kullback–Leibler approximation
of spectral densities treated in Georgiou and Lindquist [2003]. Chapter 3 studies the
convergence properties of an efficient algorithm for the solution of the latter estima-
tion problem, proposed in Pavon and Ferrante [2006]. In Chapter 4, we focus on a
certain multivariate parametric extension of the above spectral estimation problem,
establishing a general existence result. In Chapter 5, motivated by the issue of reducing
“artifacts” in spectral estimation procedures, we investigate a new class of metrics of
Finsler type in the space of spectral densities. Eventually, Chapter 6 contains some
concluding remarks and future research directions.

Part II is mostly based on the following works:

[SE1] G. Baggio. A global convergence analysis of the Pavon–Ferrante algorithm for
spectral estimation. IEEE Transactions on Automatic Control (Conditionally

Accepted), 2017a. [arXiv preprint: arXiv:1612.03570]

[SE2] G. Baggio. On the convergence of a matricial fixed-point iteration connected
with spectral estimation. Proceedings of the 20th IFAC World Congress, pages
7415–7420, 2017b

[SE3] B. Zhu and G. Baggio. On the existence of a solution to a spectral estimation
problem à la Byrnes–Georgiou–Lindquist. Submitted for publication, 2017.
[arXiv preprint: arXiv:1709.09012]

[SE4] G. Baggio, A. Ferrante, and R. Sepulchre. Finslerian metrics in the cone of spec-
tral densities. Submitted for publication, 2017. [arXiv preprint: arXiv:1708.-

02818]
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Ouverture

The following diagram depicts the dependencies between chapters of Part II. The
meaning of the arrows is the same as before.

Chapter 1

Chapter 6

Chapter 2

Chapter 3
[SE1, SE2]

Chapter 4
[SE3]

Chapter 5
[SE4]

Part II: Spectral Densities Estimation
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Throughout the dissertation, with a slight abuse of notation, when we say that a
rational function f (z) is analytic in a region T of the complex plane that is not open,
we mean that f (z) does not have poles in T. In the case of a rational f (z) this abuse
does not cause any problems: In fact, f (z) can have only finitely many poles so that
there exists a larger open region Tε ⊃T in which f (z) is indeed analytic. For example,
if f (z) is rational and does not have poles on the unit circle, we say that f (z) is analytic
on the unit circle in place of f (z) is analytic on an open annulus containing the unit
circle. Notice that such an annulus does indeed exist. Finally, in what follows, the
abbreviation a.e. will stand for almost everywhere. For instance, a property that holds
“a.e. in C” or “for z ∈C a.e.” means that this property holds for all but a finite number
of points in C.
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1. Introduction

T
HE purpose of this chapter is to introduce and motivate the topics we will

deal with in the first part of the dissertation, namely the “standard” spec-
tral factorization problem and its “indefinite” extension, commonly known
under the name of J-spectral factorization. We will briefly outline the histor-

ical developments, the areas of Systems and Control Theory wherein these problems
naturally emerge, and the contributions provided by the present dissertation to these
problems.

1.1 Spectral factorization

WE denote by S
n

rat(T) the set of real-valued discrete-time n ×n spectral density
functions, i.e., the set of rational matrix-valued functions Φ : T→ R

n×n such
that Φ(z) ≥ 0 for all z ∈ T for which Φ is defined (if n = 1 we will use the shorthand
Srat(T) :=S

1
rat(T)). In its discrete-time rational form, the spectral factorization prob-

lem can be stated as follows.

Problem 1.1 ((Discrete-time) rational spectral factorization). Given a rational spectral
density Φ ∈S

n
rat(T) find a factorization of the form

Φ(z) =W ∗(z)W (z), z ∈C a.e., (1.1)

where W (z) ∈R(z)`×n and W ∗(z) :=W >(1/z).

The rational matrix-valued function W in (1.1) is called a spectral factor of Φ. De-
pending on the considered application, one is usually interested in spectral factors
featuring some additional properties. For instance, in stochastic realization theory,
the sought-for spectral factor is often required to be (stochastically) minimal, i.e.,
having the smallest possible McMillan degree1 1Such degree is

equal to one half of the
McMillan degree of the
spectral density. The
McMillan degree quanti-
fies the “complexity” of a
transfer function and will
be defined in Section 2.2.

. In the solution of optimal filtering
problems, instead, the interest is for spectral factors that are analytic in a prescribed
region of the complex region with (generalized) inverse analytic in another (possibly
different) region. In particular, if the latter two regions coincide with { z ∈C : |z| > 1},
then the spectral factor is called minimum-phase or outer or canonical spectral factor.
This spectral factor yields the solution of the causal optimal filtering problem. When
dealing instead with acausal optimal filtering problems, the sought-for spectral factor
has prescribed analyticity regions that differ from those of the canonical one, see, e.g.,
Lindquist and Picci [1991], Picci and Pinzoni [1994], Ferrante and Picci [2014].



Chapter 1. Introduction

As briefly mentioned in the initial chapter of this dissertation, the spectral factor-
ization problem is a classical and largely investigated problem in Systems and Control
Theory. More precisely, spectral factorization is the common denominator of a circle
of ideas including LQ optimization methods, passivity theory, positivity, second-order
stationary stochastic processes and Riccati equations, and, as such, it seems fair to
say that this problem is one of the pillars of modern Systems and Control Theory.

The origins of this mathematical tool dates back to the 1940s, when Kolmogorov
and Wiener, independently of each other, introduce and study the scalar version
of the spectral factorization problem in order to obtain a frequency-domain solu-
tion to optimal filtering problems for the discrete-time case22In the scalar

discrete-time polynomial
case spectral factoriza-
tion is also known as
the Fejér–Riesz Lemma
Ephremidze et al. [2009].

Kolmogorov [1939] and
continuous-time case (the well-known Wiener-Hopf technique) Wiener [1949]. Besides
optimal filtering, estimation and smoothing (see, for instance, Anderson and Moore
[1979] for a comprehensive overview), the spectral factorization problem has found
many interesting applications, for instance, in:

1) LQ optimal control theory Willems [1971], Callier and Winkin [1992], Stoorvogel
and Saberi [1998], Swigart and Lall [2014], Aksikas et al. [2007], Gu et al. [2006],
Ferrante and Ntogramatzidis [2013],

2) Stochastic realization Anderson [1969], Faurre et al. [1979], Ruckebusch [1980],
Picci [1976], Lindquist and Picci [1979, 1985, 1991], Ferrante [1994], Lindquist
et al. [1995], Lindquist and Picci [2015],

3) Circuit synthesis theory Newcomb [1966], Anderson [1999], Anderson and Vong-
panitlerd [2006], Youla [2015],

4) Interpolation theory Byrnes et al. [2001b], Blomqvist et al. [2003], Byrnes et al.
[2006],

5) Dynamical networks and graphical models identification Avventi et al. [2013],
Materassi and Innocenti [2010], Materassi and Salapaka [2012], Hayden et al.
[2017], Weerts et al. [2017],

6) Spectral estimation Ferrante et al. [2008], Ramponi et al. [2009], Avventi [2011],
Ferrante et al. [2012a] (this point will be discussed in greater detail in Part II),

7) Generalized factor analysis Deistler et al. [2010], Anderson and Deistler [2009],
Anderson et al. [2012], and

8) Passivity, from the classical positive-real systems theory Khalil [1996], Brogliato
et al. [2007] to the more recent negative-imaginary systems theory Petersen and
Lanzon [2010], Ferrante et al. [2017].
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Chapter 1. Introduction

With reference to the continuous-time case, the existence of an outer solution to
the multivariate spectral factorization problem was firstly proved by Dante C. Youla in
his famous paper Youla [1961]. In that paper, Youla presents an ingenious technique,
which exploits the Smith–McMillan canonical form of rational matrices, to construct
(and hence prove the existence of) the outer spectral factor of a given spectral density.

Far from being merely of historical interest, Youla’s method is relevant for, at least,
three reasons:

1) It does not require any assumption on the starting spectral density, allowing, in
particular, for spectral densities that are improper, normal rank deficient, and
with zeros and poles on the imaginary axis.

2) It always leads to the computation of a (stochastically) minimal spectral factor,
that is a spectral factor of minimal “complexity”.

3) It allows to easily modify the region of analyticity of both the obtained spectral
factor and its (right) inverse. This feature has proved to be fundamental, for
instance, in Pandolfi [2001], Ferrante and Pandolfi [2002], where Youla’s method
is exploited to compute a spectral factor with prescribed analyticity region in
order to weaken the standard assumptions for the solvability of the classical
Positive Real lemma (or Kálmán–Yakubovich–Popov (KYP) lemma) equations.

After Youla’s work, other more efficient numerical methods have been proposed
for the computation of the outer spectral factor both in the continuous and discrete
time case. Most of them are based on Newton-like optimization routines, or on state-
space methods which are, in turn, linked to the solution of suitable Algebraic Riccati
Equations (AREs) (and, hence, to Kálmán filtering theory). It is worth stressing that
these techniques typically require a number of restrictive assumptions on the given
spectral density. In particular, almost all the proposed methods, with a few notable
exceptions, do not apply to spectral densities that are normal rank deficient, a situa-
tion of utmost practical relevance in high-dimensional scenarios, see, e.g., Anderson
et al. [2012]. Among the plethora of approaches it is worth mentioning the works
Tunnicliffe-Wilson [1972], Rissanen [1973], Youla and Kazanjian [1978], Ran [1982],
Van Der Schaft and Willems [1984], Ježek and Kučera [1985], Callier [1985], Georgiou
[1988], Clements and Glover [1989], Chen and Francis [1989], Ran and Rodman [1990],
Clements [1993], Wimmer [1997], Clements et al. [1997], Bini et al. [2003], Orchard
and Wilson [2003], Janashia et al. [2011], Boettcher and Halwass [2013] (see also the
survey Sayed and Kailath [2001] and the comprehensive monographs Bart et al. [1979,
2007, 2011] and references therein), and, in particular, the more recent Oară and Varga
[2000], Oară [2005] which provide numerically efficient procedures for the solution of
the continuous- and discrete-time problems under no additional ad hoc assumption
besides that of starting from an available pre-factorization.
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In Chapter 2, inspired by Youla [1961], we establish a discrete-time spectral fac-
torization result that appears to be, to the best of our knowledge, the most general

hitherto available. Specifically, we show that, given an arbitrary spectral density Φ(z),
and two arbitrary regions featuring a geometry compatible with spectral factorization,
Φ(z) admits a spectral factorization of the form in Equation (1.1), where the poles
and zeros of W (z) lie on the prescribed regions. The proof is constructive and gives,
as a by-product, stochastic minimality of the spectral factor, which is, as previously
pointed out, a crucial feature in stochastic realization theory and one of the key as-
pects in our analysis.

Other interesting problems connected with spectral factorization, especially in the
context of stochastic realization theory, are those concerning uniqueness of minimal

spectral factors and parametrization of minimal spectral factors.

From Youla [1961], it is well-known that the outer spectral factor is always minimal
and essentially unique, i.e., unique modulo left multiplication by constant orthogonal
matrices. This results extends trivially to the case in which the analyticity region of
the spectral factor and that of its inverse coincide. At a first sight, it is however not
clear whether minimal spectral factors are still essentially unique when prescribing
non-overlapping analyticity regions of the factor and of its inverse. For instance, w.r.t.
the discrete-time case, assume that the desired analyticity region of the spectral factor
is { z ∈ C : |z| > 1}, and that of its inverse is { z ∈ C : |z| < 1}. In this case, it seems
possible that there may exist a non-constant (rational) all-pass transformation33A (rational) all-

pass function is de-
fined as a rational ma-
trix U ∈ R(z)n×n s.t.
U (z)U∗(z) = In for all
z ∈T (see Definition 2.2).

that
cancels out a pole inside the unit disk and, at the same time, adds the same pole to a
given minimal spectral factor satisfying the desired analyticity requirements. Hence,
in case it exists, such a transformation can, in principle, preserve the McMillan degree
of the spectral factor. In Chapter 3, exploiting a result on minimal factorization of
rational all-pass functions established in Alpay and Gohberg [1988], we will prove that
this is actually not possible! This in turn implies that all minimal spectral factors with
prescribed analyticity regions are essentially unique.

In Chapter 4 we will deal with the problem of “efficiently” parametrizing the
whole set of minimal spectral factors of a given spectral density. This problem has
been treated in many papers Finesso and Picci [1982], Ran [1982], Ferrante et al.
[1993], Ferrante [1994], Pavon [1994], Fuhrmann [1995], Ran [1995], Ferrante [1997a,b],
Fuhrmann and Gombani [1998, 2000], Petersen and Ran [2001, 2002a,b], Ferrante
[2005], to cite just a few key contributions. However, to the best of our knowledge,
all the available results concern the continuous-time case and crucially rely on some
restrictive assumptions on the spectral density, so that a general result (especially,
in the discrete-time setting) has been missing so far. In this chapter, we fill this gap
by providing a completely general discrete-time parametrization result in terms of
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the all-pass divisors of a suitable “phase” function. The proof hinges on an elegant
result of Ferrante and Picci [2017], in which the set of all-pass divisors of a given
all-pass function is parametrized both algebraically (in terms of solutions of a certain
Algebraic Riccati Equation) and geometrically (in terms of invariant subspaces of a
certain matrix).

As a final remark, we point out that, in all the aforementioned chapters (with
the only exception of Chapter 4) we will consider a factorization of the form Φ(z) =
W ∗(z)W (z), as in Problem 1.1, which corresponds to the solution of optimal control
and circuit synthesis problems. All the results we present are, however, easily adaptable
to obtain a dual counterpart for the factorization of the form Φ(z) =W (z)W ∗(z). The
latter is the natural factorization associated to the representation of second-order
stationary stochastic processes and hence to filtering and estimation problems. If not
clear by the context, we will use the terms right spectral factor and left spectral factor
to distinguish the spectral factor that are solution of Problem 1.1 or of the aforesaid
“dual” problem, respectively.

1.2 J-spectral factorization

DISPENSING with the assumption of positivity of the spectral density leads to a
more general version of Problem 1.1, the J-spectral factorization problem. Here,

the symbol S
n

rat,J (T) will stand for the set of real-valued discrete-time n ×n J-spectral
density functions, i.e., the set of rational matrix-valued functions Φ : T→R

n×n such
that Φ(z) has constant signature4 4We recall that the

signature of a matrix is
the difference between
the number of positive
and negative eigenvalues,
counted with multiplicity.

for all z ∈T for which Φ is defined.

Problem 1.2 ((Discrete-time) rational J-spectral factorization). Given a rational J-
spectral density Φ ∈S

n
rat,J (T) find a factorization of the form

Φ(z) =W ∗(z)JW (z), z ∈C a.e., (1.2)

where J is a signature matrix and W (z) ∈R(z)`×n .

By analogy with the “standard” (i.e., positive semi-definite) case, the function W in
(1.2) will be termed J-spectral factor of Φ. Furthermore, the definitions of (stochasti-
cally) minimal, outer, etc., spectral factor can be extended in a straightforward manner
to this general case.

The J-spectral factorization problem occurs naturally in a wide variety of problems
in Systems and Control Theory, such as, to mention just a few relevant areas,

1) H∞ control theory and LQ optimal games Yakubovich [1971], Banker [1972],
Ball and Cohen [1987], Green et al. [1990], Ball et al. [1991], Takaba et al. [1994],
Meinsma [1994], Stoorvogel [1996], Kwakernaak [1996], Ball and van der Schaft
[1996], Hassibi et al. [1999], Iftime [2002],
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2) Robust estimation and smoothing Colaneri et al. [1998], Colaneri and Ferrante
[2002, 2004, 2006],

3) Optimal Hankel-norm model reduction Ball and Ran [1987a,b],

4) Stability analysis with Integral Quadratic Constraints (IQC) Goh [1996], Seiler
[2015], Carrasco and Seiler [2015], Wang et al. [2016], Hu et al. [2016].

In the past decades, many works have addressed the J-spectral factorization prob-
lem, most of them considering the continuous-time case. More precisely, we can
distinguish two main lines of research: The first one focuses on the existence of (mini-
mal) J-spectral factorizations, whereas the second one on the numerical computation
of J-spectral factorizations.

With reference to the first research topic, it is well-known that a J-spectral fac-
torization is not always guaranteed to exist for a general para-Hermitian rational
matrix-valued function55A para-Hermitian

matrix-valued function is
a matrix-valued function
which takes Hermitian
values on the imaginary
axis in the continuous-
time case, or on the unit
circle in the discrete-time
case.

. In addition, even if such a factorization exists, a minimal

one may fail to exist (see, e.g., Clements [2000] for the continuous-time case and
Colaneri and Ferrante [2006] for the discrete-time case). This is one of the most
counterintuitive features of J-spectral factorization, when compared to the “standard”
spectral factorization, for which, as mentioned before, a minimal factorization always
exists. Conditions for the existence of a J-spectral factorization, and, in particular, for
the existence of a minimal one have been investigated in several papers. A general
existence condition, without any restriction on the analyticity regions of the J-spectral
factor and its inverse, is presented in Gohberg et al. [1982]66See also Ðoković

[1993] for a shorter proof
and an extension to the
discrete-time case.

. This result states that an
arbitrary J-spectral factorization exists if and only if the considered para-Hermitian
matrix-valued function is a J-spectral density, i.e., it has constant signature on the
imaginary axis in the continuous time case, or on the unit circle in the discrete-time
case. The main result of Ran [2003] is a necessary and sufficient condition for the
existence of an outer J-spectral factor in terms of state-space realizations. Another
existence criterion, stated in the frequency domain, is proposed in Meinsma [1995].
In Ran and Rodman [1991], the authors give a condition for the existence of an ar-
bitrary J-spectral factorization which is minimal everywhere with the exception of
one pre-selected point. In a connected work [Ran and Zizler, 1997, Sec. 6] it has been
shown that a minimal factorization generically exist. Further, a condition for the
existence of a complete set of minimal J-spectral factors is put forward in Karelin
et al. [2001]. Finally, papers Petersen and Ran [2003], Lerer et al. [2004] address the
existence and parametrization of minimal J-spectral factors in the non-square case.
It is worth remarking that all the above-cited works on the existence of a minimal J-
spectral factorization deal with the continuous-time case and adopt some facilitating
assumptions on the J-spectral density, such as full normal rankness77The property of

having full normal rank is
often called regularity.

, properness, and
absence of zeros/poles on the imaginary axis.
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With reference to the numerical computation of J-spectral factors in continuous-
time we refer to Shaked and Yaesh [1992], Kwakernaak and Sebek [1994], Aliev and
Larin [1997], Park and Kailath [1997], Trentelman and Rapisarda [1999], Clements
[2000], Stefanovski [2003], Zhong [2005], Zúñiga and Henrion [2006], Oară and Andrei
[2011]. Many of these works address the polynomial case and adopt the same restric-
tive assumptions previously described. The discrete-time case does not seem to have
received much attention, despite its practical relevance in applications. In fact, to the
best of our knowledge, the only works dealing with this setting are Aliev and Larin
[1998], Stefanovski [2004], Oară and Marinică [2013]. In the first two references, several
efficient factorization algorithms for (Laurent) polynomial J-spectra are discussed.
Whereas, in the third work, Riccati-based procedures for solving problems related to
J-spectral factorization (such as the J-lossless factorization problem) are presented.
In particular, these procedures apply in full generality, on the proviso that an arbitrary
starting factorization is available. Nevertheless, these works apparently do not touch
two important issues connected with the problem, namely the minimality properties
of the factorization and the possibility of computing J-spectral factors with prescribed
analyticity regions which differs from the “canonical” ones. These are aspects of cru-
cial importance, for instance, in robust acausal estimation, see, e.g., Colaneri and
Ferrante [2006].

Chapter 5 studies the existence of minimal discrete-time J-spectral factorizations
with prescribed analyticity regions of the factor and of its (right) inverse. We do so
under mild assumptions on the given J-spectral density. In fact, we only require
that the latter function has no poles/zeros on the unit circle, allowing, in particular,
for improper and/or rank deficient J-spectral densities. Our main result consists of
an easily verifiable condition for the existence of such a minimal J-spectral factor.
This condition is given in terms of a decomposition of a Laurent polynomial matrix
naturally connected to the starting J-spectral density. In addition, whenever such a
condition is met, we provide an iterative algorithm for the calculation of the desired
J-spectral factor. Remarkably, the proposed algorithm can be seen as a generalization
of the discrete-time “standard” spectral factorization algorithm described in Chapter 2.
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2. A general spectral factorization result

à la Youla

I
N this chapter, we consider an arbitrary matrix-valued, rational spectral density
Φ(z) and we show, with a constructive proof, that Φ(z) admits a minimal spectral
factorization as in Problem 1.1. Further, the spectral factor and its (right) inverse
are analytic in regions that may be selected with the only constraint that they

satisfy some symplectic-type conditions. By suitably selecting the analyticity regions,
this extremely general result particularizes into a corollary that may be viewed as
the discrete-time counterpart of the matrix factorization method devised by Youla in
his celebrated work Youla [1961]. Surprisingly, the discrete-time counterpart of this
fundamental result has been so far missing. The reason could be due to the difficulty
of deriving a result that parallels the Oono–Yasuura algorithm Oono and Yasuura
[1954] that constitutes a crucial step in Youla’s work.

The present chapter is based on Baggio and Ferrante [2016a] and is organized as
follows. In Section 2.1, we introduce the problem and state our main result, after a few
preliminary definitions. In Section 2.2, we review some notions from polynomial and
rational matrix theory. Section 2.3 is devoted to collect a number of auxiliary results.
In Section 2.4, we derive the proof of our main result and present some by-products
of our theory. Section 2.5 shows a numerical example of the proposed factorization
algorithm.

2.1 Problem formulation and main result

THE object of our study is the discrete-time spectral factorization problem previ-
ously introduced in Problem 1.1: Given a arbitrary rational matrix-valued spectral

density Φ(z) ∈S
n

rat(T), i.e., a rational matrix-valued function that takes positive semi-
definite values on all the points of T where is defined, we are interested in finding a
factorization of the form

Φ(z) =W ∗(z)W (z),

with W (z) being a rational spectral factor. Clearly, this problem admits many solutions.
For control applications we are interested in solutions featuring some additional
properties. Typical requirements are minimal “complexity” (as measured by the
McMillan degree of W (z)), full row-rank of W (z), and the fact that the poles and/or
the zeros of W (z) lie in certain regions of the complex plane. The most general kind of
analyticity regions compatible with the problem are the following ones.
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Definition 2.1 ((Weakly) Unmixed-symplectic region). A set A ⊂C is unmixed-symple-

ctic if
A ∪A

∗ =C\T, and A ∩A
∗ =;,

where A ∗ := { z : z−1 ∈A }. The set A ⊂C is weakly unmixed-symplectic if

A ∪A
∗ =C, and A ∩A

∗ =T.

Remark 2.1. The reason for the term “symplectic” is that A and A ∗ are symmetric
with respect to the unit circle, a type of symmetry induced by symplectic property, see,
e.g., Ferrante and Levy [1998]. In this spirit, the corresponding property in continuous-
time, where A ∗ := { z : −z ∈A }, A ∪A ∗ is the whole complex plane with the excep-
tion of the imaginary axis and A ∩A ∗ =;, could be called “unmixed-Hamiltonian".

The following definition will be used in what follows.

Definition 2.2 (All-pass or para-unitary matrix). A rational matrix G(z) ∈ R(z)n×n is
said to be all-pass or para-unitary if

G∗(z)G(z) =G(z)G∗(z) = In .

Remark 2.2. Notice that an all-pass matrix is unitary in the ordinary sense on the unit
circle. The term all-pass is mostly used in control and estimation theory, whereas the
term para-unitary matrix in network synthesis theory. Moreover, observe that the pre-
vious definition can be extended to complex rational matrices G(z) ∈C(z)n×n which
are unitary on T by letting G∗(z) :=G>(1/z). These matrices are called paraconjugate-
unitary or simply all-pass, as in the real case. We will exploit this “complex” extension
in the next chapter.

We are now ready for our main result, whose proof is deferred to Section 2.4.

Theorem 2.1. Let Φ(z) ∈S
n

rat(T) of normal rank rk(Φ) = r 6= 0. Let Ap and Az be two

unmixed-symplectic sets. Then, there exists a function W (z) ∈R(z)r×n such that

1) Φ(z) =W ∗(z)W (z).

2) W (z) is analytic in Ap and its right inverse W −R (z) is analytic in Az .

3) W (z) is stochastically minimal, i.e., the McMillan degree of W (z) is a half of the

McMillan degree of Φ(z).

Moreover,

4) If Ap = Az then W (z) satisfying points 1), and 2) is unique up to a constant,

orthogonal matrix multiplier on the left, i.e., if W1(z) also satisfies points 1), and

2) then W1(z) = T W (z) where T ∈ R
r×r is orthogonal. Therefore, if Ap = Az ,

points 1) and 2) imply point 3).
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5) If Φ(z) = L∗(z)L(z) is any factorization in which L(z) ∈R(z)r×n is analytic in Az ,

then L(z) = V (z)W (z), V (z) ∈ R(z)r×r being an all-pass matrix analytic in Az .

Moreover, given an arbitrary all-pass matrix V (z) ∈ R(z)r×r being analytic in

Ap , L(z) :=V (z)W (z) is analytic in Ap and satisfies Φ(z) = L∗(z)L(z), so that, if

Ap =Az =: A then Φ(z) = L∗(z)L(z) is a factorization in which L(z) ∈ R(z)r×n

is analytic in A if and only if L(z) =V (z)W (z), V (z) ∈R(z)r×r being an all-pass

matrix analytic in A .

6) If Φ(z) is analytic on the unit circle, then points 1)-5) still hold even if Ap is

weakly unmixed-symplectic.

7) If Φ(z) is analytic on the unit circle and the rank of Φ(z) is constant on the unit

circle, then points 1)-5) still hold even if Ap and/or Az are weakly unmixed-

symplectic.

Of course, the most common requirement in Control Theory is that W (z) is outer
which corresponds to setting Ap = Az = { z ∈ C : |z| > 1} in the general case, Ap =
{ z ∈ C : |z| ≥ 1} and Az = { z ∈ C : |z| > 1} in the case when Φ(z) is analytic on the
unit circle and Ap =Az = { z ∈C : |z| ≥ 1} when Φ(z) is analytic on the unit circle and
the rank of Φ(z) is constant on the unit circle. This particular case of the previous
result corresponds to the following result whose first six points are the discrete-time
counterpart of the celebrated Youla’s theorem [Youla, 1961, Thm. 2].

Theorem 2.2. Let Φ(z) ∈ S
n

rat(T) of normal rank rk(Φ) = r 6= 0. Then, there exists a

matrix W (z) ∈R(z)r×n such that

1) Φ(z) =W ∗(z)W (z).

2) W (z) and its right inverse W −R (z) are both analytic in { z ∈C : |z| > 1}.

3) W (z) is unique up to a constant, orthogonal matrix multiplier on the left, i.e.,
if W1(z) also satisfies points 1) and 2), then W1(z) = T W (z) where T ∈ R

r×r is

orthogonal.

4) Any factorization of the form Φ(z) = L∗(z)L(z) in which L(z) ∈R(z)r×n is analytic

in { z ∈C : |z| > 1}, has the form L(z) =V (z)W (z), where V (z) ∈R(z)r×r is an all-

pass matrix analytic in { z ∈C : |z| > 1}. Conversely, any L(z) =V (z)W (z), where

V (z) ∈ R(z)r×r is an all-pass matrix analytic in { z ∈ C : |z| > 1}, is a spectral

factor of W (z) analytic in { z ∈C : |z| > 1}.

5) If Φ(z) is analytic on the unit circle, then W (z) is analytic in { z ∈C : |z| ≥ 1}.

6) If Φ(z) is analytic on the unit circle and the rank of Φ(z) is constant on the unit

circle, then W (z) and its right inverse W −R (z) are both analytic in { z ∈C : |z| ≥ 1}.
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7) W (z) satisfying points 1) and 2) is stochastically minimal, i.e., the McMillan

degree of W (z) is a half of the McMillan degree of Φ(z).

Remark 2.3. Notice that the hypothesis rk(Φ) 6= 0 of the previous results is only as-
sumed to rule out the trivial case of an identically zero spectrum Φ(z) for which the
only spectral factorizations clearly correspond to W (z) = 0m,n , with m being arbitrary,
so that, in this case, W (z) cannot be chosen to be full row-rank.

Remark 2.4. A natural question which may have occurred to the reader at this point is
the following one: Why not to use a “brute-force” approach that exploits the well-known

bilinear transformation technique to recover Youla’s result [Youla, 1961, Thm. 2] in

discrete-time? Actually, there are many reasons to prefer a more “genuine” approach
entirely conceived in the discrete-time setting. A main reason is that the bilinear
transformation is not defined for every point in the complex plane and, therefore,
this prevents the application of this technique in full generality. Moreover, w.r.t. the
constructive procedure leading to the discrete-time result, using the bilinear trans-
formation approach unnecessarily complicates the resulting formulas. Ultimately, it
seems to be a well-accepted fact in the Systems and Control community that, as stated
in [Zhou et al., 1996, p. 559] (and pointed out in many papers, e.g., Ferrante and Picci
[2017]),

“[...] It is generally more appealing to give derivations in the [discrete-
time] coordinates of the original data, also algorithm may be more reliable
if generated for the specific model class.”

2.2 Background on rational matrix-valued functions

FOR the benefit of the reader, we try to outline here a self-contained summary of the
main notions and results from polynomial and rational matrix theory that will be

used in the rest of this chapter (and in the rest of this part, as well).
Let f (z) = p(z)/q(z) ∈R(z), q(z) 6= 0, be a nonzero rational function. We can always

write f (z) in the form

f (z) =
n(z)

d(z)
(z −α)ν, ∀α ∈C,

where ν is an integer and n(z), d(z) ∈R[z] are nonzero polynomials such that n(α) 6= 0
and d(α) 6= 0. The integer ν is called valuation of f(z) at α and we denote it with
the symbol vα( f ). The valuation of f (z) at infinity is defined as v∞( f ) := deg q(z)−
deg p(z), where deg(·) denotes the degree of a polynomial. If f (z) is the null function,
by convention, vα( f ) = +∞ for every α ∈ C. If vα( f ) < 0, then α ∈ C is called a pole

of f (z) of multiplicity −vα( f ). If vα( f ) > 0, then α ∈ C is called a zero of f (z) of
multiplicity vα( f ). The rational function f (z) is said to be proper if v∞( f ) ≥ 0, strictly

proper if v∞( f ) > 0.
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A polynomial matrix G(z) ∈R[z]m×n is said to be unimodular if it has a polynomial
inverse (either left, right or both). Similarly, a L-polynomial matrix G(z) ∈R[z, z−1]m×n

is said to be L-unimodular if it has a L-polynomial inverse (either left, right or both). A
square polynomial matrix G(z) ∈R[z]n×n is unimodular if and only if its determinant
is a nonzero constant α ∈R0. On the other hand, a square L-polynomial matrix G(z) ∈
R[z, z−1]n×n is L-unimodular if and only if its determinant is a nonzero monomial αzk ,
α ∈R0, k ∈Z.

Consider now a nonzero real L-polynomial vector v(z) ∈R[z, z−1]p . We can write it
as

v(z) = vk zk +vk+1zk+1 +·· ·+vK−1zK−1 +vK zK ,

with vk and vK , k ≤ K , nonzero vectors inR
p . We say that the integer k is the minimum-

degree of v(z), written min deg v, while the integer K is the maximum-degree of v(z),
written max deg v.8 8If v(z) is the zero

vector, then min deg v

and max deg v are set to
−∞, by convention.

Let G(z) ∈R[z, z−1]m×n and let ki and Ki be the minimum- and maximum-degree
of the i -th column of G(z), for all i = 1. . . ,m. We define the highest-column-degree

coefficient matrix of G(z) as the constant matrix Ghc ∈R
m×n whose i -th column con-

sists of the coefficients of the monomials zKi in the same column of G(z). Further,
we define the lowest-column-degree coefficient matrix of G(z) as the constant matrix
G lc ∈R

m×n whose i -th column consists of the coefficients of the monomials zki in the
same column of G(z). By considering, instead of the columns, the rows of G(z) we can
define, along the same lines in the above, the highest-row-degree coefficient matrix of
G(z), Ghr ∈R

m×n , and the lowest-row-degree coefficient matrix of G(z), G lr ∈R
m×n .

A classical result in rational matrix theory is the following [Youla, 1961, Sec. 2].

Theorem 2.3 (Smith–McMillan canonical form). Let G(z) ∈R(z)m×n and let rk(G) = r .

There exist unimodular matrices U (z) ∈R[z]m×r and V (z) ∈R[z]r×n such that

D(z) : =U (z)G(z)V (z) = diag

[
ε1(z)

ψ1(z)
,
ε2(z)

ψ2(z)
, . . . ,

εr (z)

ψr (z)

]
, (2.1)

where ε1(z),ε2(z), . . . ,εr (z),ψ1(z),ψ2(z), . . . ,ψr (z) ∈R[z] are monic polynomials satis-

fying the conditions: (i) εi (z) and ψi (z) are relatively prime, i = 1,2, . . . ,r , (ii) εi (z) |
εi+1(z) and ψi+1(z) |ψi (z), i = 1,2, . . . ,r −1.9

9The notation p(z) |
q(z), with p(z), q(z) ∈
R[z], means that p(z) di-
vides q(z).The rational matrix D(z) in (2.1) is known as the Smith–McMillan canonical form

of G(z). (In general, we say that a rational matrix is canonic if it is of the form in (2.1)
and satisfies the conditions of the above theorem.) The (finite) zeros of G(z) coincide
with the zeros of εr (z) and the (finite) poles of G(z) with the zeros of ψ1(z). Note that,
unlike what happens in the scalar case, the set of zeros and poles of a rational matrix
may not be disjoint.
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Remark 2.5. Usually the Smith–McMillan canonical form of G(z) is defined as the
quasi-diagonal form (see, e.g. , [Kailath, 1980, Ch. 6, §5])

D̃(z) =
[

D(z) 0r,n−r

0m−r,r 0m−r,n−r

]
,

and the unimodular matrices to obtain this form are taken to be square, namely
Ũ (z) ∈ R[z]m×m and Ṽ (z) ∈ R[z]n×n . It is however apparent that the decomposi-
tion Theorem 2.3 is equivalent to the previous one. Indeed it suffices to define
U (z) = Ũ (z)[Ir | 0m−r ]> and V (z) = [Ir | 0n−r ]>Ṽ (z) and notice that these two ma-
trices are again unimodular since they are polynomial and their left and right inverse,
respectively, are polynomial as well.

Remark 2.6. Theorem 2.3 extends also to the case of complex matrix-valued rational
functions, i.e., elements of C(z)m×n . This generalization will be used in Chapter 3.

Let G(z) ∈ R(z)m×n and write G(z) = C (z)D(z)F (z), where D(z) is the Smith–
McMillan form of G(z) and C (z),F (z) are unimodular matrices. If rk(G) = m = n,
then the inverse of G(z) has the form

G−1(z) = F−1(z)D−1(z)C−1(z)

and D−1(z) coincides with the Smith–McMillan canonical form of G−1(z), up to a
permutation of the diagonal elements. Therefore, the poles of G−1(z) are exactly the
zeros of G(z). Likewise, if G(z) has normal rank m (n), there always exists a right
(left) inverse of G(z) such that the poles of G−R (z) (G−L(z)) coincide with the zeros of
G(z).1010 The latter fact

is not true for all the
right/left inverses of G(z),
since, in general, the ze-
ros of G(z) are among the
poles of all such inverses,
see [Kailath, 1980, Ch. 6,
§5, Ex. 14].

Indeed, we may take

G−R (z) = F−R (z)D−1(z)C−1(z), (2.2)

G−L(z) = F−1(z)D−1(z)C−L(z). (2.3)

In the following, we consider only right and left inverses of the form (2.2) and (2.3),
respectively.

Let α1,α2, . . . ,αt be the (finite) zeros and (finite) poles of G(z). We can write the
Smith–McMillan canonical form of G(z) as

diag
[

(z −α1)ν
(1)
1 · · · (z −αt )ν

(1)
t , . . . , (z −α1)ν

(r )
1 · · · (z −αt )ν

(r )
t

]
.

The integer exponents ν(1)
i

≤ ν(2)
i

≤ ·· · ≤ ν(r )
i

, appearing in the above expression, are
called the structural indices of G(z) at αi and they are used to represent the zero-pole
structure at αi of G(z). To obtain the zero-pole structure at infinity of G(z), we can
proceed as follows. We make a change of variable, z 7→λ−1, and compute the Smith–
McMillan form of G(λ−1), then the structural indices of G(λ−1) at λ= 0 will give the
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set of structural indices of G(z) at z =∞. Lastly, if p1, . . . , ph are the distinct poles (the
pole at infinity included) of G(z), we recall that the McMillan degree of G(z) can be
defined as (see, e.g., [Kailath, 1980, Ch. 6, §5])

δM (G) :=
h∑

i=1
δp (G ; pi ), (2.4)

where δp (G ; pi ) is the degree of the pole pi , i.e., the largest multiplicity that pi pos-
sesses as a pole of any minor11 11We recall that a

minor of a matrix A is
the determinant of some
smaller square matrix,
cut down from A by re-
moving one or more of its
rows, indexed by tuple i,
or columns, indexed by
tuple j. If, furthermore,
i = j the minor is called a
principal minor of A.

of G(z). In particular, if D(z) in (2.1) is the Smith–
McMillan form of G(z) and G(z) has no pole at infinity then δp (G ; pi ) = δp (D ; pi ) for
all i = 1, . . . ,h, which, in turn, yields δM (G) = δM (D) =

∑r
i=1 degψi (z).

2.3 Preliminary analysis

IN this section, we collect a set of lemmata which we will exploit in the constructive
proof of Theorem 2.1.

Lemma 2.1. A matrix G(z) ∈R(z)m×n is analytic in C0 together with its inverse (either

right, left or both) if and only if it is a L-unimodular polynomial matrix.

Proof. If G(z) is L-unimodular, then G(z) has an inverse (either left, right or both)
which is L-polynomial. Hence, the only possible finite zeros/poles of G(z) are located
at z = 0. This, in turn, implies that G(z) must be analytic together with its inverse in
C0.

Vice versa, suppose that G(z) is analytic with its inverse in C0. Firstly, we notice
that the existence of a left or right inverse for G(z) implies that the normal rank
of G(z) is either r = n or r = m, respectively. Without loss of generality, we can
suppose that r = n. By virtue of Theorem 2.3, we can write G(z) = C (z)D(z)F (z),
where C (z) ∈R[z]m×n , F (z) ∈R[z]n×n are unimodular (and, a fortiori, L-unimodular)
polynomial matrices, respectively, and D(z) ∈R(z)n×n is diagonal, canonic of the form

D(z) = diag

[
ε1(z)

ψ1(z)
,
ε2(z)

ψ2(z)
, . . . ,

εn(z)

ψn(z)

]
.

The analyticity of G(z) in C0 implies that all ψi (z) ∈ R[z], i = 1, . . . ,n, are nonzero
monomials. The Smith–McMillan canonical form of G−L(z) is given by

diag

[
ψn(z)

εn(z)
,
ψn−1(z)

εn−1(z)
, . . . ,

ψ1(z)

ε1(z)

]
.

Hence, the analyticity of G−L(z) in C0 implies that all εi (z) ∈ R[z], i = 1, . . . ,n, are
nonzero monomials. Therefore, D(z) is a L-unimodular polynomial matrix. Since
G(z) =C (z)D(z)F (z) is the product of three L-unimodular polynomial matrices, G(z)
must be a L-unimodular polynomial matrix.
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Lemma 2.2. Let A ⊂ C be an unmixed-symplectic set. An all-pass matrix G(z) ∈
R(z)n×n analytic in A with inverse analytic in A is a constant orthogonal matrix.

Proof. The analyticity of the inverse of G(z) in A implies that of G(z−1) in the same
region, and therefore that of G(z) in A ∗. We also notice that in the unit circle it holds
G∗(e jω)G(e jω) =G>(e− jω)G(e jω) = In , ∀ω ∈ [0,2π), and we can write out the diagonal
elements in expanded form as

n∑

i=1
|[G(e jω)]i k |2 = 1, ∀k = 1, . . . ,n, ∀ω ∈ [0,2π).

The latter equation implies that

|[G(e jω)]i k | ≤ 1, ∀ i , k = 1, . . . ,n, ∀ω ∈ [0,2π),

and, therefore, we proved the analyticity of G(z) on the unit circle. By Definition 2.1
of unmixed-symplectic set, it follows that G(z) is analytic on the entire extended
complex plane. This means that G(z) is analytic and bounded in C. Hence, we can
apply Liouville’s Theorem [Lang, 1985, Ch. V, Thm. 1.4] and conclude that G(z) must
be a constant orthogonal matrix.

Remark 2.7. With the usual choice A = { z ∈ C : |z| > 1}, the previous lemma reads
as follows: An all-pass matrix G(z) ∈R(z)n×n analytic in { z ∈C : |z| > 1} with inverse
analytic in { z ∈C : |z| > 1} is a constant orthogonal matrix.

Definition 2.3 (Left-standard factorization). Let G(z) ∈ R(z)m×n and let rk(G) = r . A
decomposition of the form G(z) = A(z)∆(z)B(z) is called a left-standard factorization

if

1) ∆(z) ∈R(z)r×r is diagonal and analytic with its inverse in { z ∈C0 : |z| 6= 1};

2) A(z) ∈R(z)m×r is analytic together with its left inverse in { z ∈C0 : |z| ≤ 1};

3) B(z) ∈R(z)r×n is analytic together with its right inverse in { z ∈C : |z| ≥ 1}.

Remark 2.8. If, in Definition 2.3, A(z) and B(z) are interchanged, we have a right-

standard factorization. Hence, it follows that any left-standard factorization of G(z)
generates a right-standard factorization of G>(z), G−1(z) (if G(z) is nonsingular),
G(z−1), e.g., in the first case we have G>(z) = B>(z)∆(z)A>(z).

Lemma 2.3. Any rational matrix G(z) ∈ R(z)m×n of normal rank rk(G) = r admits a

left-standard factorization.

40 |



Chapter 2. A general spectral factorization result à la Youla

Proof. In view of Theorem 2.3, we can write G(z) = C (z)D(z)F (z), where C (z) ∈
R[z]m×r , F (z) ∈ R[z]r×n are unimodular polynomial matrices and D(z) ∈ R(z)r×r is
diagonal and canonic of the form

D(z) = diag

[
ε1(z)

ψ1(z)
,
ε2(z)

ψ2(z)
, . . . ,

εr (z)

ψr (z)

]
.

We factor εi (z) ∈ R[z] and ψi (z) ∈ R[z], i = 1, . . . ,r , in D(z) into the product of three
polynomials: the first without zeros in { z ∈ C : |z| ≤ 1}, the second without zeros in
{ z ∈C : |z| 6= 1} and the third without zeros in { z ∈C : |z| ≥ 1}. Thus, it is possible to
write

D(z) = D−(z)∆(z)D+(z),

where D−(z) and its inverse are analytic in { z ∈ C : |z| ≤ 1}, ∆(z) and its inverse in
{ z ∈C : |z| 6= 1} and D+(z) and its inverse in { z ∈C : |z| ≥ 1}. Eventually, by choosing
A(z) :=C (z)D−(z) and B(z) := D+(z)F (z), we have that G(z) = A(z)∆(z)B(z) is a left-
standard factorization of G(z).

Left-standard factorizations are not unique. Indeed, any two decompositions are
connected as follows.

Lemma 2.4. Let G(z) ∈ R(z)m×n be a rational matrix of normal rank rk(G) = r and

let G(z) = A(z)∆(z)B(z) = A1(z)∆1(z)B1(z) be two left-standard factorizations of G(z).

Then,

A1(z) = A(z)M−1(z), B1(z) = N (z)B(z),

where M(z) ∈R[z, z−1]r×r and N (z) ∈R[z, z−1]r×r are two L-unimodular polynomial

matrices such that

M(z)∆(z)N−1(z) =∆1(z). (2.5)

Proof. By assumption,

G(z) = A(z)∆(z)B(z) = A1(z)∆1(z)B1(z)

which, in turn, implies

∆
−1
1 (z)A−L

1 (z)A(z)∆(z) = B1(z)B−R (z). (2.6)

By Definition 2.3 of left-standard factorization, the right-hand side of (2.6) is analytic
in { z ∈ C : |z| ≥ 1}, while the left-hand side of (2.6) in { z ∈ C0 : |z| < 1}. Therefore,
it follows that B1(z)B−R (z) is analytic in C0. Moreover, the inverse of B1(z)B−R (z)
satisfies

[B1(z)B−R (z)]−1 =∆
−1(z)[A−L

1 (z)A(z)]−1
∆1(z)

and is also analytic in C0. Thus, by Lemma 2.1, N (z) := B1(z)B−R (z) must be a L-
unimodular matrix. Similarly, M(z) := A−L

1 (z)A(z) is a L-unimodular matrix. Finally, a
rearrangement of (2.6) yields (2.5).
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Remark 2.9. Notice that, by replacing the word “left-standard” with the word “right-
standard” in Lemma 2.3 and Lemma 2.4, we obtain, by minor modifications in the
proofs, a right-standard counterpart of Lemma 2.3 and Lemma 2.4.

Let Φ(z) ∈ R(z)n×n be a (discrete-time) para-Hermitian matrix, i.e., a rational
matrix which takes Hermitian values on the unit circle, of normal rank rk(Φ) = r and
let Φ(z) = A(z)∆(z)B(z) be a left-standard factorization of Φ(z). We have that

Φ(z) =Φ
∗(z) = B∗(z)∆∗(z)A∗(z)

is also a left-standard factorization of Φ(z). In particular, ∆∗(z) is equal to ∆(z), except
for multiplication of suitable monomials of the form ±zki in its diagonal entries, i.e.,

∆
∗(z) =Σ(z)∆(z),

where
Σ(z) = diag[e1(z),e2(z), . . . ,er (z)] (2.7)

and ei (z) =±zki , ki ∈Z, i = 1, . . . ,r . By invoking Lemma 2.4, we can write

A∗(z) = N (z)B(z), B∗(z) = A(z)M−1(z), (2.8)

where N (z), M(z) ∈R[z, z−1]r×r are L-unimodular matrices.
The following two lemmata are used to establish a further characterization of a

rational matrix when it is positive semi-definite upon the unit circle.

Lemma 2.5. Let G(z) ∈R(z)n×n and let Y be a region of the complex plane such that

1) G(z) is Hermitian on Y;

2) x>G(λ)x ≥ 0, ∀x ∈R
n and ∀λ ∈ Ỹ⊆Y for which G(λ) has finite entries.

Let D(z) ∈R(z)r×r be the Smith–McMillan canonical form of G(z) and denote by g (`)
ij

and d (`)
ij

the `×` minors (1 ≤ `≤ r ) of the rational matrices G(z) and D(z), respectively,

obtained by selecting those rows and columns whose indices appear in the ordered

`-tuples i and j, respectively. Then,

min
i

vα(d (`)
ii

) = min
i

vα(g (`)
ii

), ∀α ∈Y.

Proof. Firstly, we recall that for any rational matrix G(z) it holds

min
i

vα(d (`)
ii

) = min
ij

vα(d (`)
ij

) = min
ij

vα(g (`)
ij

), ∀α ∈C.

The latter result is well-known and is presented, for instance, as an exercise in [Kailath,
1980, Ch. 6, §5, Ex. 6]. Hence, it remains to prove that

min
ij

vα(g (`)
ij

) = min
i

vα(g (`)
ii

), ∀α ∈Y. (2.9)
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Since G(z) is Hermitian positive semi-definite on the region Ỹ, it admits a decom-

position of the form G(λ) =W (λ)W (λ)
>

for all λ ∈ Ỹ. By applying the Binet–Cauchy
Theorem (see [Gantmacher, 1959, Vol. I, Ch. 1, §2]), we have

g (`)
ij

(λ) =
∑

h

w (`)
ih

(λ)w (`)
jh

(λ), ∀λ ∈ Ỹ, (2.10)

g (`)
ii

(λ) =
∑

h

w (`)
ih

(λ)w (`)
ih

(λ) =
∑

h

∣∣∣w (`)
ih

(λ)
∣∣∣
2

, ∀λ ∈ Ỹ, (2.11)

where g (`)
ij

(λ) and w (`)
ij

(λ) denote the `×` minors of matrices G(λ) and W (λ), obtained
by selecting those rows and columns whose indices appear in the ordered `-tuples i

and j, respectively. Moreover, in both the summations (2.10)-(2.11), h := (h1, . . . ,h`),
1 ≤ h1 < ·· · < h` ≤ n, runs through all such multi-indices. By using Cauchy–Schwarz
inequality and (2.10)-(2.11), we have

∣∣∣g (`)
ij

(λ)
∣∣∣=

∣∣∣∣∣
∑

h

w (`)
ih

(λ)w (`)
jh

(λ)

∣∣∣∣∣

≤
(
∑

h

∣∣∣w (`)
ih

(λ)
∣∣∣
2 ∑

h

∣∣∣w (`)
jh

(λ)
∣∣∣
2
)1/2

=
(
g (`)

ii
(λ)g (`)

jj
(λ)

)1/2

≤ max
{

g (`)
ii

(λ), g (`)
jj

(λ)
}

, ∀λ ∈ Ỹ. (2.12)

The latter inequality implies that for every zero α ∈Y of multiplicity k of a minor of
G(z), there exists at least one principal minor of G(z) which has the same α either as a
zero of multiplicity less than or equal to k or a pole of multiplicity greater than or equal
to 0. Similarly, inequality (2.12) implies also that for every pole α ∈Y of multiplicity
k of a minor of G(z), there exists at least one principal minor of G(z) which has the
same pole of multiplicity greater than or equal to k. Therefore, we conclude that (2.9)
holds.

Lemma 2.6. Let Φ(z) ∈S
n

rat(T) of normal rank rk(Φ) = r and let D(z) ∈R(z)r×r be its

Smith–McMillan canonical form. Then, the zeros and poles on the unit circle of the

diagonal elements of D(z) have even multiplicity.

Proof. Firstly, we assume that the numerators and denominators of all entries in
Φ(z) are relatively prime polynomials. Let α1 = e jω1 , α2 = e jω2 , . . . , αt = e jωt , be the
zeros/poles on the unit circle of Φ(z) and let ν(1)

i
, ν(2)

i
, . . . , ν(r )

i
, (ν(1)

i
≤ ν(2)

i
≤ ·· · ≤ ν(r )

i
),

be the structural indices of Φ(z) at αi , i = 1, . . . , t . Since Φ(z) is positive semi-definite
on the unit circle, one can directly verify that the zeros and poles on the unit circle of
the principal minors of Φ(z) must have even multiplicity. Now, we are in position to
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apply Lemma 2.5. By considering the minors of order `= 1, it follows that ν(1)
i

is even
for all i = 1,2, . . . , t . Similarly, by considering the minors of order `= 2 in Lemma 2.5, it
follows that ν(1)

i
+ν(2)

i
is even for all i = 1,2, . . . , t . Since ν(1)

i
is even, then also ν(2)

i
must

be even for all i = 1,2, . . . , t . Iterating the argument, we conclude that every zero/pole
on the unit circle of the diagonal elements of D(z) has even multiplicity.

Remark 2.10. Lemma 2.5 can also be used to obtain an alternative proof of [Youla, 1961,
Lemma 4, point 2], which represents the continuous-time counterpart of Lemma 2.6.

Lemma 2.7. Let Φ(z) ∈S
n

rat(T) of normal rank rk(Φ) = r and let D(z) ∈R(z)r×r be its

Smith–McMillan canonical form. Then D(z) can be written as

D(z) =Σ(z)Λ∗(z)Θ∗(z)Θ(z)Λ(z) (2.13)

where Λ(z) is diagonal, canonic and analytic with its inverse in { z ∈C : |z| ≥ 1} and, if

z = 0 is either a zero, pole or both of D(z), Λ(z) has the same structural indices at z = 0
of D(z); Θ(z) is diagonal, canonic and analytic with its inverse in C \T; Σ(z) has the

form

Σ(z) = diag[e1(z),e2(z), . . . ,er (z)] , (2.14)

with ei (z) =αi zki , αi ∈R0, ki ∈Z, i = 1, . . . ,r .

Proof. By direct computation, we obtain

D∗(z) =Σ
′(z)D̄(z), (2.15)

where D̄(z) is canonic and Σ
′(z) is a diagonal matrix with elements αzk , α ∈R0, k ∈Z,

on its diagonal. Since Φ(z) is a spectrum, we can write

Φ(z) =C (z)D(z)F (z) = F∗(z)D∗(z)C∗(z) =Φ
∗(z),

The matrices F (z) ∈ R[z]n×r , C (z) ∈ R[z]r×n , are unimodular, while F∗(z), C∗(z) are
L-unimodular. By Lemma 2.1, F (z), C (z), F∗(z), C∗(z) are analytic in C0 with their
inverses. Thus, we have (see [Kailath, 1980, Ch. 6, §5, Ex. 6])

min
i

vα(d (`)
ii

) = min
i

vα(d∗(`)
ii

), ∀α ∈C0, ∀` : 1 ≤ `≤ r,

where d (`)
ii

and d∗(`)
ii

denote the `×` minors of D(z) and D∗(z), respectively, obtained
by selecting those rows and columns whose indices appear in the ordered `-tuple i.
The previous equation implies that, for every α ∈C0, being either a pole, zero or both
of D(z), D∗(z) has the same structural indices at α of D(z). Therefore, since by (2.15)
D̄(z) is canonic, it follows that

D∗(z) =Σ
′′(z)D(z)
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where Σ
′′(z) is diagonal with elements αzk , α ∈ R0, k ∈ Z, on its diagonal. This

means that any zero/pole at α ∈ C0 in the diagonal terms of D(z) is accompanied
by a zero/pole at α−1, and we can always write D(z) as

D(z) =Σ1(z)Λ∗(z)∆(z)Λ(z), (2.16)

where Σ1(z) is diagonal with elements αzk , α ∈ R0, k ∈ Z, on its diagonal; Λ(z) and
∆(z) are diagonal, canonic and analytic with their inverse in { z ∈C : |z| ≥ 1} and C\T,
respectively. Moreover, if z = 0 is either a pole, zero or both of D(z), Λ(z) possesses the
same structural indices at z = 0 of D(z). As a matter of fact, let αi ,k , i = 1, . . . , pk , and
β j ,k , j = 1, . . . , qk , be the zeros and poles, respectively, in { z ∈C0 : |z| < 1} of [D(z)]kk

and let hk ∈Z be the valuation at z = 0 of [D(z)]kk . We can write, for all k = 1, . . . ,r ,

[D(z)]kk = zhk

∏pk

i=1(z −α−1
i ,k )(z −αi ,k )

∏qk

j=1(z −β−1
j ,k )(z −β j ,k )

[∆(z)]kk

= γk
zhk

zqk−pk︸ ︷︷ ︸
[Σ1(z)]kk

z−hk

∏pk

i=1(z−1 −αi ,k )
∏qk

j=1(z−1 −β j ,k )
︸ ︷︷ ︸

[Λ∗(z)]kk

[∆(z)]kk zhk

∏pk

i=1(z −αi ,k )
∏qk

j=1(z −β j ,k )
︸ ︷︷ ︸

[Λ(z)]kk

with γk := (−1)qk−pk

∏qk
j=1β j ,k

∏pk
i=1αi ,k

.

Now, by exploiting Lemma 2.6, ∆(z) can be written as

∆(z) =Θ
2(z) =Σ2(z)Θ∗(z)Θ(z),

with Σ1(z) diagonal with elements ±zk , k ∈ Z, on its diagonal and Θ(z) diagonal,
canonic and analytic together with its inverse in C\T. Finally, we can rearrange D(z)
in the form

D(z) =Σ(z)Λ∗(z)Θ∗(z)Θ(z)Λ(z),

where Σ(z) :=Σ1(z)Σ2(z) has the form in (2.14).

To conclude this section, we report below another useful result.

Lemma 2.8. Let Ψ(z) ∈S
r

rat(T) be L-unimodular and strictly positive definite on the

unit circle. Then, Ψhc is nonsingular if and only if Ψ(z) is a constant matrix.

Proof. If Ψ(z) is a constant matrix then Ψ
hc =Ψ(z) is nonsingular, by definition of

L-unimodular matrix.
Conversely, assume that Ψhc is nonsingular. Let us denote by Ki ∈Z, i = 1, . . . ,r , the

maximum-degree of the i -th column of Ψ(z) and by ki ∈Z, i = 1, . . . ,r , the minimum-
degree of the i -th row of Ψ(z). Since Ψ(z) =Ψ

∗(z), we have that detΨ(z) is a nonzero
real constant and

Ki =−ki , i = 1, . . . ,r. (2.17)
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Moreover, since Ψ(z) is positive definite on the unit circle, the diagonal elements of
Ψ(z) cannot be equal to zero and, therefore, Ki ≥ 0, i = 1, . . . ,r . Actually, the nonsingu-
larity of Ψhc yields

Ki = 0, i = 1, . . . ,r, (2.18)

otherwise one can check, by exploiting the Leibniz formula for determinants, that the
maximum-degree of detΨ(z) would be strictly positive; but this is not possible since,
as noticed above, detΨ(z) is a nonzero real constant and so max deg(detΨ(z)) = 0. By
(2.18), all the entries of Ψ(z) must have maximum-degree less than or equal to zero.
But, by (2.17), ki =−Ki for all i = 1, . . . ,r , and so (2.18) also implies that all the entries
of Ψ(z) must have minimum-degree greater than or equal to zero. We conclude that

max deg[Ψ(z)]i j = min deg[Ψ(z)]i j = 0, i , j = 1, . . . ,r,

and, therefore, Ψ(z) must be a constant matrix.

2.4 Proof of the main theorem

WE are now ready to prove the main result of this chapter. For the sake of clarity
and readability, we first prove the special case of Theorem 2.2 and we then

proceed to the proof of our general Theorem 2.1.
Proof of Theorem 2.2. We first prove statement 3). Let W (z) and W1(z) be two

matrices satisfying 1) and 2). Then,

W ∗(z)W (z) =W ∗
1 (z)W1(z). (2.19)

The latter equation implies V ∗(z)V (z) = Ir , where V (z) :=W1(z)W −R (z) is analytic in
{ z ∈C : |z| > 1}. Thus, V (z) ∈R(z)r×r is an all-pass matrix analytic in { z ∈C : |z| > 1}.
Moreover, we have that ∆1(z) :=W1(z)−V (z)W (z) =W1(z)[In −W −R (z)W (z)] satisfies

∆
∗
1 (z)∆1(z) = [In −W ∗(z)W −R∗(z)]W ∗

1 (z)W1(z)[In −W −R (z)W (z)]

= [In −W ∗(z)W −R∗(z)]W ∗(z)W (z)[In −W −R (z)W (z)] = 0, (2.20)

so that
W1(z) =V (z)W (z) (2.21)

yielding that V −1(z) =W (z)W −R
1 (z) is analytic in { z ∈C : |z| > 1}. In view of Lemma 2.2,

we conclude that V (z) is a constant orthogonal matrix.
Consider now statement 4) and letΦ(z) = L∗(z)L(z) where L(z) ∈R(z)n×r is analytic

in { z ∈C : |z| > 1}. In this case, we can write

L∗(z)L(z) =W ∗(z)W (z).
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The latter equation implies V ∗(z)V (z) = Ir , where V (z) := L(z)W −R (z) and W (z) ∈
R(z)r×n is a rational matrix satisfying 1) and 2). Since L(z) and W −R (z) are both
analytic in { z ∈C : |z| > 1}, then V (z) ∈R(z)r×r is an all-pass matrix analytic in { z ∈C :
|z| > 1}. The same computation that led to (2.21) now gives L(z) =V (z)W (z).

Now, we provide a constructive proof of statements 1) and 2), which represent the
core of the Theorem. The procedure is divided in four steps.

Step 1. Reduce Φ(z) to the Smith–McMillan canonical form. By using the same
standard procedure described, for instance, in [Youla, 1961, Thm. 2], we arrive at

Φ(z) =C (z)D(z)F (z), (2.22)

where C (z) ∈R[z]n×r , F (z) ∈R[z]r×n are unimodular polynomial matrices and D(z) ∈
R(z)r×r is diagonal and canonic.

Step 2. According to Lemma 2.7, we can write D(z) in the form

D(z) =Σ(z)Λ∗(z)∆̃(z)Λ(z), (2.23)

where:

1) Λ(z) ∈R(z)r×r is diagonal, canonic and analytic together with Λ
−1(z) in { z ∈C :

|z| ≥ 1} and, if z = 0 is either a pole, zero or both of D(z), Λ(z) possesses the
same structural indices at z = 0 of D(z);

2) ∆̃(z) :=Θ
∗(z)Θ(z) = ∆̃

∗(z), where Θ(z) ∈ R(z)r×r is diagonal, canonic and ana-
lytic together with Θ

−1(z) in { z ∈C : |z| 6= 1};

3) Σ(z) ∈R(z)r×r is diagonal of the form

Σ(z) = diag[e1(z),e2(z), . . . ,er (z)] ,

where ei (z) =αi zki , αi ∈R0, ki ∈Z, i = 1, . . . ,r .

Let us define
A(z) :=C (z)Σ(z)Λ∗(z), B(z) :=Λ(z)F (z).

We have that Φ(z) = A(z)∆̃(z)B(z) is a left-standard factorization of Φ(z).
Step 3. Let I (z) := B−R (z)Θ−1(z). By (2.8), we have A∗(z) = N (z)B(z) and, therefore,

I∗(z)Φ(z)I (z) = I∗(z)Φ∗(z)I (z)

=Θ
−∗(z)B−R∗(z)B∗(z)∆̃∗(z)N (z)B(z)B−R (z)Θ−1(z)

=Θ
−∗(z)Θ∗(z)Θ(z)N (z)Θ−1(z)

=Θ(z)N (z)Θ−1(z) =: Ψ(z), (2.24)
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where N (z) = A∗(z)B−R (z) ∈R[z, z−1]r×r is a L-unimodular matrix. By (2.24), Ψ(z) is a
spectral density. Actually a good deal more is true. We notice that A(z)∆̃(z)B(z) and
B∗(z)∆̃(z)A∗(z) are two left-standard factorizations of Φ(z). Hence, by replacing ∆1(z)
with ∆̃(z) = ∆̃

∗(z) in (2.5), we obtain

∆̃(z)N (z)∆̃−1(z) = M(z), (2.25)

where M(z) ∈R[z, z−1] is L-unimodular. Since ∆̃(z) =Θ
∗(z)Θ(z) is diagonal and

Θ(z) := diag[θ1(z), . . . ,θr (z)]

is canonic, (2.25) implies that [N (z)]i j is divisible by the L-polynomial [∆̃(z)] j j /[∆̃(z)]i i ,
j ≥ i . But

[∆̃(z)]i i = θ∗i (z)θi (z) = θi (1/z)θi (z) =±zki θ2
i (z),

where ki ∈Z, i = 1, . . . ,r . Hence, [N (z)]i j must be divisible by the polynomial

f 2
i j (z) :=

θ2
j
(z)

θ2
i

(z)
, j ≥ i ,

and, a fortiori, by

fi j (z) =
θ j (z)

θi (z)
, j ≥ i .

This suffices to establish that Ψ(z) is L-polynomial. Actually, by (2.24), it follows that
Ψ(z) has determinant which is a real nonzero constant. Hence, Ψ(z) is L-unimodular
and positive definite on the unit circle. The problem is now reduced to that of finding
a factorization of Ψ(z) of the form

Ψ(z) = P∗(z)P (z), (2.26)

where P (z) ∈ R[z]r×r is a unimodular polynomial matrix. After this is achieved, the
desired factorization for Φ(z) is obtained as Φ(z) =W ∗(z)W (z) with

W (z) : = P (z)Θ(z)B(z)

= P (z)Θ(z)Λ(z)F (z)

= P (z)D+(z)F (z), (2.27)

where we have defined D+(z) :=Θ(z)Λ(z). Indeed, by straightforward algebra,

W ∗(z)W (z) = B∗(z)Θ∗(z)P∗(z)P (z)Θ(z)B(z)

= B∗(z)∆̃(z)N (z)B(z)

= B∗(z)∆̃(z)A∗(z)

=Φ
∗(z) =Φ(z).
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Step 4. We illustrate an algorithm which provides a factorization of L-unimodular
spectral density Ψ(z) =Ψ

∗(z) ∈ S
r

rat(T) positive definite on the unit circle into the
product P∗(z)P (z), where P (z) is a unimodular polynomial matrix.

The algorithm can be thought of as a procedure that parallels the Oono–Yasuura
algorithm Oono and Yasuura [1954], which constitutes a fundamental step in Youla’s
work Youla [1961], and consists of the following two steps. First of all, we define
Ψ1(z) :=Ψ(z) and denote by h ∈N the loop counter of the algorithm, which is initially
set to h ← 1.

1) Let Ki ∈Z, i = 1, . . . ,r , be the maximum-degree of the i -th column of Ψh(z) and
ki ∈Z, i = 1, . . . ,r , be the minimum-degree of the i -th row of Ψh(z). Consider
the highest-column-degree coefficient matrix of Ψh(z), denoted by Ψ

hc
h

, and

the lowest-row-degree coefficient matrix of Ψh(z), denoted by Ψ
lr
h

. As noticed in
the proof of Lemma 2.8, the positive nature of Ψh(z) implies that Ki ≥ 0 for all
i = 1, . . . ,r . Moreover, the para-Hermitianity of Ψh(z) implies that Ψhc

h
= (Ψlr

h
)>

which, in turn, yields Ki =−ki for all i = 1, . . . ,r .

By Lemma 2.8, it follows that Ψhc
h

is nonsingular if and only if Ψh(z) is a constant

matrix. If Ψh(z) is a constant matrix, we set h̄ := h and go to step 2). If this is
not the case, we calculate a nonzero vector vh := [v1 v2 . . . vr ]> ∈R

r such that
Ψ

hc
h

vh = 0. Let us define the active index set

Ih := { i : vi 6= 0}

and the highest maximum-degree active index set, Mh ⊂Ih ,

Mh := { i ∈Ih : Ki ≥ K j , ∀ j ∈Ih }.

We pick an index p ∈Mh . Then, we define the polynomial matrix

column p

Ω
−1
h (z) :=




1 · · · 0 v1
vp

zKp−K1 0 · · · 0

0
. . .

... 0
... 1

vp−1

vp
zKp−Kp−1

...
... 1

...
...

vp+1

vp
zKp−Kp+1 1

...

0
...

. . . 0

0 · · · 0 vr

vp
zKp−Kr 0 · · · 1




.

(2.28)
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Notice that the entry at (i , p) of Ω−1
h

(z) has the form

vi

vp
zKp−Ki =αi zδi , i = 1, . . . ,r, (2.29)

with αi := vi /vp ∈R and δi := Kp −Ki ≥ 0. In fact, if Ki > Kp , then vi = 0 and so
αi = 0. By (2.28), detΩ−1

h
(z) = 1 and, therefore, Ω−1

h
(z) ∈R[z]r×r is a unimodular

polynomial matrix. By operating the transformation

Ψh+1(z) :=Ω
−∗
h (z)Ψh(z)Ω−1

h (z),

we obtain a new positive definite matrix Ψh+1(z) with the same determinant
of Ψh(z). Furthermore, the maximum-degree of the p-th column of Ψh+1(z)
is lower than Kp , while the maximum-degree of the i -th column, i 6= p, is not
greater than Ki .

This fact needs a detailed explanation. If we post-multiply Ψh(z) by Ω
−1
h

(z), we
obtain a matrix of the form

Ψ
′
h(z) :=Ψh(z)Ω−1

h (z)

=
[

[Ψh(z)]1:r,1:p−1 ψh(z) [Ψh(z)]1:r,p+1:r
]

,

where all the L-polynomials in the p-th column vector

ψh(z) = [Ψh(z)]1:r,p:p +
∑

i 6=p

αi zδi [Ψh(z)]1:r,i :i (2.30)

have maximum-degree lower than Kp , since Ψ
hc
h

vh = 0, and minimum-degree
which satisfies

min deg[ψh(z)]i ≥ ki =−Ki , i = 1, . . . ,r, (2.31)

since in (2.30) δi ≥ 0, for all i such that αi 6= 0. Now, by pre-multiplying Ψ
′
h

(z) by
Ω

−∗
h

(z), the resulting matrix Ψh+1(z) can be written in the form

Ψh+1(z) =Ω
−∗
h (z)Ψh(z)Ω−1

h (z)

=




[Ψh(z)]1:p−1,1:p−1 ψ′
h+1(z) [Ψh(z)]1:p−1,p+1:r

ψ′>
h+1(z−1) ψ′′

h+1(z) ψ′′′>
h+1(z−1)

[Ψh(z)]p+1:r,1:p−1 ψ′′′
h+1(z) [Ψh(z)]p+1:r,p+1:r


 ,

where the p-th column vector

[
ψ′>

h+1(z) ψ′′
h+1(z) ψ′′′>

h+1(z)
]>
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differs from ψh(z) only for the value of the p-th entry ψ′′
h+1(z). Moreover, the

maximum-degree of ψ′′
h+1(z) cannot increase after the operation is performed,

since
ψ′′

h+1(z) = [ψh(z)]p +
∑

i 6=p

αi z−δi [ψh(z)]i ,

and, by (2.29), δi ≥ 0, for all i such that αi 6= 0. We conclude that all the L-
polynomials in the p-th column of Ψh+1(z) have maximum-degree lower than
Kp , while, by (2.31), the maximum-degree of all the other columns does not
increase. We notice also that, since Ψh+1(z) =Ψ

∗
h+1(z), all the L-polynomials

in the p-th row of Ψh+1(z) have minimum-degree greater than kp =−Kp , while
the minimum-degree of all the other rows does not decrease. Eventually, we
update the value of the loop counter h by setting h ← h +1 and return to step 1).

2) Since Ψh̄ ∈R
r×r is positive definite, we can always factorize it into the product

Ψh̄ =C>C where C ∈R
r×r , by using standard techniques such as the Cholesky

decomposition (see, e.g., [Golub and Van Loan, 1996, Ch. 4]). Finally, we have
constructed a polynomial unimodular matrix

P (z) =CΩh̄−1(z)Ωh̄−2(z) · · ·Ω1(z).

such that Ψ(z) = P∗(z)P (z).

It is worthwhile noticing that the iterative procedure of step 1) is always brought
to an end (after a maximum of K1 +·· ·+Kp iterations) since at the h-th iteration the
maximum-degree of a column of Ψh(z) is reduced at least by one, while the maximum-
degree of all the other columns does not increase.

To complete the proof of statements 1) and 2), we notice that, by construction,
the rational matrix W (z), as defined in (2.27), and its right inverse are analytic in
{ z ∈ C : |z| > 1}. Moreover, we recall that, if z = 0 is either a pole, zero or both of
D(z), D+(z) and D(z) have the same zero-pole structure at z = 0. Now, suppose, by
contradiction, that W (z) has a pole at z =∞. Then W ∗(z) has a pole at z = 0. But,
since Φ(z) =W ∗(z)W (z), it follows that

W ∗(z) =Φ(z)W −R (z)

=C (z)D(z)F (z)F−R (z)D−1
+ (z)P−1(z)

=C (z)D(z)D−1
+ (z)P−1(z)

=C (z)D−(z)P−1(z), (2.32)

where D−(z) := D(z)D−1
+ (z) has no pole at z = 0. Since P−1(z) and C (z) are unimodular

matrices, in view of (2.32), also W ∗(z) has no pole at z = 0. Hence, the contradiction.
We conclude that W (z) has no pole at infinity. Finally, by following a similar argument,
it can be verified that also W −R (z) has no pole at infinity.
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Now consider statement 5). If Φ(z) is analytic on the unit circle, then Θ(z) does
not possess any finite pole. This, in turn, implies that D+(z) =Θ(z)Λ(z) is analytic in
{ z ∈C : |z| ≥ 1}. Thus, W (z), as defined in (2.27), is also analytic in the same region.

As for point 6), the additional assumption that the rank of Φ(z) is constant on the
unit circle implies that Θ(z) does not possess any finite zero. Thus, Θ(z) = Ir and, by
(2.27),

W −R (z) = F−R (z)Λ−1(z)P−1(z)

is analytic in { z ∈ C : |z| ≥ 1}. Hence, W (z) and its right inverse W −R (z) are both
analytic in { z ∈C : |z| ≥ 1}.

Lastly, consider point 7). As shown in (2.23), the Smith-McMillan canonical form
of Φ(z), D(z), is connected to that of W (z), D+(z) =Θ(z)Λ(z), by

D(z) =Σ(z)D∗
+(z)D+(z), (2.33)

where Σ(z) ∈ R(z)r×r is a diagonal matrix with elements αi zki , αi ∈ R0, ki ∈Z, on its
diagonal. Let p1, . . . , ph be the nonzero finite poles of Φ(z). By (2.33), it follows that

δp (Φ; pi ) =





δp (W ; pi ) if |pi | < 1,

2δp (W ; pi ) if |pi | = 1,

δp (W ;1/pi ) if |pi | > 1.

(2.34)

Moreover, if p ∈C is a pole of Φ(z) of degree δp (Φ; p) then also 1/p is a pole of Φ(z) of

the same degree and if p ∈C is not a pole of Φ(z) then neither p nor 1/p are poles of
W (z). Thus, we have

h∑

i=1
δp (Φ; pi ) =

∑

i : |pi |<1
δp (W ; pi ) +

∑

i : |pi |>1
δp (W ;1/pi )+

∑

i : |pi |=1
2δp (W ; pi )

= 2
∑

i : |pi |≤1
δp (W ; pi ) (2.35)

By (2.4), the McMillan degree of a rational matrix equals the sum of the degrees of
all its poles, including the pole at infinity. If Φ(z) has no pole at infinity, then (2.35)
directly yields δM (Φ) = 2δM (W ). Otherwise, assume that Φ(z) has a pole at infinity.
Since W (z) and Φ(z) have the same structural indices at z = 0 and W (z) has no pole at
z =∞, it follows that

δp (Φ;∞) = δp (Φ;0) = δp (W ;0) and δp (W ;∞) = 0. (2.36)

Therefore, by equations (2.35) and (2.36),

δM (Φ) =
h∑

i=1
δp (Φ; pi )+δp (Φ;0)+δp (Φ;∞)

= 2
∑

i : |pi |≤1
δp (W ; pi )+2δp (W ;0) = 2δM (W ).
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This completes the proof.
We are now ready to prove our main Theorem 2.1. Many of the ideas for this proof

can be elaborated from those of the proof of Theorem 2.2.
Proof of Theorem 2.1. We first show how to modify the constructive procedure

used in the proof of Theorem 2.2 in order to obtain a spectral factor W (z) which
satisfies points 1) and 2). With reference to step 2 in the proof of Theorem 2.2, we
rearrange the Smith–McMillan form of Φ(z) as

D(z) =Σ(z)Λ(z)∆̃(z)Λ(z), (2.37)

where the only difference with respect to the decomposition in (2.23) is that here
Λ(z) ∈ R(z)r×r is diagonal, canonic and analytic in Ap \ {∞} with Λ

−1(z) analytic in
Az \ {∞}. Moreover, if 0 6∈ Ap and z = 0 is a pole of D(z), then Λ(z) has the same
negative structural indices at z = 0 of Φ(z), and if 0 6∈Az and z = 0 is a zero of D(z),
then Λ(z) has the same positive structural indices at z = 0 of Φ(z).

Now, to apply the procedure described in the proof of Theorem 2.2, it suffices to
prove that for any choice of the unmixed-symplectic sets Ap and Az , the spectral
density Ψ(z), as defined in (2.24), is still L-unimodular. With reference to the notation
introduced in the proof of Theorem 2.2, Ψ(z) can be written as

Ψ(z) =Θ(z)N (z)Θ−1(z)

=Θ(z)A∗(z)B−R (z)Θ−1(z)

=Θ(z)Λ(z)Σ∗(z)C∗(z)F−R (z)Λ−1(z)Θ−1(z)

=Σ
∗(z)D+(z)Ξ(z)D−1

+ (z), (2.38)

where we have defined Ξ(z) :=C∗(z)F−R (z) ∈R[z, z−1]r×r which is L-unimodular and
whose structure does not depend upon the choice of Ap and Az . Moreover, in this
case, D+(z) = Θ(z)Λ(z) is diagonal, canonic and analytic in Ap \ {∞} with inverse

analytic in Az \ {∞}. Let us first consider the standard choice Ap =Az = { z ∈C : |z| >
1}. In the proof of Theorem 2.2, we have shown that Ψ(z) is L-unimodular. Since
D+(z) is diagonal and canonic and Σ

∗(z) is L-unimodular, by (2.38), it follows that
[Ξ(z)]i j ∈R[z, z−1] must be divisible12 12Here the concept

of divisibility is the one as-
sociated to the ring of L-
polynomials.

by the polynomial

pi j (z) :=
[D+(z)] j j

[D+(z)]i i
, j ≥ i .

On the other hand, let us consider the opposite choice Ap = Az = { z ∈ C : |z| < 1}.
By using the right-standard counterpart of Lemma 2.4 and by following verbatim

the argument used in step 3 of Theorem 2.2, it can be proven that Ψ(z) is still L-
unimodular. Hence, by (2.38), [Ξ(s)]i j must be also divisible by the L-polynomial
pi j (z−1), j ≥ i . Therefore, [Ξ(z)]i j must be divisible by the L-polynomial

qi j (z) := pi j (z)pi j (z−1), j ≥ i .
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Since, for any choice of the unmixed-symplectic sets Ap and Az , the factors of
[D+(z)] j j [D+(z)]−1

i i
, j ≥ i , are contained in the ones of qi j (z), then [Ξ(z)]i j must

be divisible by the polynomial [D+(z)] j j [D+(z)]−1
i i

, j ≥ i , for any choice of Ap and
Az . We conclude that Ψ(z) must be a L-polynomial matrix for any choice of Ap and
Az . But, since Ψ(z) is a spectral density, detΨ(z) is a real constant, hence Ψ(z) is
L-unimodular.

To prove point 3) we need to show that the McMillan degree of the spectral factor
W (z) just obtained equals one half of the McMillan degree of Φ(z). To this aim, we can
follow the same lines of the proof of point 7) of Theorem 2.2. In fact, we can define
Ap,1 :=Ap \ (T∪ {0,∞}) and partition C0 as

C0 = { z ∈C : 1/z ∈Ap,1 }∪T∪Ap,1

and replace equation (2.34) with the more general expression for the degree of the
pole pi of Φ(z)

δp (Φ; pi ) =





δp (W ; pi ) if 1/pi ∈Ap,1,

2δp (W ; pi ) if |pi | = 1,

δp (W ;1/pi ) if pi ∈Ap,1.

The rest of the proof remains the same.
The proof of point 4) is very similar to that of point 3) of Theorem 2.2. The only

difference is that the all-pass matrix function V (z) := W1(z)W −R (z) and its inverse
are not analytic in { z ∈C : |z| > 1} but they are analytic in Ap , so that Lemma 2.2 still
applies.

As for point 5), we define V (z) := L(z)W −R (z) which is clearly all-pass and analytic
in Az , and the same computation that led to (2.21), gives L(z) = V (z)W (z). On the
other hand, if V (z) is all-pass and analytic in Ap , then it is immediate to check that
L(z) :=V (z)W (z) is a spectral factor of Φ(z) and is analytic in Ap as well.

The proof of points 6) and 7) is exactly the same as that of points 5) and 6) of
Theorem 2.2.

2.4.1 Corollaries

To conclude this section, we present two straightforward yet interesting corollaries of
Theorem 2.2. The first is a complete parametrization of the set of all spectral factors of
a given spectrum.

Corollary 2.1. Let Φ(z) be a given spectrum and W (z) be any spectral factor satisfying

conditions 1) and 2) of Theorem 2.2. Let L(z) ∈R(z)m×n , then Φ(z) = L∗(z)L(z) if and

only if

L(z) =V (z)

[
Ir

0m−r,r

]
W (z),

where V (z) ∈R(z)m×m is an arbitrary all-pass matrix and r = rk(Φ).
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Proof. By repeating an argument used in points 3) and 4) of Theorem 2.2, we have
that L(z) =U (z)W (z), with U (z) ∈R(z)m×r a rational matrix satisfying U∗(z)U (z) = Ir .
If we choose V (z) ∈R(z)m×m to be any all-pass matrix with U (z) incorporated into its
first r columns, i.e.,

U (z) =V (z)

[
Ir

0m−r,r

]
,

we conclude.

The next result characterizes the spectral factors of L-polynomial spectra.

Corollary 2.2. Let Φ(z) be a spectrum and W (z) be the spectral factor provided in the

(constructive) proof of Theorem 2.1. Assume that Φ(z) is L-polynomial. If ∞∈Ap , then

W (z) is polynomial in z−1 (so that W ∗(z) is polynomial in z). Otherwise, 0 ∈Ap and

W (z) is polynomial in z (so that W ∗(z) is polynomial in z−1).

Proof. We consider only the case of ∞ ∈ Ap , the other being similar. If Φ(z) is L-
polynomial, then the only finite pole it may possess is located at z = 0. Since W (z)
does not have the pole at infinity, W (z) must be polynomial in z−1. The latter fact, in
turn, implies that W ∗(z) must be a polynomial matrix.

2.5 A numerical example

IN this section, we will illustrate an application to stochastic realization of the algo-
rithm used in the constructive proof of Theorem 2.1. To this aim, let us consider a

purely non-deterministic, second-order process {y(t )}t∈Z whose spectral density is

Φ(z) =




−2z+6−2z−1

−2z+5−2z−1 z −1 z −1
z−1 −1 −z +2− z−1 −z +2− z−1

z−1 −1 −z +2− z−1 −z +2− z−1


 .

We want to compute a stochastically minimal, anti-causal realization of {y(t)}t∈Z
having all its zeros in the (closed) unit disk. Since our method has been developed to
compute a spectral factorization in the form Φ(z) =W >(z−1)W (z), this requirement
corresponds to the choice Az := { z ∈C : |z| < 1} and Ap := { z ∈C : |z| > 1}. Notice that
Φ(z) is not proper, it features a zero on the unit circle and is (normal) rank deficient,
namely rk(Φ) = 2.

We now apply step-by-step the proposed factorization algorithm in order to com-
pute a spectral factor W (z) ∈ R(z)2×3 analytic in Ap with right inverse analytic in
Az .

Step 1. The Smith–McMillan canonical form of Φ(z) is given by

D(z) =
[ 1

z(z−2)(z−1/2) 0
0 z(z −1)2

]
,
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Φ(z) can be decomposed as

Φ(z) =C (z)D(z)F (z),

where C (z) ∈R[z]3×2 and F (z) ∈R[z]2×3 are unimodular matrices.
Step 2. The matrices Λ(z), Θ(z) and Σ(z) defined in (2.37) have the form

Λ(z) =
[

1
z
(
z− 1

2

) 0

0 1

]
, Θ(z) =

[
1 0
0 z −1

]
, Σ(z) =

[
− 1

2z2 0
0 −z2

]
.

Note thatΛ(z) is analytic in Ap \{∞} with inverse analytic in Az . Let A(z) =C (z)Σ(z)Λ∗(z),
B(z) =Λ(z)F (z).

Step 3. The matrix Ψ(z) =Θ(z)−1N (z)Θ(z), with N (z) = A∗(z)B−R (z), is given by

Ψ(z) =Θ(z)−1N (z)Θ(z)

=
[

− 1
2 z+ 3

2−
1
2 z−1 − 9

4 z3+ 25
2 z2− 43

2 z+ 43
4 + 1

2 z−1

1
2 z+ 43

4 − 43
2 z−1+ 25

2 z−2− 9
4 z−3 ψ22(z)

]
.

where ψ22(z) := 9
4 z3 + 341

8 z2 − 1747
8 z + 2780

8 − 1747
8 z−1 + 341

8 z−2 + 9
4 z−3. It is worth noting

that Ψ(z) is para-Hermitian, L-unimodular and positive definite upon the unit circle.
Step 4. Let Ψ1(z) :=Ψ(z). The highest-column-degree coefficient matrix of Ψ1(z)

is

Ψ
hc
1 =

[
−1

2 −9
4

1
2

9
4

]
.

Since Ψ
hc
1 is singular, we calculate a nonzero vector v1 ∈ kerΨhc

1 . One such a vector is
given, for instance, by v1 = [9, −2]>. The highest maximum-degree active index set is
M1 = {2}, we construct the unimodular matrix Ω

−1
1 (z) of the form (2.28)

Ω
−1
1 (z) =

[
1 −9

2 z2

0 1

]

in order to reduce the maximum degree of the second column of Ψ1(z),

Ψ2(z) =Ω
−∗
1 (z)Ψ1(z)Ω−1

1 (z)

=
[

− 1
2 z+ 3

2−
1
2 z−1 23

4 z2− 77
4 z+ 43

4 + 1
2 z−1

1
2 z+ 43

4 − 77
4 z−1+ 23

4 z−2 − 23
4 z2− 973

4 z+ 2123
4 − 973

4 z−1− 23
4 z−2

]
.

Since Ψ
hc
2 is singular, we repeat the previous step. In this case, we have v2 = [23, 2]> ∈

kerΨhc
2 , M2 = {2}, and

Ω
−1
2 (z) =

[
1 23

2 z

0 1

]
.
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Hence, we compute the reduced matrix

Ψ3(z) =Ω
−∗
2 (z)Ψ2(z)Ω−1

2 (z)

=
[
−1

2 z + 3
2 −

1
2 z−1 −2z +5+ 1

2 z−1

1
2 z +5−2z−1 2z +21+2z−1

]
.

Actually, Ψhc
3 is singular. In this case, v3 = [−4, 1]> ∈ kerΨhc

3 , M3 = {2},

Ω
−1
3 (z) =

[
1 −4
0 1

]

and we obtain

Ψ4(z) =Ω
−∗
3 (z)Ψ3(z)Ω−1

3 (z)

=
[
−1

2 z + 3
2 −

1
2 z−1 −1+ 5

2 z−1

5
2 z −1 5

]
.

Yet another iteration is required; indeed Ψ
hc
4 is singular. Thus, we proceed by comput-

ing v4 = [−2 1]> ∈ kerΨhc
4 , M3 = {1},

Ω
−1
4 (z) =

[
1 0

−1
2 z 1

]

and eventually we arrive at

Ψ5 =Ω
−∗
4 (z)Ψ4(z)Ω−1

4 (z) =
[ 1

4 −1
−1 5

]
.

The latter matrix is constant and positive definite; therefore it admits a Cholesky
factorization

Ψ5 =C>C , C =
[ 1

2 −2
0 1

]
.

The fourth step of the algorithm is concluded, since we found a factorization Ψ(z) =
P∗(z)P (z), with P (z) unimodular of the form

P (z) =CΩ4(z)Ω3(z)Ω2(z)Ω1(z)

=
[
−z + 1

2 −1
4 z

(
18z2 −55z +39

)
1
2 z 1

4

(
9z3 −23z2 +8z +4

)
]

.

Finally, we have that

W (z) = P (z)Θ(z)B(z) =
[

− 1
z

1
z
−1 1

z
−1

1
2z−1 0 0

]
.
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is a stochastically minimal spectral factor of Φ(z) analytic in Ap with right inverse
analytic in Az .

Therefore the sought-for realization symbolically is given by

y(t ) =W ∗(z)e(t )

with e(t ) being white noise.
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3. On the uniqueness of spectral factors

F
ROM the general discrete-time spectral factorization result of the previous

chapter, a very interesting question arises. In fact, when the chosen unmixed-
symplectic regions are such that Ap ≡Az ≡A , we have seen that the corre-
sponding spectral factor is essentially unique (namely, unique up to multi-

plication on the left side by a constant orthogonal matrix), as described in the proof
of Theorem 2.1, point 4): The key idea here is that, starting from a reference spectral
factor W (z), a second spectral factor W1(z) must be of the form W1(z) = Q(z)W (z)
with Q(z) being all-pass so that if Q(z) has a pole in p, it necessarily has a zero in
1/p; therefore, for any non-constant Q(z), either W1(z) or its right-inverse is no longer
analytic in A . On the contrary, when Ap 6=Az , we can easily obtain a spectral factor
W1(z) with the prescribed analyticity properties by selecting an all-pass function Q(z)
featuring poles in C\Ap and zeros in C\Az . Thus, there appears to be an inherent am-
biguity in the choice of the spectral factor in this general case. In this chapter, we show
that this is in not the case if we further impose that the spectral factor has minimal
complexity, as measured by its McMillan degree. In fact, we will show that, under this
assumption, for any choice of the analyticity regions Ap and Az , the spectral factor is
essentially unique.

The present chapter, which is adapted from Baggio and Ferrante [2016b], is divided
in two main sections. In the first one, Section 3.1, we review an elegant and profound
result on the parametrization of rational all-pass functions established in Alpay and
Gohberg [1988] which will play a key role in the proof of our main result. Further, in the
same section, we will present other ancillary results on the cancellation of zeros and
poles in the product of rational matrices. The second section, Section 3.2, contains the
proof of essential uniqueness of minimal spectral factors, and, therefore, represents
the core of the chapter.

3.1 Ancillary results

THE problem of cancelling part of the poles or zeros of a rational matrix-valued
function via multiplication with another one (especially in the case in which such

a function is all-pass) has been deeply investigated in circuit and systems theory. This
problem has been originally addressed in Belevitch [1968] and more elaborately in
Dewilde and Vandewalle [1975], Vandewalle and Dewilde [1977], Van Dooren [1990].
For some more recent advances on this topic we refer to Dym and Nevo [2005a,b],
Oară and Andrei [2009], Oară and Sabău [2009]. In this section, we will present some
results in this direction, which are instrumental for the proof of the main theorem.
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We first explicitly state what we mean for degree of a pole and zero of a rational
matrix-valued function. Let G(z) ∈C(z)m×n and consider the Smith–McMillan form of
G(z), say

D(z) = diag

[
ε1(z)

ψ1(z)
,
ε2(z)

ψ2(z)
, . . . ,

εr (z)

ψr (z)

]
.

As recalled in the previous chapter, the (finite) zeros of G(z) coincide with the roots
of the numerator of the εi (z)’s, whereas the (finite) poles of G(z) with the zeros of the
roots of the ψ(z)’s. The degree of a pole and zero at α ∈ C (denoted by δp (G ;α) and
δz (G ;α), respectively) is equal to the sum of the degrees of the zero at α of all the ψi (z)
and of all the εi (z), respectively.1313If α = ∞, then

we can consider the map-
ping z 7→ λ−1 and the
definition still applies by
considering the degree of
the pole/zero at λ = 0 of
G(λ).

If G(z) has no pole (zero) at α, we let δp (G ;α) = 0
(δz(G ;α) = 0, respectively).

Following Anderson and Gevers [1981], we now give a precise definition of pole/zero
cancellation in the product of rational matrix-valued function.

Definition 3.1. Let G(z) ∈ C(z)m×n , H(z) ∈ C(z)n×p and α ∈ C. We say that in the
product G(z)H(z) there is:

1) a pole cancellation at α if δp (G H ;α) < δp (G ;α)+δp (H ;α);

2) a zero cancellation at α if δz(G H ;α) < δz(G ;α)+δz(H ;α);

3) a zero-pole cancellation at α if both conditions 1) and 2) are met.

Remark 3.1. If rk(G) = rk(H) = n then a zero or pole cancellation at α in the product
G(z)H(z) always corresponds to a zero-pole cancellation at α. A proof of this fact is
given below (Lemma 3.1).

However, in general, 1) and 2) are not equivalent. Indeed, consider for instance
the product

G(z)H(z) =
[
1 −1

][ 2z+3
(z+1)(z+2)

1
z+2

]
=

1

z +1

and observe that there is a pole cancellation at −2 which does not correspond to a
zero-pole cancellation at −2.

Lemma 3.1. Let G(z) ∈C(z)n×r and H (z) ∈C(z)r×m with rk(G) = rk(H ) = r . If G(z)H (z)
has a zero or pole cancellation at α ∈C, then G(z)H(z) has a zero-pole cancellation at

α.

Proof. Assume that G(z)H(z) has a pole cancellation at α ∈C (the proof for the case
of a zero cancellation at α ∈C goes along the same lines).

Let D(z), D ′(z) ∈ C(z)r×r be the Smith–McMillan canonical form of G(z), H(z),
respectively. We can write

G(z) =C (z)D(z)F (z) and H(z) =C ′(z)D ′(z)F ′(z)
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with F (z), C ′(z) ∈ C[z]r×r , C (z) ∈ C[z]n×r and F ′(z) ∈ C[z]r×m unimodular matrices.
Hence the product G(z)H(z) can be written as

G(z)H(z) =C (z)D(z)F (z)C ′(z)D ′(z)F ′(z)

where M(z) := F (z)C ′(z) ∈C[z]r×r is unimodular. Notice that, by virtue of the unimod-
ularity of C (z) and F ′(z), the Smith–McMillan canonical form of G(z)H(z), denoted
by ∆(z), coincides with that of D(z)M(z)D ′(z) (see [Kailath, 1980, Ex. 6.5-6]). More-
over observe that, since rk(G) = rk(H) = r , then rk(DMD ′) = r . Therefore, by taking
determinants, we have

det∆(z) = c detD(z)detD ′(z)

= c
n(z)

d(z)

(z −α)δz (G ;α)+δz (H ;α)

(z −α)δp (G ;α)+δp (H ;α)
(3.1)

with n(z) and d(z) relatively prime polynomials s.t. n(α) 6= 0, d(α) 6= 0, and c ∈C, c 6= 0.
On the other hand, since ∆(z) is the Smith–McMillan canonical form of G(z)H(z), we
get

det∆(z) = c
n(z)

d(z)

(z −α)δz (G H ;α)

(z −α)δp (G H ;α)
. (3.2)

Hence, a comparison of (3.1) and (3.2) yields

δp (G H ;α)−δp (G ;α)−δp (H ;α) = δz(G H ;α)−δz(G ;α)−δz(H ;α). (3.3)

Since, by assumption, G(z)H(z) has a pole cancellation at α, the left-hand side of
(3.3) is strictly negative. This in turn implies that the right-hand side of (3.3) is strictly
negative, i.e., G(z)H(z) has a zero cancellation at α. From this fact the thesis readily
follows.

Lemma 3.2. Let G(z) ∈ C(z)n×r and H(z) ∈ C(z)r×m with rk(G) = rk(H) = r . If G(z)
and H(z) have no zeros at α ∈C then

δp (G H ;α) = δp (G ;α)+δp (H ;α).

Proof. By following verbatim the first part of the proof of Lemma 3.1, we arrive at the
expression

det∆(z) = detD(z)det M(z)detD ′(z)

= c detD(z)detD ′(z), c ∈C, c 6= 0. (3.4)
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Since by assumption G(z) and H(z) have no zero at α, then D(z) and D ′(z) have no
zero at α. Furthermore, ∆(z) has no zero at α. This fact can be seen by taking the
inverse of ∆(z), namely

∆
−1(z) = D ′−1(z)M−1(z)D−1(z),

and by noting that the latter has no pole at α, since the entries of D−1(z), M−1(z) and
D ′−1(z) do not have any pole at α. This in turn implies that δp (D;α), δp (D ′;α) and
δp (∆;α) coincide with the degree of the pole at α in detD(z), detD ′(z) and det∆(z),
respectively. Hence, by summing up all the previous considerations, we get

δp (G H ;α) = δp (∆;α)

= δp (det∆;α)
(3.4)= δp (detD ;α)+δp (detD ′;α)

= δp (D ;α)+δp (D ′;α)

= δp (G ;α)+δp (H ;α),

which concludes the proof.

Remark 3.2. Notice that Lemma 3.1 and Lemma 3.2 still hold when α=∞. As a matter
of fact, in this case, we can apply the change of variable z 7→ λ−1 and then consider
the (degree of the) zero/pole at λ= 0 in G(λ) and H(λ).

We conclude this preliminary section with a useful characterization of the class of
(complex) all-pass rational matrices provided by the following lemma established in
[Alpay and Gohberg, 1988, Thm. 3.12].

Lemma 3.3. Let V (z) ∈C(z)r×r , δM (V ) = n, and let {αi }n
i=1 be the poles of V (z) counted

with multiplicity, then V (z) is all-pass if and only if it can be written as

V (z) =UU1(z)U2(z) · · ·Un(z), (3.5)

with U ∈C
r×r being constant unitary and1414We adopt the con-

vention
1−αi z
z−αi

=: z if αi =
∞.

Ui (z) := Ir +
(

1−αi z

z −αi
−1

)
Pi , αi ∈C\T, (3.6)

with Pi ∈C
r×r being an orthogonal rank-one projection. Moreover, the product in the

right-hand side of (3.5) is minimal, i.e., δM (V ) = δM (U1)+·· ·+δM (Un).

Remark 3.3. Given any decomposition of a all-pass matrix V (z) of the form in (3.6),
we have that:
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1) Every factor Ui (z) in (3.6) is all-pass. Indeed, by direct computation:

U∗
i (z)Ui (z) = Ir +

(
1−αi z−1

z−1 −αi
−1

)
Pi +

(
1−αi z

z −αi
−1

)
Pi

+
(

1−αi z−1

z−1 −αi
−1

)(
1−αi z

z −αi
−1

)
Pi

= Ir −2Pi +
1−αi z−1

z−1 −αi
Pi +

1−αi z

z −αi
Pi

+2Pi −
1−αi z−1

z−1 −αi
Pi −

1−αi z

z −αi
Pi

= Ir .

2) Every pole at αi of V (z) of degree di is accompanied by a zero of V (z) at 1/αi of
the same degree. In particular, if αi 6=∞, the Smith–McMillan canonical form of
Ui (z) in (3.6) is given by

diag

[
1

z −αi
,1, . . . ,1, z −

1

αi

]
.

3) Since the decomposition is minimal and δM (Ui ) = 1, i = 1,2, . . . ,n, it follows that

δM (V ) =
n∑

i=1
δM (Ui ) = n.

4) Since the orthogonal rank-one projection Pi in (3.6) can be written as Pi = vi v∗
i

with vi ∈C
r s.t. ‖vi‖2 = v∗

i
vi = 1, it holds15 15Here, we exploit the

fact that if A ∈ C
n×r and

B ∈ C
r×n , det(In + AB) =

det(Ir +B A).
detUi (z) = det

[
Ir +

(
1−αi z

z −αi
−1

)
Pi

]

= det

[
Ir +

(
1−αi z

z −αi
−1

)
vi v∗

i

]

= det

[
1+ v∗

i

(
1−αi z

z −αi
−1

)
vi

]

=
1−αi z

z −αi
.

3.2 The main theorem

THE following theorem is the main result of this chapter. It states that all minimal
spectral factors of a general spectral density are essentially unique.

| 63



Chapter 3. On the uniqueness of spectral factors

Theorem 3.1. LetΦ(z) ∈R(z)n×n be a spectrum with rk(Φ) = r ≤ n, r 6= 0. Let W (z),W1(z) ∈
R(z)r×n be such that

1) W (z) and W1(z) are spectral factors ofΦ(z), i.e., Φ(z) =W ∗(z)W (z) =W ∗
1 (z)W1(z);

2) W (z),W1(z) are analytic in Ap and W −R (z),W −R
1 (z) are analytic in Az , where

Ap , Az are weakly unmixed-symplectic regions;

3) W (z) and W1(z) are stochastically minimal, i.e., δM (W ) = δM (W1) = 1
2δM (Φ).

Then, W1(z) = T W (z) with T ∈R
r×r constant orthogonal.

Proof. Before illustrating the details of the proof, we outline the key steps in order to
provide a “navigation chart” that may help the reader.

1) We consider the all-pass function T (z) satisfying W1(z) = T (z)W (z) and we show
that T (z) must have no poles and zeros in the region Ap ∩Az .

2) We then assume by contradiction, that T (z) is non-constant and, more precisely,
that T (z) possesses poles both in Ap \Az and in Az \Ap .

3) We decompose T (z) according to Lemma 3.3 and, by exploiting the properties
of this decomposition, we show that for each pole α ∈Ap \Az of T (z) there is a
zero-pole cancellation both at α and at 1/α in the product T (z)W (z). Hence, we
arrive at the contradiction that there exists a spectral factor of Φ(z), say W̃ (z),
such that δM (W̃ ) < 1

2δM (Φ). Since this is not possible, we conclude that T (z)
must have no poles in the region Ap \Az .

4) Finally, we exploit the fact that, by point 3), W (z) and W1(z) are stochastically
minimal spectral factors to conclude that T (z) must have no poles in the region
Az \Ap . This implies that T (z) is a constant and orthogonal matrix.

We now describe the details. Consider the matrix

T (z) :=W1(z)W −R (z).

By taking into account Property 1), it is immediate to see that T ∗(z)T (z) = I , i.e., that
T (z) is all-pass. Moreover, since the inverse of T (z) is given by

T ∗(z) = T −1(z) =W (z)W −R
1 (z),

it follows that T (z) is analytic with its inverse in Az ∩Ap . Now observe that

W1(z) = T (z)W (z). (3.7)
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To see this, set Z (z) :=W1(z)−T (z)W (z). By employing again Property 1), it is imme-
diate to see that Z∗(z)Z (z) = 0 so that Z (z) is identically zero in the unit circle and,
eventually, Z (z) = 0. We need to show that T (z) is constant.

Assume, ab absurdo, that T (z) has McMillan degree d with poles α1, . . . ,αn of
degree m1, . . . ,mn (d = m1 +·· ·+mn), respectively, such that α1, . . . ,αt ∈Ap \Az and
αt+1, . . . ,αn ∈ Az \ Ap . In what follows we assume that αi 6= ∞ for i = 1, . . . ,n. As a
matter of fact, if this is not the case, we can always find a suitable Möbius transfor-
mation z 7→ f (z) such that T ( f (z)) has only finite poles. Thus, by considering this
transformation, the argument in the proof still applies.

By exploiting Lemma 3.3, we can decompose T (z) as

T (z) =UUα1,1(z) · · ·Uα1,m1−1(z)Uαn (z) · · ·Uα2 (z)Uα1,m1 (z), (3.8)

with U ∈C
r×r constant unitary and

Uαi , j (z) := Ir +
(

1−αi z

z −αi
−1

)
Pi , j , (3.9)

Uαi
(z) :=Uαi ,1(z) · · ·Uαi ,mi

(z), (3.10)

with i = 1, . . . ,n, j = m1, . . . ,mn , and Pi , j ∈C
r×r being an orthogonal rank-one projec-

tion.
Now, we can rearrange (3.7) in the form

U∗
α1,m1−1(z) · · ·U∗

α1,1(z)U∗W1(z) =Uαn (z) · · ·Uα2 (z)Uα1,m1 (z)W (z). (3.11)

Notice that the left-hand side of (3.11) is analytic in Ap \Az with (right) inverse analytic
in Az \Ap . It follows that the right-hand side of (3.11) must be analytic in Ap \Az with
(right) inverse analytic in Az \Ap . By rewriting the right-hand side of (3.11) in a more
explicit way, we obtain

Uαn (z) · · ·Uα2 (z)Uα1,m1 (z)W (z) =
(3.9)= Uαn (z) · · ·Uα2 (z)

(
Ir −P1,m1 +

1−α1z

z −α1
P1,m1

)
W (z)

=Uαn (z) · · ·Uα2 (z)
1−α1z

z −α1
P1,m1W (z)+∆(z)

where ∆(z) :=Uαn (z) · · ·Uα2 (z)(Ir −P1,m1 )W (z) has no pole at α1. In fact, α1 ∈Ap \Az

so that W (z) does not have a pole at α1. The minimality of the factorization of T (z) in
(3.8) implies that (

1−α1z

z −α1
P1,m1

)
W (z)

must have a zero-pole cancellation at α1. This fact needs a detailed explanation.
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First, define Ures :=Uαn (z) · · ·Uα2 (z) and notice that, since the factorization of T (z)
in (3.8) is minimal, the matrix

R(z) :=Ures(z)
1−α1z

z −α1
P1,m1

has a pole at α1. In fact, a pole cancellation at α1 in R(z) would imply a pole cancella-
tion at α1 in Uαn (z) · · ·Uα2 (z)Uα1,m1 (z), yielding that the degree of the pole α1 in T (z)
is less than m1. However, this is not possible since, by Lemma 3.3, the factorization in
(3.8) is minimal. Now, since P1,m1 is an orthogonal rank-one projection, there exists a
unitary matrix Q ∈C

r×r such that

Q∗P1,m1Q = diag[1,0, . . . ,0].

Since Q is constant and nonsingular, also

R̃(z) := R(z)Q =Ures(z)
1−α1z

z −α1
QQ∗P1,m1Q

=Ures(z)Qdiag

[
1−α1z

z −α1
,0, . . . ,0

]
(3.12)

has a pole at α1. More in detail, at least one entry in the first column of R̃(z) possesses
a pole at α1, while all the other columns are identically zero. Now consider A(z) :=
R(z)W (z)

A(z) := R(z)W (z) = R̃(z)W̃ (z), (3.13)

where W̃ (z) :=Q∗W (z). As already observed, A(z) is analytic in Ap \Az . Therefore,
by taking into account that at least one entry in the first column of R̃(z) possesses a
pole at α1, while all the other columns are identically zero, it is immediate that every
element in the first row of W̃ (z) has a zero at α1 or is identically zero. Then,

Q diag

[
1−α1z

z −α1
,0, . . . ,0

]
W̃ (z) =

(
1−α1z

z −α1
P1,m1

)
W (z)

has no pole at α1. This implies that also Uα1,m1 (z)W (z) has no pole at α1 so that in the
product Uα1,m1 (z)W (z) there is a pole cancellation at α1. Eventually, since Uα1,m1 (z)
has full (column-)rank and W (z) has full row-rank, by Lemma 3.1, we can conclude
that in the product Uα1,m1 (z)W (z) there is a zero-pole cancellation at α1.

By replacing (3.11) with

W −R
1 (z)UUα1 (z) · · ·Uα1,m1−1(z) =W −R (z)U∗

α1,m1
(z)U∗

α2
(z) · · ·U∗

αn
(z),

we can repeat almost verbatim the previous argument in order to conclude that
W −R (z)U∗

α1,m1
(z) must have a zero-pole cancellation at 1/α1, or, equivalently, Uα1,m1 (z)·

W (z) must have a zero-pole cancellation at 1/α1.
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The zero-pole cancellations at α1 and at 1/α1 in the product Uα1,m1 (z)W (z) imply
that

δM (Uα1,m1W ) < δM (W ) =
1

2
δM (Φ).

Indeed, let p1, . . . , ph ∈ C be the poles of W (z) s.t. pi 6= 1/α1 for all i = 1, . . . ,h. Since
Uα1,m1 (z) is analytic together with its inverse in C\ {α1,1/α1}, it holds

δp (W ; pi ) = δp (Uα1,m1W ; pi )

for all i = 1, . . . ,h. Moreover, by the zero-pole cancellations: (i) Uα1,m1 (z)W (z) has no
pole at α1, and (ii) δp (Uα1,m1W ;1/α1) < δp (W ;1/α1). Therefore

δM (Uα1,m1W ) =
h∑

i=1
δp (W ; pi )+δp (Uα1,m1W ;1/α1)

<
h∑

i=1
δp (W ; pi )+δp (W ;1/α1) = δM (W ).

But this is clearly not possible since, by point 3), W (z) is a stochastically minimal
spectral factor. Therefore, Uα1,m1 (z) must be a constant unitary matrix.

The previous reasoning still applies for all the other factors of T (z) having a pole
at αi , i = 1, . . . , t , yielding that mi = 0 for all i = 1, . . . , t , i.e., T (z) has no poles at αi ,
i = 1, . . . , t .

It remains to show that T (z) has no pole at αt+1, . . . ,αn . To this aim, we have

W1(z) = T (z)W (z)

and since all the poles of T (z) lie in Az \ Ap , by Lemma 3.2, we have δp (W1;αi ) =
δp (T ;αi )+δp (W ;αi ) for all i = t +1, . . . ,n, while for all the other poles pi , i = 1, . . . ,h,
of W (z), δp (W1; pi ) = δp (W ; pi ). This implies that

δM (W1) =
n∑

i=t+1
δp (T ;αi )+

n∑

i=t+1
δp (W ;αi )+

h∑

i=1
δp (W ; pi )

>
n∑

i=t+1
δp (W ;αi )+

h∑

i=1
δp (W ; pi )

= δM (W ),

which, by virtue of the stochastic minimality of W1(z), leads to a contradiction. Hence
T (z) must have no poles at αt+1, . . . ,αn .

To conclude, we have shown that T (z) has no poles and hence no zeros, due to the
fact that T (z) is an all-pass matrix. Therefore, since it has real entries, T (z) must be a
constant orthogonal matrix.
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4. Parametrization of minimal

spectral factors

A
NOTHER natural question arising from the general factorization result of

Chapter 2 concerns the existence of an “efficient” and “compact” parametri-
zation of the whole set of minimal spectral factors of a general rational
spectral density. More precisely, this question asks whether all minimal

spectral factors of a general discrete-time spectral density can be parametrized in
terms of the all-pass divisors of a suitable all-pass function. Such a parametrization
is particularly practical and effective in that the set of all-pass divisors of an all-pass
function has been in-depth investigated and well-characterized in the literature from
algebraic, geometric and computational viewpoints, see, e.g., Glover [1984], Green
and Anderson [1987], Alpay and Gohberg [1988], Fuhrmann and Hoffmann [1997],
Michaletzky [1998], Picci [2013], Ferrante and Picci [2017].

As briefly mentioned in the introduction of this part, the main motivation for
parametrizing the minimal spectral factors of a rational spectral density comes from
stochastic realization theory Lindquist and Picci [1979, 1991]: Any second-order
discrete-time purely nondeterministic stationary process {y(t )} can be represented as
the output of a linear state-space of the form

{
x(t +1) = Ax(t )+Bu(t )

y(t ) =C x(t )+Du(t )

where A, B , C , D are matrices of suitable dimensions and {u(t )} is a white noise process.
This representation is called stochastic realization of the process {y(t)} and gives a
very powerful model for processing and estimation of {y(t)}. Up to uninteresting
changes of basis, stochastic realizations of minimal complexity are in one-to-one
correspondence with minimal spectral factors W (z) of the spectral density Φ(z) of
{y(t )}. For this reason, the problem of parametrizing the minimal spectral factors of
Φ(z) is crucial for the analysis and synthesis of different models of a given stochastic
process.

The present chapter builds upon the results of Baggio and Ferrante [2017] and is
outlined as follows. We begin by formally introducing the parametrization problem
in Section 4.1. Next, Section 4.2 collects some results from Ferrante and Picci [2017]
which provide a geometric and algebraic parametrization of the all-pass divisors of a
given discrete-time all-pass function. Section 4.3 contains the statement and proof of
the main result. This result provides, to the best of our knowledge, the most general
parametrization of minimal spectral factors of a rational spectral density, in the sense
that it applies to a completely general rational spectral density. Finally, in Section 4.4
we apply our main result to a concrete example.
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4.1 Preliminary definitions and problem formulation

HERE we first give some preliminary definitions and then we introduce the parame-
trization problem.

Definition 4.1 (Coercive spectral density). A spectral density Φ ∈S
n

rat(T) is said to be
coercive if it positive definite on T.

Remark 4.1. From the above definition it immediately follows that a coercive spectral
density cannot have poles and zeros on the unit circle.

Definition 4.2 ((Left and right) all-pass divisor). Given two all-pass functions G`(z)
and Gr (z), if

δM (G`(z))+δM (Gr (z)) = δM (G`(z)Gr (z)),

then G`(z) and Gr (z) are said to be, respectively, left all-pass divisor and right all-pass

divisor of G(z) :=G`(z)Gr (z).

Consider now a rational spectral density Φ(z) ∈ S
m

rat(T) of normal rank rk(Φ) =
r ≤ m. Using a “dual” version of the results of Chapter 2, we know that Φ(z) admits a
factorization of the form

Φ(z) =W (z)W ∗(z), (4.1)

where W (z) ∈R(z)m×r is a (left) spectral factor of W (z). We can identify four “extremal”
minimal (left) spectral factors of Φ(z), namely:

• W−(z) analytic with its (left) inverse in {z ∈C : |z| > 1} (outer spectral factor).

• W+(z) analytic in {z ∈ C : |z| > 1} with (left) inverse analytic in { z ∈ C : |z| < 1}
(maximum-phase spectral factor).

• W −(z) analytic in {z ∈C : |z| < 1} with (left) inverse analytic in { z ∈C : |z| > 1}
(conjugate maximum-phase spectral factor).

• W +(z) analytic with its (left) inverse in {z ∈C : |z| < 1} (conjugate outer spectral
factor).

These four spectral factors are connected by suitable all-pass transformations as
depicted in the commutative diagram below, where an arrow indicates post-multiplica-
tion with the labelled object, e.g., W+(z) =W−(z)T1(z).
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W− W+

W0

W − W +

T−

T

T1

T2

T+

T 1

T 2

In the next section, we will show that all minimal spectral factors are connected to
W−(z) by transformations which correspond to the left all-pass divisors of the all-pass
function T (z) :=W −L

− (z)W +(z). We call T (z) conjugate phase function associated with
the spectral density Φ(z), since it can be regarded as the conjugate version of the

well-known phase function W
−L

+ (z)W−(z), which is of crucial importance in stochastic
realization theory [Lindquist and Picci, 2015, p. 326].

Remark 4.2. In the above formulation of the parametrization problem, it is worth
pointing out two facts:

1) In contrast to what done in Chapter 2 and Chapter 3, we considered in Equa-
tion (4.1) the “dual” version of the spectral factorization problem as introduced
in Problem 1.1. This is due to the fact this version is more naturally studied in
stochastic realization theory, theory which provides the main motivation for our
result. Clearly, the result we present in the next section can be easily adapted to
the right spectral factors of a given rational spectral densities.

2) It is worth noting that a parametrization of the minimal spectral factors of
Φ(z) in terms of the all-pass divisors of the phase function, in place of the
conjugate phase function T (z), can be obtained by minor modifications of the
proof presented in the next section. In stating our main result, we chose to
consider the conjugate phase function since it seems more natural to refer the
parametrization to the minimum-phase spectral factor W−(z), due to its key
role in stochastic modeling and filtering.

4.2 Auxiliary lemmata from Ferrante and Picci [2017]

TO make this chapter more self-contained, in this section we state, without proof,
some elegant results established in Ferrante and Picci [2017] which are essen-

tial for the proof of the main result. Interestingly, one of these results (Lemma 4.2)
establishes a particularly elegant and profound characterization of the set of all-pass
divisors of a given biproper all-pass function from both an algebraic viewpoint, namely
in terms of solutions of a certain set of matrix equations that are in turn connected
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to solutions of a suitable ARE, and geometric viewpoint, namely in terms of invariant
subspaces of a certain matrix.

Lemma 4.1 ([Ferrante and Picci, 2017, Theorem 2.1, point 3)]). Let A ∈R
n×n , B ∈R

n×m ,

C ∈R
m×n , D ∈R

m×m be given. If there exists Q =Q> satisfying




A>Q A−Q =C>C ,

C>D − A>QB = 0,

D>D −B>QB = I ,

then K (z) :=C (zI − A)−1B +D is a (discrete-time) all-pass function.

Lemma 4.2 ([Ferrante and Picci, 2017, Corollary 4.1, Corollary 3.2, Remarks 3.1 and
3.2]). Let K (z) := C (zI − A)−1B +D be a minimal realization of a rational biproper

(discrete-time) all-pass function. Let P0 = P>
0 be the solution of





AP0 A>−P0 = BB>,

BD>− AP0C> = 0,

DD>−C P0C> = I .

Then, for each P = [ΠP−1
0 Π]+, where Π varies among the orthogonal projectors on

A-invariant subspaces, the function

KL(z) :=C (zI − A)−1G +L, (4.2)

with

L := (I +C PC>)1/2, G := APC>L−>, (4.3)

is a (non-minimal) realization of the left all-pass divisor of K (z). Conversely, any left

all-pass divisor of K (z) is given by (4.2)-(4.3), up to multiplication from the right side

by a constant orthogonal matrix.

4.3 The main result

THE next theorem provides a complete parametrization of all the minimal spectral
factors of a completely general spectral density.

Theorem 4.1. Let Φ(z) ∈ S
m

rat(T) be a spectral density of normal rank rk(Φ) = r ≤ m.

Let W−(z) be the outer spectral factor of Φ(z) and W +(z) be the conjugate outer spectral

factor of Φ(z). Let T (z) :=W −L
− (z)W +(z). Let W be the set of minimal spectral factors

of Φ(z). Then

W =
{

W−(z)T`(z) : T`(z) is a left all-pass divisor of T (z)
}

.
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Proof. The proof is rather lengthy and involved, so that, for the sake of clarity, is
divided in three main parts:

I. First, we show that, without loss of generality, we can restrict the attention to
spectral densities that do not have poles/zeros at infinity (set of biproper spectral
densities).

II. Then, we prove the statement of the theorem for the set of coercive spectral
densities.

III. Finally, we show how the latter result can be extended to spectral densities that
have poles/zeros on the unit circle and/or are normal rank deficient.

Part I. As far as the first part is concerned, suppose that Φ(z) has a pole/zero at
infinity and consider a Möbius transformation λ : C→ C mapping z in λ(z) = z−a

1−az
,

where a ∈ R is such that |a| < 1 and 1/a does not coincide with a pole/zero of Φ(z).
The inverse of this map has the same structure and maps λ 7→ z(λ) = λ+a

1+aλ . We observe
that:

1) |λ(z)| = 1 (resp. |λ(z)| > 1, |λ(z)| < 1) if and only if |z| = 1 (resp. |z| > 1, |z| < 1);

2) [λ(z)]−1 =λ(z−1);

3) λ(∞) =−1/a and λ(z) =∞ if and only if z = 1/a;

4) If F (z) ∈R(z)k×h and G(λ) = F (z(λ)) then δM (F (z)) = δM (G(λ)) [Bart et al., 1979,
p. 83];

As a consequence

1) Ψ(λ) :=Φ(z(λ)) is a coercive spectral density;

2) since 1/a is not a pole/zero of Φ(z) then Ψ(λ) has no pole/zero at infinity;

3) the outer spectral factor V−(λ) (resp. conjugate outer spectral factor V +(λ)) of
Ψ(λ) is given by V−(λ) =W−(z(λ)) (resp. V +(λ) =W +(z(λ)));

4) the conjugate phase function T (λ) associated with Ψ(λ) is given by T (λ) =
T (z(λ)) and T`(λ) is a left all-pass divisor of T (λ) if and only if T`(λ) = T`(z(λ)),
where T`(z) is a left all-pass divisor of T (z);

5) V (λ) is a spectral factor of Ψ(λ) if and only if V (λ) = W (z(λ)) where W (z) is a
spectral factor of Φ(z). Moreover, in this case, δM (V (λ)) = δM (W (z)).
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Due to these facts, we can apply the argument presented in what follows to Ψ(λ)
and then transform back λ(z) 7→ z to recover the desired parametrization for the
original spectrum Φ(z).

Part II. We now proceed with the second part of the proof. In this part, we will show
that the theorem holds for the set of coercive spectral densities. To this end, assume
that Φ(z) is coercive. In the light of Part I, we can also assume that Φ(z) is biproper,
i.e., it has no pole/zero at infinity. We first show that if T`(z) is a left all-pass divisor
of T (z) then W (z) :=W−(z)T`(z) is a minimal spectral factor of Φ(z). To this end it is
clearly sufficient to show that the McMillan degree of W (z) :=W−(z)T`(z) equals the
McMillan degree of W−(z) (which, in turn, is one half of the McMillan degree of the
spectral density Φ(z)). To prove this fact, we start from a minimal realization of the
outer spectral factor W−(z):

W−(z) =C (zI − A)−1B +D (4.4)

and we follow five steps:

1) We compute a realization of the all-pass function

T1(z) := [W−(z)]−1W+(z)

in terms of the quadruple A,B ,C ,D .

2) We compute a realization of the all-pass function

T2(z) := [W+(z)]−1W +(z)

in terms of the quadruple A,B ,C ,D .

3) We compute a realization of the conjugate phase function T (z) = T1(z)T2(z)
again in terms of the quadruple A,B ,C ,D .

4) We use the results of Ferrante and Picci [2017], recalled in Section 4.2, that
provide an explicit expression parametrizing the all-pass divisors of a given
all-pass function; in this way, we have an expression of T`(z) in terms of the
original data A,B ,C ,D and of a free parameter.

5) We compute the product W−(z)T`(z) and show that its McMillan degree equals
the McMillan degree of W−(z).

1) Let us consider a minimal realization (4.4) of W−(z) and let n be the McMillan
degree of W−(z), i.e., the dimension of the matrix A. Let

Γ := A−BD−1C (4.5)
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be the zero matrix of W−(z) and recall that Γ is non-singular and all its eigenvalues
have modulus smaller than 1. Moreover, it is worth noticing that the invertibility of D

in (4.5) follows from the fact that Φ(z) is assumed to have no pole/zero at infinity. We
now show that

T1(z) := [W−(z)]−1W+(z) = H1(zI −Γ)−1G1 +U1 (4.6)

where
H1 := D−1C

U1 := [I +H1X −1H>
1 ]1/2

G1 := ΓX −1H>
1 U−1

1

and X is the solution of the Stein equation

Γ
>XΓ= X +H>

1 H1. (4.7)

Before proving (4.6), notice that: (i) (A,C ) and hence (Γ, H1) is observable so that X

is negative definite. In view of (4.7), this implies that X +H>
1 H1 is negative definite

as well so that I +H1X −1H>
1 > 0 and hence U1 and G1 are well defined. (ii) By direct

computations we get G1G>
1 = ΓX −1

Γ
>−X −1 so that (4.6) is a minimal realization. To

prove (4.6), we show that: (i) the right-hand side of (4.6) is all-pass and (ii) the product
W−(z)[H1(zI −Γ)−1G1 +U1] has a realization with the same state matrix A of W−(z)
and with zero matrix similar to Γ

−>. As for (i), it is a matter of direct computation to
show that

H>
1 U1 = Γ

>XG1, U>
1 U1 = I +G>

1 XG1.

These conditions, together with (4.7), guarantee that the right-hand side of (4.6) is
all-pass, cf. Lemma 4.1. As for (ii), by taking into account that B H1 = BD−1C = A−Γ=
(zI −Γ)−(zI −A), we can easily see that W−(z)[H1(zI −Γ)−1G1+U1] =C (zI −A)−1B++
D+, where

B+ := BU1 +ΓX −1H>
1 U−1

1 ,
D+ := DU1.

Hence, its zero matrix is easily seen to be

Γ+ := A−B+D−1
+ C

= Γ−ΓX −1H>
1 [I +H1X −1H>

1 ]−1D−1C

= Γ(X −1 −X −1H>
1 [I +H1X −1H>

1 ]−1H1X −1)X

= Γ(X +H1H>
1 )−1X = X −1

Γ
−>X .

In conclusion, T1(z) is given by the right-hand side of (4.6) and

W+(z) =C (zI − A)−1B++D+. (4.8)
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2) We now show that

T2(z) := [W+(z)]−1W +(z) = H2(zI − A−>)−1G2 +U2 (4.9)

where H2 := B>
+ A−>, U2 := [I +H2Y −1H>

2 ]1/2, G2 := A−>Y −1H>
2 U−1

2 and Y is the solu-
tion of the Stein equation

A−1Y A−> = Y +H>
2 H2. (4.10)

Notice that from (stochastic) minimality of W+(z) it follows that the realization (4.8)
is minimal. We can therefore use the same argument used in point 1) to see that: Y

is positive definite, U2 and G2 are well defined, U2 is invertible and (4.9) is a minimal
realization. To prove (4.9), we show that: (i) the right-hand side of (4.9) is all-pass
and (ii) the product W+(z)[H2(zI − A−>)−1G2 +U2] has a realization with state matrix
given by A−> and with zero matrix similar to Γ

−>. As for (i), it is a matter of direct
computation to show that

H>
2 U2 = A−1Y G2, U>

2 U2 = I +G>
2 Y G2.

These conditions, together with (4.10) guarantee that the right-hand side of (4.9) is
all-pass by virtue of Lemma 4.1.

As for (ii), by taking into account that B+H2 = AH>
2 H2 = A(A−1Y A−>−Y ) = (zI −

A)Y −Y (zI − A−>), we can easily see that W+(z)[H2(zI − A−>)−1G2 +U2] = D+U2 +
C+(sI − A−>)G2 +N (z), where

C+ :=C Y +D+H2 (4.11)

and N (z) :=C (zI −A)−1(B+U2−Y G2); it is now a matter of direct computation to show
that B+U2 −Y G2 = 0 so that N (z) = 0. The zero matrix of the product W+(z)[H2(zI −
A−>)−1G2 +U2] is thus

Γ+ := A−>−G2(D+U2)−1C+

= A−>(I −Y −1H>
2 [I +H2Y −1H>

2 ]−1H2)− A−>Y −1H>
2 U−2

2 U−1
1 D−1C Y

= A−>(Y +H>
2 H2)−1Y −Y −1(A+ AH>

2 H2Y −1)H>
2 U−2

2 U−1
1 D−1C Y

= Y −1 AY −Y −1 AH>
2 U 2

2U−2
2 U−1

1 D−1C Y

= Y −1(A− AH>
2 U−1

1 D−1C )Y

= Y −1
Γ+Y .

In conclusion, T2(z) is given by the right-hand side of (4.9).
Before proceeding to the next point, we need to establish a formula linking X and

Y . First observe that taking the inverse of (4.7) and employing the Sherman–Morrison–
Woodbury identity1616Also known as the

matrix inversion lemma.
we get

X −1 = ΓX −1
Γ
>−ΓX −1H>

1 (I +H1X −1H>
1 )−1H1X −1

Γ
>.
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Moreover, equation (4.10) can be rewritten as

Y = AY A>+B+B>
+ . (4.12)

By direct computation, we get B+B>
+ = BB>+ AX −1 A>−X −1 which, plugged in (4.12),

gives the identity
Z = BB>+ AZ A>, (4.13)

where Z := Y +X −1. Notice that by reachability of (A,B), Z is invertible.
3) It is now immediate to compute the following realization of T (z) = T1(z)T2(z):

T (z) = C̄ (zI − ¯A )−1B̄+D , where

¯A :=
[
Γ G1H2

0 A−>

]
, B̄ :=

[
G1U2

G2

]
,

C̄ := [H1 |U1H2], and D :=U1U2.

By direct computation it is easy to see that

−ΓX −1 +X −1 A−>+G1H2 = 0

so that we can perform a change of basis in the state space of T (z) induced by the
transformation

T̄ =
[

I −X −1

0 I

]

in such a way that
T (z) =C (zI −A )−1

B+D (4.14)

with

A := T̄ −1 ¯A T̄ =
[
Γ 0

0 A−>

]
,

B := T̄ −1
B̄ =

[
G1U2 +X −1G2

G2

]
,

and
C := C̄ T̄ = [H1 |U1H2 −H1X −1] = [H1 | B>A−>].

Thus, is apparent that (A ,C ) is observable. By using a dual argument it is not difficult
to see that (A ,B) is reachable so that (4.14) is a minimal realization.

Now define

P0 :=
[

X −1 +X −1Y −1X −1 X −1Y −1

Y −1X −1 Y −1

]

and observe that P0 is invertible; in fact,

P
−1
0 =

[
X −I

−I Y +X −1

]
=

[
X −I

−I Z

]
.
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By long but direct computations, we see that the following relations hold





A P0A
>−P0 =BB>

A P0C
> =BD>

I +C P0C
> =DD>

(4.15)

Similarly, we get
A

>
P

−1
0 A −P

−1
0 =C

>
C . (4.16)

4) We are now in position to apply Lemma 4.2. In fact, we have a minimal real-
ization (4.14) of the all-pass function T (z) and an explicit expression of the unique
solution P0 of the corresponding linear matrix equation (4.15). By Lemma 4.2, T`(z)
is a left all-pass divisor of T (z) if and only if it has the form

T`(z) = [C (zI −A )−1
B

P
+D

P
]O

where
B

P
:=A PC >(I +C PC >)−1/2,

D
P

:= (I +C PC >)1/2,
(4.17)

O is an arbitrary orthogonal matrix and P is of the form

P =
[
ΠP

−1
0 Π

]+
(4.18)

with Π (the parameter of the parametrization) varying among the orthogonal projec-
tors on A -invariant subspaces. Notice that A is block-diagonal and its blocks Γ and
A−> have disjoint spectra: σ(Γ)∩σ(A−>) =;. Hence the invariant subspaces of A

have the form

im

[
Vγ 0

0 Va

]

where im(Vγ) is aΓ-invariant subspace and im(Va) is a A−>-invariant subspace. Notice
that the arbitrary orthogonal matrix O does not influence the McMillan degree of
product W−(z)T`(z) so that, without loss of generality, from now on we set O = I .

Now, let

V :=
[

Vγ 0

0 Va

]

be a matrix whose columns are a basis for an arbitrary A -invariant subspace. Let
T̃ := [V | W̃ ], where W̃ is such that T̃ is invertible. A change of basis on A induced by
T̃ elicits a block-triangular structure

T̃ −1
A T̃ =

[
F1 F̃12

0 F2

]
,

78 |



Chapter 4. Parametrization of minimal spectral factors

where, in turn, F1 has the block-diagonal structure

F1 =
[
Γ1 0

0 A−>
1

]
. (4.19)

We partition now Q := (T̃ −1P0T̃ −>)−1 conformably as

[
Q1 Q12

Q>
12 Q2

]
.

As shown in [Ferrante and Picci, 2017, Lemma 4.1], Q1 is invertible so that we can set

T̄ :=
[

I 0

−Q>
12Q−1

1 I

]

and we have T̄ QT̄ > = diag[Q1,Q2 −Q>
12Q−1

1 Q12]. Therefore, by defining

T := T̃ T̄ > = [V |W ] =
[

Vγ 0 W1

0 Va W2

]
, (4.20)

(where W , partitioned conformably with V in two blocks, is a new completion of V

to an invertible matrix) we have that T −1P0T −> has the following block diagonal
structure:

T −1
P0T −> =

[
P1 0

0 P2

]
.

Moreover, the structure of T −1A T is easily seen to be

T −1
A T =

[
F1 F12

0 F2

]
. (4.21)

Finally by using (4.18) and observing that in the new basis Π (the orthogonal projector
on im(V )) is given by

Π=
[

I 0

0 0

]
,

we have

T −1
PT −> =

[
P1 0

0 0

]
. (4.22)

5) we are now ready to compute the spectral factor W (z) :=W−(z)T`(z) and show
that its McMillan degree is n. To this end, we first define nγ and na to be the number
of columns of Vγ and Va , respectively. By direct computation, we see that

BC = [B H1 | BB>A−>] = [BD−1C | Z A−>− AZ ]
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or
BC = [(zI −Γ)− (zI − A) | (zI − A)Z −Z (zI − A−>)].

Moreover,
DC = [C | DB>A−>].

It is now easy to see that

W (z) :=W−(z)T`(z) = DD
P
+W1(z)+W2(z)

where
W1(z) := (C Z +DB>A−>)(zI − A−>)−1[0 | I ]B

P

and
W2(z) :=C (zI − A)−1([I | −Z ]B

P
+BD

P
).

Thus, δM (W (z)) = δM (W1(z))+δM (W2(z)). To compute the McMillan degreeδM (W1(z))
of W1(z), consider the term

M := [0 | I ]B
P

= [0 | I ]A PC
>
D

−1
P

= [0 | I ]T T −1
A T T −1

PT >T −>
C

>
D

−1
P

= [0 |Va |W2]T −1
A T T −1

PT >T −>
C

>
D

−1
P

= [0 |Va |W2]

[
F1 F12

0 F2

][
P1 0

0 0

]
T −>

C
>
D

−1
P

= [0 |Va |W2]

[
F1 0

0 0

][
P1 0

0 0

]
T −>

C
>
D

−1
P

= [0 |Va | 0]

[
F1 0

0 0

][
P1 0

0 0

]
T −>

C
>
D

−1
P

= [0 |Va A−>
1 | 0]

[
P1 0

0 0

]
T −>

C
>
D

−1
P

=Va A−>
1 E2,

where E2 is the second block rows in the partition of
[

P1 0

0 0

]
T −>

C
>
D

−1
P

in three block rows, consistently with the partition [0 |Va A−>
1 | 0]. From (4.19), (4.20)

and (4.21), it immediately follows that A−>Va = Va A−>
1 so that (zI − A−>)−1Va =

Va(zI − A−>
1 )−1. Thus

W1(z) = (C Z +DB>A−>)Va(zI − A−>
1 )−1 A−>

1 E2.
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Hence, δM (W1(z)) ≤ na = dim(A1).
To compute the McMillan degree of W2(z), we analyze the term N := [I | −Z ]B

P
+

BD
P

. It can be rewritten as

N = [0 | −I ]P−1
0 A PC

>
D

−1
P

+BD
P

= [0 | −I ](A −>
P

−1
0 +A

−>
C

>
C )PC

>
D

−1
P

+BD
P

where, for the last equality we exploited (4.16). By direct computation, we get [0 |
−I ]A −>C > =−B , so that we easily obtain

[0 | −I ]A −>
C

>
C PC

>
D

−1
P

+BD
P

=−B(C PC
>
D

−1
P

−D
P

)

=−B(C PC
>−D

2
P

)D−1
P

= BD
−1
P

= [0 | I ]A −>
C

>
D

−1
P

.

Therefore,
N = [0 | I ]A −>(I −P

−1
0 P)C >

D
−1
P

.

We now use the change of basis in (4.20) and observe that

I −P
−1
0 P = T −>T >−T −>T >

P
−1
0 T T −1

PT −>T >

= T −>
[

0 0

0 I

]
T >.

Therefore

N = [0 | I ]T −>T >
A

−>T −>
[

0 0

0 I

]
T >

C
>
D

−1
P

= [0 | I ]T −>
[

F−>
1 0

? F−>
2

][
0 0

0 I

]
T >

C
>
D

−1
P

= [0 | I ]T −>
[

0 0

0 F−>
2

]
T >

C
>
D

−1
P

.

Partition now T −> conformably with T as

T −> =
[

K >
11 K >

21 K >
31

K >
12 K >

22 K >
32

]

so that
N = [0 | K >

32F−>
2 ]T >

C
>
D

−1
P

= K >
32F−>

2 [T >
C

>
D

−1
P

]2

where [T >C >D−1
P

]2 denotes the second block rows of T >C >D−1
P

. From (4.21) it

immediately follows that AK >
32 = K >

32F−>
2 so that (zI−A)−1K >

32 = K >
32(zI−F−>

2 )−1. Thus

W2(z) =C K >
32(zI −F−>

2 )−1F−>
2 [T >

C
>
D

−1
P

]2. (4.23)
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Hence, δM (W2(z)) ≤ 2n −na −nγ = dim(F2). To reduce this bound consider the ob-
servability matrix of realization (4.23):




C K >
32

C K >
32F−>

2
C K >

32(F−>
2 )2

...


=




C

C A

C A2

...


K >

32

whose kernel (the un-observable subspace of the realization (4.23)) is the kernel of
K >

32. Hence

δM (W2(z)) ≤ 2n −na −nγ−dim(ker(K >
32)).

To find dim(ker(K >
32)), notice that K32 ∈ R

(2n−na−nγ)×n and from T −1T = I we imme-
diately get K >

32Va = 0. Let Ṽa ∈ R
n×(n−na ) be a matrix whose columns complete the

columns of Va to a basis of Rn so that [Va | Ṽa] ∈R
n×n is nonsingular. We have

rank(K32) = rank(K32[Va | Ṽa]) = rank([0 | K32Ṽa]) = rank(K32Ṽa) ≤ n −na

because K32Ṽa ∈ R
(2n−na−nγ)×(n−na ). By recalling that ker(K >

32) = [im(K32)]⊥, we have
dim(ker(K >

32)) = 2n−na −nγ−dim(im(K32)) = 2n−na −nγ−rank(K32) ≥ n−nγ. Thus,

δM (W2(z)) ≤ 2n −na −nγ−dim(ker(K >
32)) ≤ n −na .

In conclusion,

δM (W (z)) = δM (W1(z))+δM (W2(z)) ≤ na +n −na = n,

and hence δM (W (z)) = n since n is the minimal McMillan degree for a spectral factor
of Φ(z).

We now show the opposite direction, namely that if W0(z) is a minimal spectral
factor of Φ(z) then T−(z) := [W−(z)]−1W0(z) is a left all-pass divisor of the conjugate
phase function T (z). Clearly T−(z) is all-pass and by defining the all-pass function
T+(z) := [W0(z)]−1W +(z), we have T (z) = T−(z)T+(z) Therefore, we only need to show
that δM (T−(z))+δM (T+(z)) = δM (T (z)). Since we have already seen that (4.14) is a
minimal realization of T (z), so that δM (T (z)) = 2n, we need to show that δM (T−(z))+
δM (T+(z)) = 2n. But the McMillan degree of the product of two rational function is no
larger than the sum of the McMillan degrees of the two factors, thus we only need to
show that

δM (T−(z))+δM (T+(z)) ≤ 2n. (4.24)

To this aim, let us consider a minimal realization

W0(z) =C0(zI − A0)−1B0 +D0 (4.25)
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and let Γ0 := A0 −B0D−1
0 C0 be the corresponding zero matrix. Notice that by the

assumptions on Φ(z), A0,Γ0 and D0 are invertible and none of the eigenvalues of A0

and Γ0 have unitary modulus. We consider two different basis in the state space of
W0(z): one in which

Γ0 =
[
Γu 0

0 Γs

]
, (4.26)

and the other in which

A0 =
[

Au 0

0 As

]
,

where all the eigenvalues of Γu and Au have modulus larger than 1 and all the eigenval-
ues of Γs and As have modulus smaller than 1. Let γ1, γ2 = n −γ1, a1 and a2 = n −a1

be the dimensions of the matrices Γu ,Γs , Au and As , respectively. To conclude, we
show that δM (T−(z)) ≤ γ1 +a1 and δM (T+(z)) ≤ γ2 +a2.

Let us consider (4.25) and the basis in which (4.26) holds. Partition C0 conformably
as C0 = [Cu |Cs]. Notice that observability of (A0,C0) implies observability of the pair
(Γ0,C0) and, in turn, observability of the pair (Γu ,Cu). Thus, equation

Γ
>
u XuΓu = Xu +C>

u D−>
0 D−1

0 Cu (4.27)

admits a unique solution Xu that is positive definite and hence invertible. Hence,
U− := [I +D−1

0 Cu X −1
u C>

u D−>
0 ]1/2 is well defined and invertible. Let

X1 :=
[

X −1
u 0

0 0

]

and consider the function

T1−(z) := D−1
0 C0(zI −Γ0)−1G−+U−, (4.28)

where G− := Γ0X1C>
0 D−>

0 U−1
− . Notice that G− can be rewritten as

G− =
[
Γu X −1

u C>
u D−>

0 U−1
−

0

]

so that T1−(z) may also be realized as T1−(z) := C−(zI −Γu)−1B−+U− where, C− :=
D−1

0 Cu and B− := Γu X −1
u C>

u D−>
0 U−1

− . It is now easy to see that T1−(z) is all-pass. In
fact, by direct computation we see that C>

−U− = Γ
>
u XuB− and U>

−U− = I +B>
− XuB−

which together with (4.27) imply that T1−(z) is all-pass Lemma 4.1. In addition, since
we have derived a realization whose state matrix is Γu , clearly δM (T1−(z)) ≤ γ1. Finally,
since U− is invertible, T −1

1− (z) is also a proper all-pass function with McMillan degree
δM (T −1

1− (z)) = δM (T1−(z)) ≤ γ1.
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We now compute W0−(z) :=W0(z)T1−(z) which is a spectral factor of Φ(z) because
T1−(z) is all-pass. By taking into account that B0D−1

0 C0 = (zI −Γ0)− (zI − A0) a direct
computation yields

W0−(z) =C0(zI − A0)−1B0−+D0−,

where B0− := B0U−+G− and D0− := D0U−. The zero matrix Γ− of W0−(z) is given by

Γ− = A0 −B0−D−1
0−C0 = Γ0 −G−U−1

− D−1
0 C0

=
[
Γu −Γu X −1

u C>
u [D0D>

0 +C0X1C>
0 ]−1Cu 0

0 Γs

]

and, in view of (4.27),

Γ− =
[

X −1
u Γ

−>
u Xu 0

0 Γs

]
.

Thus all the zeros of W0−(z) have modulus smaller than 1.
In conclusion, there exists a proper all-pass function T1−(z) with δM (T −1

1− (z)) =
δM (T1−(z)) ≤ γ1, such that W0−(z) :=W0(z)T1−(z) is a spectral factor of Φ(z) having (i)
the same state matrix of W0(z) and (ii) all its zeros inside the unit disk.

Now we consider V0(z) :=W −∗
0− (z) which has a realization with state matrix similar

to Γ
−>
− and zero matrix of the form

[
A−>

u 0

0 A−>
s

]
,

where Au has dimension a1 and all its eigenvalues have modulus larger than 1 and
As has dimension n −a1 and all its eigenvalues have modulus smaller than 1. We can
apply to V0(z) the same procedure that led from W0(z) to W0−(z) and we conclude
that there exists a proper all-pass function T2−(z) with δM (T −1

2− (z)) = δM (T2−(z)) ≤
a1, such that V0(z)T2−(z) has (i) the same state matrix of V0(z) and (ii) all its zeros
outside the unit disk. Hence, W0−(z)T2−(z) = [V0(z)T2−(z)]−∗ is a spectral factor ofΦ(z)
having both its poles and its zeros all inside the unit disk. Hence W0(z)T1−(z)T2−(z) =
W0−(z)T2−(z) =W−(z) so that T−(z) :=W −1

− (z)W0(z) = [T1−(z)T2−(z)]−1 which proves
that δM (T−(z)) ≤ γ1 +a1.

The same argument, this time referred to the lower blocks As and Γs , now yields
δM (T+(z)) ≤ γ2 +a2 = 2n − (γ1 +a1) and hence (4.24).

Part III. In the last part of the proof, we will show that the result proved in Part II
of the proof can be extended to the case of general spectral densities. First, by virtue
of Part I of the proof, we can suppose that Φ(z) is biproper, i.e., it has no pole/zero at
infinity.

In the remaining part of the proof, we will show that:

1) W (z) ∈R(z)m×r is a minimal spectral factor of Φ(z) if and only if it can be written
as W (z) =Wo(z)V (z) where Wo(z) is an n × r fixed factor that is biproper with
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zeros/poles in the unit circle and, possibly, in z = 0, and V (z) varies among the
r × r biproper minimal spectral factors of a given coercive r × r spectral density
Ψ(z).

2) By letting V−(z) denote the minimum phase stable spectral factor of Ψ(z), any
biproper minimal spectral factor of Ψ(z) can be written as V (z) = V−(z)T`(z)
with T`(z) being a left all pass divisor of T (z) =W −L

− (z)W (z)+.

With reference to point 1), we first notice that the spectral density Φ(z) can be
written as Φ(z) = F (z)D(z)C (z) where F (z) ∈R[z]n×r and C (z) ∈R[z]r×n are unimodu-
lar matrices and D(z) ∈ R(z)r×r is the Smith–McMillan canonical form of Φ(z). The
minimum-phase spectral factor of Φ(z) has the form (up to post-multiplication by
constant orthogonal matrices)17 17This immedi-

ately follows from the
constructive procedure
described in the proof of
Theorem 2.1.

W−(z) = F (z)Θ(z)Λ−(z)P−(z), where Θ(z) ∈R(z)r×r

is diagonal and has finite poles/zeros on the unit circle, Λ−(z) ∈ R(z)r×r is diago-
nal and has all the finite (strictly) stable poles/zeros of Φ(z) in its diagonal, and
P−(z) ∈R[z, z−1]r×r is a suitable unimodular matrix. Consider the product F (z)Θ(z)
which has poles/zeros in the unit circle and in z =∞. This product can be factorized
as

F (z)Θ(z) =G−(z)∆(z)G+(z),

where G−(z) ∈ R(z)n×r is biproper and of full column normal rank, ∆(z) ∈ R(z)r×r

is diagonal with monomials of the form zκi , κi ∈ Z, in its diagonal, and G+(z) ∈
R[z, z−1]r×r is unimodular. The previous factorization is known as a left Wiener–Hopf
factorization at infinity, cf. Fuhrmann and Willems [1979]. Notice that G−(z) must
have poles/zeros in the unit circle or in z = 0 only. This follows from the fact that
(i) ∆(z)G+(z) can have poles/zeros in z = 0 and in z =∞ only, and (ii) the product
G−(z)∆(z)G+(z) = F (z)Θ(z) has poles/zeros in the unit circle and in z =∞. We define
Wo(z) := G−(z), Ṽ (z) := ∆(z)G+(z)Λ−(z)P−(z), and Ψ(z) := Ṽ (z)Ṽ ∗(z). Notice that
Ψ(z) has no zeros/poles in the unit circle and it has full normal rank, that is, it is
coercive. Let {βi }

q

i=1 denote the poles in the unit circle of Φ(z) and {αi }
p

i=1 denote the
remaining poles of Φ(z). Note that, by construction, it holds

δp (Φ;αi ) = δp (Ψ;αi ), i = 1, . . . , p, (4.29)

δp (Wo ;βi ) =
1

2
δp (Φ;βi ), i = 1, . . . , q. (4.30)

Observe also that, besides the poles {αi }
p

i=1, Ψ(z) can possess additional poles only in
z = 0 and z =∞.

Now, let V (z) be any biproper minimal spectral factor of Ψ(z), and consider

W (z) :=Wo(z)V (z).

Since V (z) is taken to be minimal and biproper then, all its non-zero poles are in
{αi }

p

i=1 and they satisfy
∑p

i=1δp (V ;αi ) = 1
2

∑p

i=1δp (Ψ;αi ) [Bart et al., 2007, p. 163].
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Now, notice that W (z) is a spectral factor of Φ(z) that is again biproper, since Wo(z)
and V (z) are so. Moreover W (z) has no pole/zero in z = 0. This follows from the fact
that (i) Φ(z) is biproper by assumption, and (ii) W ∗(z) has no pole/zero in z = 0. In
view of the previous observations and of (4.29),

δM (W ) =
p∑

i=1
δp (V ;αi )+

q∑

i=1
δp (Wo ;βi )

=
1

2

p∑

i=1
δp (Ψ;αi )+

1

2

q∑

i=1
δp (Φ;βi )

=
1

2

p∑

i=1
δp (Φ;αi )+

1

2

q∑

i=1
δp (Φ;βi ) =

δM (Φ)

2
,

i.e., W (z) is a minimal spectral factor of Φ(z).
Conversely, let W (z) be any minimal spectral factor of Φ(z) and let V−(z) be the

stable minimum-phase spectral factor of Ψ(z). As shown before, Wo(z)V−(z) is a
minimal spectral factor of Φ(z), which in this case coincides with the stable minimum-
phase one, that is W−(z) =Wo(z)V−(z). It holds

W (z) =W−(z)U (z) =Wo(z)V−(z)U (z),

for a suitable all-pass matrix U (z) ∈R(z)r×r . Now observe that:

1) W has poles only in {αi }
p

i=1 ∪ {βi }
q

i=1 since it is minimal,

2) U cannot have poles/zeros in the unit circle since it is all-pass, cf. Lemma 2.2,

3) Wo has poles/zeros in the unit circle and in z = 0 only.

These three facts together imply that the non-zero poles of V−(z)U (z) belong to {αi }
p

i=1
and they satisfy δp (W ;αi ) = δp (V−U ;αi ), i = 1, . . . , p. Moreover, we have that

p∑

i=1
δp (V−U ;αi ) =

p∑

i=1
δp (W ;αi ) =

1

2

p∑

i=1
δp (Φ;αi )

(4.29)=
1

2

p∑

i=1
δp (Ψ;αi ). (4.31)

Finally, we notice that U (z) cannot have poles/zeros in z = 0 and z =∞ (i.e., U (z)
must be biproper), otherwise W (z) =W−(z)U (z) would have a pole in z = 0 or z =∞
and consequently, in view of the biproperness of Φ(z), it would not be minimal. This
implies that δp (V−U ;0) = δp (Ψ;0). The latter observation together with (4.31) yields

δM (V−U ) =
p∑

i=1
δp (V−U ;αi )+δp (V−U ;0)

=
1

2

p∑

i=1
δp (Ψ;αi )+δp (Ψ;0) =

1

2
δM (Ψ),

86 |



Chapter 4. Parametrization of minimal spectral factors

that is the product V−(z)U (z) is a biproper minimal spectral factor of Ψ(z).

We now address point 2) We first notice that

T (z) =W −L
− (z)W +(z) =V −1

− (z)W −L
o (z)Wo(z)V +,0(z)

=V −1
− (z)V +,0(z), (4.32)

where V +,0(z) denotes the minimal biproper spectral factor of Ψ(z) having unstable
poles/zeros with the only exception for those in z = 0. Since Ψ(z) is coercive, we can
apply the result proved in Part II of the proof and conclude that any minimal spectral
factor V`(z) of Ψ(z) (and in particular the biproper ones) can be written in the form

V`(z) =V−(z)T`(z),

with T`(z) being a left all pass divisor of T (z) :=V −1
− (z)V +(z), i.e., T (z) = T`(z)T`,r (z)

with δM (T ) = δM (T`)+δM (T`,r ), where in this case V +(z) denotes the conjugate outer
spectral factor of Ψ(z). In particular, when applied to V +,0(z) the latter result reads as

V +,0(z) =V−(z)T (z),

where T (z), as defined in (4.32), must be a left all pass divisor of T (z), i.e., T (z) =
T (z)Tr (z) with δM (T ) = δM (T )+δM (Tr ). We claim that Tr (z) can have poles/zeros in
z = 0 and z =∞ only. To prove this fact, we decompose Ψ(z) in its Smith–McMillan
form Ψ(z) = F̃ (z)D̃(z)C̃ (z), where F̃ (z) and C̃ (z) are r × r unimodular matrices and
D̃(z) is the Smith–McMillan canonical form of Ψ(z). Using the dual counterpart of
the results proved in Chapter 2 it follows that (up to post-multiplication by orthogo-
nal matrices) V +,0(z) and V +(z) have the form V +,0(z) = F̃ (z)Λ̄+,0(z)P+,0(z),V +(z) =
F̃ (z)Λ̄+(z)P+(z), where Λ̄+,0(z) and Λ̄+(z) are the diagonal parts of D̃(z) containing
the zeros/poles in {z ∈C : |z| > 1∪ z = 0} and in {z ∈C : |z| > 1}, respectively, and P+(z)
and P+,0(z) are unimodular matrices. In the light of this fact, we have that

Tr (z) =V
−1
+ (z)V +,0(z) = P+(z)−1

Λ̄
−1
+ (z)Λ̄+,0(z)P+,0(z),

is a matrix whose poles are in z = 0 or z =∞ only.
Now, for every biproper minimal spectral factor V`(z) of Ψ(z), we have

V`(z) =V−(z)T`(z), T (z) = T`(z)Tr,0,`(z),

where Tr,0,`(z) := T`,r (z)T −1
r (z). Since T`(z) and T (z) have no pole/zero in z = 0

and z = ∞, it follows that Tr,0,`(z) must be biproper, so that all the zeros/poles in
z = 0 and z = ∞ must cancel out in the product T`,r (z)T −1

r (z). Let {γ}t
i=1 be the
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poles of T (z) different from 0 and ∞. In view of the minimality of the factorization
T (z) = T`(z)T`,r (z), we have

δp (T ;γi ) = δp (T`;γi )+δp (T`,r ;γi ), i = 1, . . . , t ,

cf. [Bart et al., 2007, p. 163]. Since T −1
r (z) has poles only in z = 0 and in z =∞ and T (z),

Tr,0,`(z) are biproper, it follows that (i) T (z) = T (z)T −1
r (z) has the same poles (and pole

degrees) of T (z) except for those in 0 and ∞, and (ii) Tr,0,`(z) := T`,r (z)T −1
r (z) has the

same poles (and pole degrees) of T`,r (z) except for those in 0 and ∞. This implies

δM (T ) =
t∑

i=1
δp (T ;γi ) =

t∑

i=1
δp (T`;γi )+δp (T`,r ;γi )

=
t∑

i=1
δp (T`;γi )+δp (T`,r,0;γi ) = δM (T`)+δM (T`,r,0).

Therefore, any minimal biproper spectral factor of Ψ(z) can be written as V`(z) =
V−(z)T`(z) with T`(z) being a left all pass divisor of T (z). Eventually, by virtue of the
one-to-one relation between the biproper minimal spectral factors of Ψ(z) and the
minimal spectral factors of Φ(z) the latter result applies to the minimal spectral factors
of Φ(z) as well.

4.4 An illustrative example

TO demonstrate the usefulness (and non-triviality) of our main result, here we apply
Theorem 4.1 to a concrete example arising from stochastic realization theory.

To this end, consider a zero-mean purely nondeterministic second-order stationary
process {y(t )} whose spectral density is

Φ(z) =
1

z2 − 5
2 z +1

[
3z2 + 17

8 z +3 0
0 2

3 z2 − 20
9 z + 2

3

]
.

We want to compute all the minimum “complexity” (i.e., with minimal McMillan
degree) dynamical models for the process {y(t )}. One possible model is the following
minimum-phase model that can be computed by standard procedures:

{
x(t +1) = Ax(t )+Bu(t ),

y(t ) =C x(t )+Du(t ),

where

A =
1

2
I2, B = I2, C =

[
1/4 0

0 1/6

]
, D = I2, (4.33)
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and with {u(t )} being a white noise process. This is, however, just one possible choice:
to obtain all the models of minimum complexity we can apply our result as follows.

Following the second part of the proof of Theorem 4.1, we have that the conjugate
phase function T (z) admits the following minimal state-space realization

T (z) =C (zI4 −A )−1
B+D .

where

A =




1/4 0 0 0
0 1/3 0 0
0 0 2 0
0 0 0 2


 , B =




−15/14 0
0 −16/15

−3/7 0
0 −3/10


 ,

C =
[

1/4 0 2 0
0 1/6 0 2

]
, D =

[
1/2 0

0 2/3

]
.

By invoking Lemma 4.2, we have that there is a one-to-one correspondence be-
tween left all-pass divisors of T (z) and invariant subspaces of A . It is immediate to
see that the A -invariant subspaces can be classified in four “categories”, namely

{0}⊕V , span

[
1
0

]
⊕V , span

[
0
1

]
⊕V , R2 ⊕V ,

where V is any subspace of R
2. Thus, in this case, it follows that there are four

“categories” of left all-pass divisors of T (z) and to each of these categories there corre-
sponds an infinite number of (essentially unique) minimal spectral factors of Φ(z).18

18Notice that in,
contrast to the mul-
tivariate case, in the
scalar case the number
of (essentially unique)
minimal spectral factors
is always finite!

More precisely, the left all-pass divisors corresponding to the above categories can
be computed as in (4.2)-(4.3) and the corresponding (essentially unique) spectral
factors are recovered by pre-multiplying the minimal spectral factor W−(z), described
by the state-space representation (4.33), by the particularly chosen all-pass divisor.
We explicitly show how to parametrize the minimal spectral factors belonging to the
first category, the others being similar. Thus, we focus on the following category of
A -invariant subspaces

{0}⊕V .

We can further divide this category into three sub-categories, according to their di-
mensions:

1) {0}⊕ {0}.

2) {0}⊕R
2.

3) Wθ := {0}⊕ span

[
cos(θ)
sin(θ)

]
, θ ∈ [0,π).
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In the first case T` = I2 and the corresponding spectral factor is the minimum-phase
one, W−(z). In the second and third case, we first compute P−1

0 according to Equa-
tion (4.15) in the proof

P
−1
0 =




1/15 0 −1 0
0 1/32 0 −1
−1 0 4/3 0
0 −1 0 4/3


 .

Then, for the second case, we have

P =
[
Π2P

−1
0 Π2

]+ =




0 0 0 0
0 0 0 0
0 0 3/4 0
0 0 0 3/4


 ,

where Π2 is the orthogonal projection onto {0}⊕R
2. In view of Equation (4.17), this

yields the (essentially unique) all-pass divisor

T 1(z) =C1(zI2 −A1)−1
B1 +D1,

with

A1 = 2I2, B1 =
3

2
I2, C1 = 2I2, D1 = 2I2.

To this all-pass divisor there corresponds the (essentially unique) unstable minimum-
phase spectral factor

W −(z) =W−(z)T 1(z) =C (zI2 − A)−1B +D ,

where

A = 2I2, B =
[
−4/5 8/5
−8/5 −4/5

]
, C =

[
−7/8 −7/4
5/3 −5/6

]
, D = 2I2.

In the third case, we have

Pθ =
[
ΠWθ

P
−1
0 ΠWθ

]+ =




0 0 0 0
0 0 0 0
0 0 3

4 cos2θ 3
4 cosθ sinθ

0 0 3
4 cosθ sinθ 3

4 sin2θ


 ,

where ΠWθ
denotes the orthogonal projection onto Wθ. This yields an entire family of

(essentially unique) all-pass divisors parametrized by θ

Tθ(z) =C1,θ(z −2)−1
B1,θ+D1,θ,
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with

B1,θ =
[
cosθ sinθ

]
, C1,θ = 3

[
cosθ
sinθ

]
, D1,θ =

[
1+cos2θ cosθ sinθ

cosθ sinθ 1+ sin2θ

]
.

As before, to this family of all-pass divisors there corresponds the family of (essentially
unique) minimal spectral factors

Wθ(z) =W−(z)Tθ(z) =Cθ(zI2 − Aθ)−1Bθ+Dθ, θ ∈ [0,π),

where (Aθ,Bθ,Cθ,Dθ) is a minimal realization of Wθ(z) that admits the following
explicit form

Aθ =
[

8sin2 θ+2
sin2 θ+4

−3
p

5sin2θ
cos2θ−9

−3
p

5sin2θ
cos2θ−9 −11cos2θ+21

2(cos2θ−9)

]
, Bθ =




3cosθ sinθp
sin2 θ+4

3sin2 θ+2p
sin2 θ+4√

5
2 (cos2θ+3)
p

9−cos2θ

√
5
2 cosθ sinθ

p
9−cos2θ

sin2 θ+4


 ,

Cθ =




3cosθ sinθp
sin2 θ+4

p
9−cos2θ(23cos2θ+33)

8
p

10(sin2 θ+4)

9sin2 θ+1

3
p

sin2 θ+4

7
√

5
2 cosθ sinθ

p
9−cos2θ

6(sin2 θ+4)


 , Dθ =

[
1+cos2θ cosθ sinθ

cosθ sinθ 1+ sin2θ

]
.

Similarly, we can obtain a parametrization of each one of the other three classes of
spectral factors and in such a way we get four classes of spectral factors accounting
for all the models of minimal complexity for {y(t)}. Notice, that each class contains
infinitely many (essentially different) spectral factors so that we have parametrized all
the infinitely many models of minimal complexity for {y(t )}.
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5. Existence of minimal J-spectral

factorizations

I
N the last three chapters, we have addressed and scrupulously dissected the

spectral factorization problem for an arbitrary discrete-time spectral density.
The present chapter studies a natural extension of this problem, the so-called J-
spectral factorization problem. As mentioned in the introductive Chapter 1, the

latter problem has found application in a wide range of areas in Systems and Control
Theory, most notably in H∞ control theory, see Francis [1987], Ionescu et al. [1999],
[Bart et al., 2011, Part VII] and references therein. Indeed, in the frequency-domain
approach to H∞ control, the design of the controller essentially boils down to the
solution of two J-spectral factorization problems, one for the state-feedback gain
and one for the state-estimator gain Green et al. [1990]. From a technical viewpoint,
J-spectral factorization is far more challenging than standard spectral factorization
problem due to the presence of a number counterintuitive features occurring only
when the to-be-factorized J-spectral density is not positive semi-definite on the unit
circle. One (and perhaps the most interesting) of these counterintuitive features
concerns the minimality properties of the factorization. From Chapter 2, we know
that a minimal standard spectral factorization with prescribed poles/zeros regions
always exists. Quite surprisingly, this is not the case for J-spectral factorization! This
counterintuitive fact has been pointed out in Ran and Rodman [1991], Clements [2000],
Colaneri and Ferrante [2006] with reference to both the continuous and discrete time
case. For instance, one can check, by direct computation or using the results we will
discuss in this chapter, that the following J-spectral density

Φa(z) =
[

0 z +a

z−1 +a 0

]
, |a| < 1,

does not admit, for all |a| < 1, an outer J-spectral factor which is (stochastically)

minimal, namely whose McMillan degree equals one. On the other hand, a minimal
spectral factor of Φa(z) that is not outer does exist. As a matter of fact,

Wa(z) =
1
p

2

[
1 z +a

1 −z −a

]
, |a| < 1,

satisfies Φa(z) =W ∗
a (z)JWa(z) (here J = diag[1,−1]), is minimal but possesses a pole

at z =∞ so that it is not analytic in { z ∈C : |z| > 1}.
The present chapter aims at elucidating the issue of existence of minimal discrete-

time J-spectral factorization of a general J-spectral density, under the only assumption
that the latter does not possess poles/zeros on the unit circle. Our principal result,
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which, in particular, applies to non-regular and improper J-spectral densities, is
a condition for the existence of a minimal J-spectral factorization with prescribed
analyticity regions expressed in terms of a standard decomposition of a connected
L-unimodular J-spectral density. Furthermore, in case such a factorization exists, we
describe an iterative procedure for the computation of the desired minimal J-spectral
factor. This chapter goes along the lines of Baggio [2017c] and has the following struc-
ture. First, we formally introduce the J-spectral factorization problem in Section 5.1.
Then, we list in Section 5.2 a number of auxiliary results; one of these results, in
particular, provides a useful decomposition for L-unimodular J-spectral densities.
The main existence result is presented in Section 5.3. To conclude, in Section 5.4, we
illustrate the applicability of our result by means of a numerical example.

5.1 Problem formulation and standing assumptions

CONSIDER a discrete-time rational J-spectral density Φ(z) ∈ S
n

rat,J (T). Following
the arguments in Gohberg et al. [1982], Ðoković [1993] applied to the discrete-

time case, it can be shown that a rational matrix-valued function admits a J-spectral
factorization as in Problem 1.2 if and only if this function is a J-spectral density. Thus,
Φ(z) can be J-spectrally factorized as

Φ(z) =W ∗(z)JW (z),

for a suitable signature matrix J . As in the standard spectral factorization problem, the
J-spectral factor W (z) ∈R(z)m×n is often required to fulfill some additional analyticity
constraints. For instance, in H∞ control and robust causal estimation, the sought-for
J-spectral factor must possess zeros/poles only in the open unit disk (outer J-spectral
factor) or, in acausal robust filtering problems, the pole region is fixed by the system
dynamics while the zero region is the open unit disk, cf. Colaneri and Ferrante [2006].
Henceforth, we consider the most general analyticity regions compatible with the
factorization problem, namely the (weakly) unmixed-symplectic regions previously
introduced in Definition 2.1. In addition, throughout this chapter, we will make use of
the following assumptions.

Assumption 5.1. Φ(z) ∈S
n

rat,J (T) has no pole and zero on the unit circle.

Assumption 5.2. Φ(z) ∈S
n

rat,J (T) is biproper, i.e., it does not possess any pole/zero at
z = 0 and z =∞.

Remark 5.1. While Assumption 5.1 is required for technical reasons and is quite funda-
mental in the derivation of the main result, Assumption 5.2 is a “fictious” assumption,
in the sense that all the results in this chapter are valid even in case this assumption
is not met. The latter assumption will be however helpful in order to simplify some
proofs. Appendix A shows how to extend the results of the chapter to the non-biproper
case.
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5.2 Preliminary analysis

THIS section contains some preliminary lemmata which are instrumental for the
proof of the main theorem in the next section. Most of these results can be seen

as suitable extensions of corresponding results of Chapter 2.

Lemma 5.1. Let Φ(z) ∈ S
n

rat,J (T) be of normal rank rk(Φ) = r and let D(z) ∈ R(z)r×r

be its Smith–McMillan canonical form. Moreover, let Ap and Az denote two weakly

unmixed-symplectic regions of the complex plane. Then D(z) can be written as

D(z) =Σ(z)Λ∗(z)Λ(z) (5.1)

where

• Λ(z) is diagonal and has as (finite) poles and zeros those of D(z) lying on C\Ap

and C\Az , respectively,

• Σ(z) is diagonal with non-zero monomials zk , k ∈Z, on its diagonal.

Proof. It directly follows from Lemma 2.7, using Assumption 5.1.

Lemma 5.2. Let Φ(z) ∈S
n

rat,J (T) be of normal rank rk(Φ) = r . Let Φ(z) =C (z)D(z)F (z),

with C (z) ∈ R[z]n×r , F (z) ∈ R[z]r×n unimodular and D(z) ∈ R(z)r×r , be the Smith–

McMillan decomposition of Φ(z). Furthermore, consider the decomposition of D(z) in

Lemma 5.1. Then,

Ψ(z) :=Λ(z)Σ∗(z)C∗(z)F−R (z)Λ−1(z) (5.2)

is an r × r L-unimodular J-spectral density. Moreover, Ψ(z) and Φ(z) have the same

signature on the unit circle.

Proof. It follows by applying verbatim the arguments of Theorem 2.1, bearing in mind
that under Assumption 5.1 we have Θ(z) = Ir .

Lemma 5.3. Let Ψ(z) ∈S
r

rat,J (T) be a non-constant L-unimodular J-spectral density of

normal rank rk(Ψ) = r , and let Ψhc ∈R
r×r denote the highest-column-degree coefficient

matrix of Ψ(z). If Ψhc is non-singular, then Ψ(z) has (at least) one zero entry on its

diagonal.

Proof. Since Ψ(z) is L-unimodular and para-Hermitian we have that detΨ(z) is a non-
zero real constant. Let us denote by Ki ∈Z, i = 1, . . . ,r , the maximum-degree of the
i -th column of Ψ(z) and suppose, by contradiction, that Ψhc is non-singular and Ψ(z)
has no diagonal element equal to zero. In view of the latter fact, it follows that Ki ≥ 0,
for all i = 1, . . . ,r . Moreover, by assumption, Ψ(z) is not constant, thus there exists at
least one index j ∈ {1, . . . ,r } such that K j > 0. But then, in view of Leibniz formula for
determinants and the fact that Ψhc is non-singular, it would be maxdeg(detΨ(z)) > 0,
which contradicts the fact that detΨ(z) is a constant. Hence, the contradiction.
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The following result states that an L-unimodular J-spectral density can be al-
ways decomposed in a special form via unimodular transformations. The proof is
constructive and provides an iterative procedure leading to this form.

Lemma 5.4. Let Ψ(z) ∈ S
r

rat,J (T) be an L-unimodular J-spectral density. Then Ψ(z)
can be decomposed as

Ψ(z) =U∗(z)∆(z)U (z), (5.3)

where U (z) ∈R[z]n×n is a unimodular polynomial matrix and ∆(z) ∈R[z, z−1]n×n has

the block form

∆(z) =




0 H(z) 0

H∗(z) 0 0

0 0 J̄


 (5.4)

with J̄ ∈R
(n−2p)×(n−2p) is a constant signature matrix and

H(z) =




zk1 0 0 · · · 0
h21(z) zk2 0 · · · 0

h31(z) h32(z)
. . .

. . .
...

...
...

. . . zkp−1 0
hp1(z) hp2(z) · · · hp(p−1)(z) zkp




(5.5)

belongs to R[z, z−1]p×p , where 0 < k1 ≤ k2 ≤ ·· · ≤ kp and each hi j (z) ∈R[z] is such that

either min deghi j > k j and max deghi j < ki , or hi j = 0.

Proof. The proof is constructive: We will describe a procedure which allows to de-
compose Ψ(z) as in Equation (5.3). This procedure can be seen as an extension to
the indefinite case of the algorithm developed in step 4 of the proof of statements 1)
and 2) of Theorem 2.2 for the unimodular factorization of an L-unimodular spectral
density and consists of two main “blocks”. Firstly, we denote by Ψh(z), h ∈N>0, the
matrix obtained after the h-th iteration of the procedure. We set Ψ1(z) :=Ψ(z) and
h ← 1. Moreover, we denote by Ki ∈Z, i = 1, . . . ,r , the maximum-degree of the i -th
column of Ψh(z) and we denote by Ψ

hc
h

the highest-column-degree coefficient matrix
of Ψh(z). In what follows, we illustrate the two main blocks of the aforementioned
procedure.

Block 1: Ψ
hc
h

singular. In case Ψ
hc
h

is singular, we compute a non-zero vector

vh = [v1 v2 . . . vr ]> ∈R
r such that Ψhc

h
vh = 0. Next, we choose an index p ∈M , where

M = {i ∈I : Ki ≥ K j , ∀ j ∈I } is the highest maximum-degree active index set and
I = {i : vi 6= 0} the active index set, as defined in the proof of Theorem 2.2. Hence, we
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calculate the unimodular matrix

column p

Ω
−1
h (z) :=




1 · · · 0 v1
vp

zKp−K1 0 · · · 0

0
. . .

... 0
... 1

vp−1

vp
zKp−Kp−1

...
... 1

...
...

vp+1

vp
zKp−Kp+1 1

...

0
...

. . . 0

0 · · · 0 vr

vp
zKp−Kr 0 · · · 1




.

By defining

Ψh+1(z) :=Ω
−∗
h (z)Ψh(z)Ω−1

h (z),

we obtain a new L-unimodular J-spectral density Ψh+1(z) Moreover, the maximum-
degree of the p-th column of Ψh+1(z) is lower than Kp , while the maximum-degree of
the i -th column, i 6= p, is not greater than Ki , as shown in the proof of Theorem 2.2.
Eventually, we set h ← h +1 and start a new iteration.

Block 2: Ψ
hc
h

non-singular. In case Ψ
hc
h

is non-singular, it must be that either
Ψh(z) is a constant matrix or, from Lemma 5.3, Ψh(z) has (at least) one diagonal entry
equal to zero. In the first case, a factorization of Ψ(z) of the form in Equation (5.3)
with ∆ being a signature matrix is readily obtained via eigen-decomposition, after
normalization of eigenvalues to ±1. In the second case, we proceed as follows.

First, by suitable symmetric row and column permutations, we can bring Ψh(z)
into the block matrix form

Ψ
(1)
h

(z) :=
[

0 Ψ
(1)
h,21(z)

Ψ
(1)∗
h,21(z) Ψ

′
h,22(z)

]
,

where Ψ
(1)
h,21(z) ∈ R[z, z−1]1×(n−1) and Ψ

(1)
h,22(z) ∈ R[z, z−1](n−1)×(n−1). Then, by post-

multiplying Ψ
(1)
h,21(z) by a suitable unimodular matrix V (z) ∈ R[z](n−1)×(n−1), we can

reduce it to the row Hermite form [Kailath, 1980, pp. 375-376],

Ψ
(1)
h,21(z)V (z) =

[
h11(z) 0

]
, h11(z) ∈R[z, z−1].

Next, let us define

V1(z) :=
[

1 0

0 V (z)

]
∈R[z]r×r . (5.6)
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We have

Ψ
(2)
h

(z) :=V ∗
1 (z)Ψ(1)

h
(z)V1(z)

=
[

1 0

0 V ∗(z)

]
Ψ

′
h(z)

[
1 0

0 V (z)

]

=




0 h11(z) 0

h∗
11(z) Ψ

(2)
h,22(z) Ψ

(2)
h,23(z)

0 Ψ
(2)∗
h,23(z) Ψ

(2)
h,33(z)


 , (5.7)

where we have defined[
Ψ

(2)
h,22(z) Ψ

(2)
h,23(z)

Ψ
(2)∗
h,23(z) Ψ

(2)
h,33(z)

]
:=V ∗

1 (z)Ψ(1)
h,22(z)V1(z). (5.8)

The determinant of the matrix in (5.7) is given by

detΨ(2)
h

(z) =−h11(z)h∗
11(z)detΨ(2)

h,33(z). (5.9)

Notice that detΨ(2)
h

(z) is a non-zero constant, since Ψ
(2)
h

(z) is L-unimodular and

para-Hermitian. Therefore, Equation (5.9) implies that h11(z) and Ψ
(2)
h,33(z) are also

L-unimodular, so that h11(z) = z±k1 , k1 > 0. Finally, by using a unimodular transfor-
mation V2(z) ∈R[z, z−1]r×r which clears the entry Ψ

(2)
h,22(z) and, if needed, rearrange

the 1st and 2nd column of Ψ(2)
h

(z), we can transform Ψ
(2)
h

(z) into

Ψ
(3)
h

(z) :=V ∗
2 (z)Ψ(2)

h
(z)V2(z)

=




0 zk1 0

z−k1 0 Ψ
(3)
h,23(z)

0 Ψ
(3)∗
h,23(z) Ψ

(3)
h,33(z)


 . (5.10)

Next, as observed before, Ψ(3)
h,33(z) is again an L-unimodular para-Hermitian matrix of

full normal rank. Hence, we can apply the entire procedure so far outlined, this time
referred to the bottom diagonal block of the previously obtained matrix. By applying
recursively this operation, after a finite number of steps, we end up with a matrix of
the form

Ψ
(`)
h

(z) =




0 zk1 0 0 0 · · · 0

z−k1 0 Ψ
(`)
h,23(z) Ψ

(`)
h,24(z) Ψ

(`)
h,25(z) · · · Ψ

(`)
h,2`(z)

0 Ψ
(`)∗
h,23(z) 0 zk2 0 · · · 0

0 Ψ
(`)∗
h,24(z) z−k2 0 Ψ

(`)
h,45(z) · · · Ψ

(`)
h,4`(z)

0 Ψ
(`)∗
h,25(z) 0 Ψ

(`)∗
h,45(z) 0 · · · 0

...
...

...
...

...
. . .

...

0 Ψ
(`)∗
h,2`(z) 0 Ψ

(`)∗
h,4`(z) 0 · · · J̄




.
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At this point, we notice that we can apply a sequence of polynomial elementary
transformations in order to:

1) clear the non-zero entries above of J̄ and their conjugates (entries highlighted
in gray in the previous equation).

2) clear the non-zero entries above each zki and their conjugates (in red in the
previous equation),

3) reduce as much as possible the max degree of the non-zero entries above each
z−ki and their conjugates (in blue in the previous equation) and increase as
much as possible the min degree of the same entries, or, if possible, clear these
entries. In this way, each conjugate entry Ψ

(`)∗
2 j ,i+2 in blue has either max degree

strictly smaller than ki and min degree strictly greater than k j , or is identically
zero.

Denoting by V` ∈R[z]n×n the unimodular matrix obtained as the product of the
previously described elementary transformations, we get

Ψ
(`+1)
h

(z) :=V ∗
` Ψ

(`)
h

(z)V`

=




0 zk1 0 0 0 · · · 0

z−k1 0 h∗
21 0 h∗

31 · · · 0

0 h21 0 zk2 0 · · · 0

0 0 z−k2 0 h∗
32 · · · 0

0 h31 0 h32 0 · · · 0
...

...
...

...
...

. . .
...

0 0 0 0 0 · · · J̄




,

where we let hi j :=Ψ
(`)∗
2 j ,i+2 ∈R[z]. Eventually, a symmetric permutation of columns

and rows in the previous expression yields the desired decomposition.

Remark 5.2. It is worth observing that the matrix ∆(z) obtained in the decomposition
of Lemma 5.4 is typically not unique. As a matter of fact, consider the following
L-unimodular J-spectral density

Ψ(z) =




0 0 z 0
0 0 z2 z3

z−1 z−2 0 0
0 z−3 0 0


 .
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This matrix is already decomposed as in Lemma 5.4 with J̄ = 0 and H(z) =
[

z 0
z2 z3

]
,

however by applying the unimodular transformation

U (z) :=




−1 0 0 0
z 1 0 0
0 0 −z 1
0 0 1 0




on the latter, we obtain

Ψ
′(z) :=U∗(z)Ψ(z)U (z) =




0 0 z2 0
0 0 0 z2

z−2 0 0 0
0 z−2 0 0


 ,

which is again in the desired form of Lemma 5.4. This lack of uniqueness, however, it
is not crucial for the main result of the next section.

5.3 The main existence result

IN this section, we state and prove the main result of this chapter. This result provides
a necessary and sufficient condition for the existence of a minimal J-spectral factor

with prescribed zeros and poles regions, as well as a procedure for computing the
latter spectral factor whenever it exists.

Theorem 5.1. Let Φ(z) ∈S
n

rat,J (T) be a J-spectral density of normal rank rk(Φ) = r > 0
and consider a corresponding L-unimodular Ψ(z) ∈S

r
rat,J (T), as defined in Lemma 5.2.

Take any decomposition Ψ(z) =U∗(z)∆(z)U (z) as in Lemma 5.4. Then Φ(z) admits a

minimal J-spectral factorization

Φ(z) =W ∗(z)JW (z), (5.11)

with W (z) ∈R(z)r×n analytic in a weakly unmixed-symplectic region Ap with (right)

inverse analytic in another (possibly different) weakly unmixed-symplectic region Az ,

if and only if ∆(z) = J .

Proof. We first address sufficiency, namely we prove that if ∆(z) = J then there exists a
minimal J-spectral factor of Φ(z) with the desired analyticity properties. To this end,
it suffices to notice that if ∆(z) is constant then one can apply verbatim the iterative
procedure outlined in the proofs of Theorem 2.1 and Theorem 2.2 for the calculation
of a minimal spectral factor of a “standard” spectral density (i.e., for J = I ). Hence,
following the same procedure, we end up with a desired J-spectral factor of the form

W (z) = P (z)D+(z)F (z),
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where P (z) is unimodular and such that P∗(z)JP (z) =Ψ(z), D+(z) is the part of the
Smith–McMillan form of Φ(z) containing all the finite poles and zeros of Φ(z) lying
in C \ Ap and C \ Az , respectively, and F (z) is the same unimodular matrix in the
definition of Ψ(z) in Lemma 5.2. We point out that the calculation of P (z) can be
performed via the algorithm described in the proof of Lemma 5.4, which, in the case
∆(z) = J , coincides exactly with the algorithm described in step 4 of the proof of
statements 1) and 2) of Theorem 2.2.

Next we address necessity, namely we will prove that if Ψ(z) does not admit a
decomposition with ∆= J then there does not exist a minimal J-spectral factor of Φ(z)
having the desired analyticity properties. In view of Lemma 5.4, we know that Ψ(z)
can be decomposed in the form Ψ(z) =U∗(z)∆(z)U (z), with U (z) unimodular, and

∆(z) =




0 H(z) 0

H∗(z) 0 0

0 0 J̄


 ∈R(z)r×r (5.12)

with J̄ being a signature matrix and

H(z) =




zk1 0 0 · · · 0
h21(z) zk2 0 · · · 0

h31(z) h32(z)
. . . . . .

...
...

...
. . . zkp−1 0

hp1(z) hp2(z) · · · hp(p−1)(z) zkp




, (5.13)

where 0 < k1 ≤ k2 ≤ ·· · ≤ kp and each hi j (z) ∈R[z] is such that either min deghi j > k j

and max deghi j < ki , or hi j = 0. Notice that, even if ∆(z) is not constant, the latter
can be still factorized in the form ∆(z) =V ∗(z)JV (z) where V (z) is an L-unimodular
matrix having either a pole at z = 0 or a zero at z = 0 (or both) and J is a suitable
signature matrix. In order to see this fact, consider, for instance, the choice

V (z) =
1
p

2




I H(z) 0

I −H(z) 0

0 0
p

2I


 , J =




I 0 0

0 −I 0

0 0 J̄


 . (5.14)

Hence, from the proof of Theorem 2.1, it holds that V (z)D+(z)F (z), where D+(z) is
diagonal and contains all the finite poles and zeros of Φ(z) lying in C\Ap and C\Az ,
respectively, is a (typically non-minimal) J-spectral factor of Φ(z). In general, all the
J-spectral factors of Φ(z) have the form

W (z) = P (z)D+(z)F (z) (5.15)
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where P (z) ∈R(z)r×r is a (typically non-unimodular) rational matrix satisfying Ψ(z) =
P∗(z)JP (z). Further, from the Smith–McMillan decomposition Φ(z) =C (z)D(z)F (z)
and the equality W ∗(z) =Φ(z)W −R (z)J , it follows that

W ∗(z) =C (z)D−(z)P−1(z)J , (5.16)

where C (z) is unimodular and D−(z) := D(z)D−1
+ (z) is diagonal and contains all the

finite poles and zeros of Φ(z) lying in the regions Ap and Az , respectively.
We now claim that if W (z) is a minimal J-spectral factor of Φ(z) with analyticity

regions Ap and Az , then it must necessarily be of the form W (z) = P (z)D+(z)F (z)
with P (z) unimodular and such that P∗(z)JP (z) =Ψ(z). In order to prove the claim
we first show that, under the previous assumptions on W (z), P (z) must necessarily be
L-unimodular. To this end, consider any J-spectral factor W (z) =V (z)D+(z)F (z) with
V (z) L-unimodular and such that V ∗(z)JV (z) =Ψ(z)1919Recall that such

a spectral factor always
exists. A concrete ex-
ample is given in Equa-
tion (5.14).

and let W̃ (z) be a minimal
J-spectral factor of Φ(z) with analyticity regions Ap and Az . Let

W̃ (z) = P̃ (z)D̃+(z)F̃ (z)

be the Smith–McMillan decomposition of W̃ (z) and note that W̃ (z) and W (z) are re-
lated by a J-all-pass transformation Q(z), namely W̃ (z) =Q(z)W (z) with Q∗(z)JQ(z) =
J . By rearranging the equality Φ(z) =C (z)D(z)F (z) = W̃ ∗(z)JW̃ (z), we have

C (z)D−(z) = W̃ ∗(z)JW̃ (z)F−R (z)D−1
+ (z). (5.17)

From [Bart et al., 2007, p. 163], it follows that

δ(W̃ ∗;α)+δ(W̃ ;α) = δ(Φ;α), ∀α ∈C (5.18)

since W̃ (z) is minimal. In view of this fact and since the left-hand side of (5.17) is
analytic in C\{Ap ∪∞}, all the non-zero poles of W̃ (z) belonging to C\{Ap ∪∞} must
cancel out in the product W̃ (z)F−R (z)D−1

+ (z). In fact, suppose, by contradiction, that
the product W̃ (z)F−R (z)D−1

+ (z) possesses a non-zero pole α ∈C \ {Ap ∪∞}. Then it
must necessarily be that a pole atα in one of the entries of P̃∗(z)J P̃ (z)D̃+(z)F̃ (z)F−R (z)
must reduce its degree in the product D̃∗

+(z)P̃∗(z)J P̃ (z)D̃+(z)F̃ (z)F−R (z). Due to the
fact that C (z)D−(z) has no pole at α, this in turn implies that a zero at α in one
of the diagonal entries D̃∗

+(z) must cancel out in the latter product. By virtue of
Lemma 3.1, it then follows that the product D̃∗

+(z)P̃∗(z)P̃ (z)D̃+(z)F̃ (z)F−R (z), and
hence W̃ ∗(z)JW̃ (z) since F̃ (z) is unimodular and F̃ (z)F−R (z) is L-unimodular, has
a pole cancellation at α. This fact contradicts Equation (5.18), implying that the
factorization W̃ ∗(z)JW̃ (z) is not minimal.

Thus, we have that

P (z) :=Q(z)V (z) = W̃ (z)F−R (z)D−1
+ (z)
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is L-unimodular, so that we can write W̃ (z) = P (z)D+(z)F (z) with P (z) L-unimodular,
as required.

Now notice that, if P (z) is L-unimodular and not unimodular then it must possess
either a zero at z = 0 or a pole at z = 0 (or both). In view of (5.15)-(5.16) and the fact that
Φ(z) is biproper by assumption, this implies that W (z) has an additional pole either at
z = 0 or at z =∞. Consequently, W (z) is not minimal since Equation (5.18) is not met
for α= 0 and/or α=∞. We conclude that in order to have a minimal factorization
Φ(z) =W ∗(z)JW (z), Ψ(z) must admit a factorization with P (z) unimodular.

So, it remains to prove that, if ∆(z) is not constant, it is not possible to factorize
∆(z) in the form ∆(z) = P∗(z)JP (z), with P (z) unimodular. Suppose that ∆(z) has the
form in (5.12). Let P (z) :=

∑`max
i=`min

Pi zi , where Pi are r × r constant real matrices. If
P (z) is unimodular and satisfies ∆(z) = P∗(z)JP (z), then it follows that

1) `min ≥ 0, otherwise P (z) would have a pole at z = 0.

2) `max ≤ kp , otherwise P (z) would have a zero at z = 0, since P>
i

JP0 = 0, for i > kp ,
which implies that either Pi = 0, for i > kp , or P0 is singular.

Now assume, by contradiction, that P (z) =
∑kp

i=0 Pi zi has no zero at z = 0. This
implies that P0 ∈R

r×r is non-singular. Since ∆(z) = P∗(z)JP (z), the following hold

P>
0 JPkp

= Ekp

P>
1 JPkp

+P>
0 JPkp−1 = Ekp−1

P>
2 JPkp

+P>
1 JPkp−1 +P>

0 JPkp−2 = Ekp−2

...
...

P>
kp−1

JPkp
+P>

kp−2
JPkp−1 +·· ·+P>

0 JP1 = E1

P>
kp

JPkp
+P>

kp−1
JPkp−1 +·· ·+P>

0 JP0 = E0

where, in view of (5.12) and (5.13), each Ei , has the form

E0 =




0 0 0

0 0 0

0 0 J̄


 , Ei =




0 Ẽi 0

0 0 0

0 0 0


 , i =,1, . . . ,kp ,

and the non-zero entries of Ẽi correspond to the coefficients of monomials zi in H (z).

| 103



Chapter 5. Existence of minimal J-spectral factorizations

Now since P0 is invertible we can rewrite the above system of equations as

Pkp
= JP−>

0 Ekp

Pkp−1 = JP−>
0 Ekp−1 − JP−>

0 P>
1 JPkp

Pkp−2 = JP−>
0 Ekp−2 − JP−>

0 P>
1 JPkp−1 − JP−>

0 P>
2 JPkp

... =
...

P1 = JP−>
0 E1 − JP−>

0 P>
p−1 JPk1 −·· ·− JP−>

0 P>
p−1 JPkp

P0 = JP−>
0 E0 − JP−>

0 P>
1 JP1 −·· ·− JP−>

0 P>
kp

JPkp
. (5.19)

At this point, from the first kp equations it follows that each Pi , i = 1, . . . ,kp can be
written as

Pi =
kp∑

j=i

P̃i , j E j ,

for suitably defined matrices P̃i , j ∈R
r×r . By using the previous expression of Pi and

recalling the block form of the Ei ’s, it can be seen that the last equation in (5.19) yields

P0 =




0 P̃0,12 P̃0,13

0 P̃0,22 P̃0,23

0 P̃0,32 P̃0,33




for suitable matrices P̃0,i j , i = 1,2,3, j = 2,3. But this implies that P0 is singular.
Consequently P (z) has a zero at z = 0, which implies that P (z) is not unimodular.
Hence, we get a contradiction.

Remark 5.3. Observe that Theorem 5.1 and Lemma 5.4 together provide a proce-
dure for checking the existence of a minimal J-spectral factorization with prescribed
poles/zeros regions. As a matter of fact, it suffices to compute a decomposition of the
L-unimodular matrix Ψ(z) via the algorithm described in the proof of Lemma 5.4 and
then check whether this decomposition yields ∆= J or not. Furthermore, in case such
a minimal factorization exists, the desired J-spectral factor can be readily computed
as described in the proof of Theorem 5.1.

Remark 5.4. It is worth noticing that, when a minimal factorization featuring the
desired analyticity properties does not exist, then, by following the procedure in
the above proof, we can still recover a factorization which is minimal and with the
desired analyticity properties with the only exception for the points z = 0 and z =∞.
Indeed, the J-spectral factor be computed as W (z) = V (z)D+(z)F (z), where V (z) is
the L-unimodular matrix defined in Equation (5.14).
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5.4 A numerical example

WE present here an example to elucidate the applicability of the main result,
namely Theorem 5.1.

Let us consider the following 3×3 J-spectral density depending on a parameter
ε ∈R0

Φε(z) =




z+2+z−1

(z−2)(z−1−2)
1+z−1

(z−2)(z−1−2)
+ε 1+z

(z−2)(z−1−2)
−ε

1+z
(z−2)(z−1−2)

+ε 1
(z−2)(z−1−2)

+ε z
(z−2)(z−1−2)

1+z−1

(z−2)(z−1−2)
−ε z−1

(z−2)(z−1−2)
1

(z−2)(z−1−2)
−ε


 ,

We want to check the existence of a minimal outer J-spectral factor, i.e., a minimal
J-spectral factor corresponding to the choice Ap =Az = {z ∈C : |z| > 1}, and when-
ever the latter exists we want to compute it. First, one may check that Φε(z) is not of
full normal rank, namely rk(Φε) = 2, and that it satisfies Assumption 5.1 and Assump-
tion 5.2. Indeed, the Smith–McMillan decomposition (cf. Theorem 2.3) of Φε(z) is
given by

Φε(z) =C (z)D(z)F (z),

with D(z) canonical of the form

D(z) =
[ 1

(z−2)(z−1/2) 0
0 (z −2)(z −1/2)

]
,

and Cε(z) and Fε(z) unimodular matrices which may be taken to be

Cε(z) =




εz2 − 1+5ε
2 z +ε− 1

2 1
εz2 − 1+5ε

2 z +ε 1
−1

2 0


 ,

Fε(z) =
[

2εz2 + (1−5ε)z +2ε+1 1 2εz2 + (1−5ε)z +2ε
−2ε2 0 −2ε2

]
.

In view of the choice of the analyticity regions, w.r.t. the decomposition of Lemma 5.1,
we have

Λ(z) =
[

1
z− 1

2
0

0 z − 1
2

]
, Σ(z) =

[
− 1

2z
0

0 −2z

]
,

so that, we obtain the following L-unimodular J-spectral density Ψ(z) of Lemma 5.2

Ψε(z) =
[
−1

2εz + 1+5ε
4 − 1

2εz−1 −2z−1 +2+ 1
2 z

−2z +2− 1
2 z−1 −2

ε
z − 1−5ε

ε2 − 2
ε

z−1

]
.

Next, we decompose Ψε as in Lemma 5.4 using the iterative procedure described
in the proof of the same lemma. We distinguish three cases:
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• ε> 1/3: we get Ψε(z) =U∗
ε (z)JUε(z) with J = diag[1,−1] and Uε(z) unimodular

of the form

Uε(z) =
1

√
ε− 1

3

[
3ε−6εz+27ε2−4

18ε
3εz−6ε+2

3ε
− 1

9ε
1

3ε

]
.

Hence, by virtue of Theorem 5.1, the desired minimal J-spectral factorization
exists and is given by Φε(z) =W ∗

ε (z)JWε(z) with

Wε(z) =Uε(z)Λ(z)Fε(z)

=
1

√
ε− 1

3




εz+ 1
6 z− 1

2ε+
1
6

z− 1
2

εz− 1
2ε+

1
6

z− 1
2

1
6 z

z− 1
2

1
3 z−εz+ 1

2ε+
1
3

z− 1
2

1
3

z− 1
2

1
3 z−εz+ 1

2ε

z− 1
2


 .

• ε < 1/3, ε 6= 0: we get Ψε(z) =U∗
ε (z)JUε(z) with J = diag[1,−1] and Uε(z) uni-

modular of the form

Uε(z) =
1

√
1
3 −ε

[
− 1

9ε
1

3ε

−3ε−6εz+27ε2−4
18ε −3εz−6ε+2

3ε

]
.

Hence, by virtue of Theorem 5.1, also in this case the desired minimal J-spectral
factorization exists and is given by Φε(z) =W ∗

ε (z)JWε(z) with

Wε(z) =Uε(z)Λ(z)Fε(z)

=
1

√
1
3 −ε




1
3 z−εz+ 1

2ε+
1
3

z− 1
2

1
3

z− 1
2

1
3 z−εz+ 1

2ε

z− 1
2

−εz− 1
6 z+ 1

2ε−
1
6

z− 1
2

−εz+ 1
2ε−

1
6

z− 1
2

− 1
6 z

z− 1
2


 .

• ε= 1/3: we get Ψε(z) =U∗
1/3(z)∆(z)U1/3(z) with

∆(z) =
[

0 z

z−1 0

]
,

and U1/3(z) unimodular of the form

U1/3(z) =
[7

2 − z 3z −6
−1

3 1

]
.

Since ∆(z) is not constant, by Theorem 5.1, the desired minimal J-spectral
factorization does not exist.
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6. Conclusions

S
PECTRAL factorization and its indefinite extension, J-spectral factorization,

are ubiquitous in Systems and Control Theory. In this part of the dissertation,
we have investigated several aspects of these two problems. In Chapter 2, we
presented a procedure for the factorization of a discrete-time spectral density

with prescribed analyticity regions in the most general setting. We then analyzed, in the
same general setting, the connected problems of uniqueness and parametrization of
minimal spectral factors in Chapter 3 and Chapter 4, respectively. Finally, in Chapter 5,
we addressed the J-spectral factorization problem, deriving a result on the existence
of minimal J-spectral factorization under mild assumptions.

In the proofs of the main results of these chapters, we used a combination of
state-space and polynomial methods. It is worth remarking that, in contrast to the
state-space approach, the employment of technical tools from polynomial/rational
matrix theory, such as the Smith–McMillan form, seems to be essential in order to rule
out some unnecessary yet hard-to-remove assumptions, such as regularity or proper-
ness. This demonstrates how these tools, which have been extensively exploited in
the past and then partially forgotten by the advent of the more elegant state-space
formalism, can still be very useful.

Directions for future research regard, in particular, the J-spectral factorization
problem. A first direction is to dispense with the assumption of absence of zeros/poles
on the unit circle, extending in this way the main result of Chapter 5 to arbitrary
J-spectral densities. The critical issue here is that, in contrast to standard spectral
factorization (cf. Lemma 2.6), a J-spectral density can have poles and zeros on the
unit circle that do not appear with even multiplicity in the invariant Smith–McMillan
functions. This prevents the application of tools and ideas similar to those employed
for the standard spectral factorization in Chapter 1. As a concrete example of a J-
spectral density exhibiting this critical feature, consider the following function

Φ(z) =
[

0 z−1
z+1

− z−1
z+1 0

]
.

A (right) J-spectral factor of Φ(z) with J = diag[1,−1] exists and is given by

W (z) :=
1
p

2

[
1 z−1

z+1
1 − z−1

z+1

]
.
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However, the Smith–McMillan canonical form of Φ(z) is easily seen to be of the form

D(z) =
[z−1

z+1 0
0 z−1

z+1

]

so that its diagonal terms have a zero at z = 1 and a pole at z =−1 of odd multiplicity.
A second compelling direction is to prove or disprove the existence of those J-

spectral factors with prescribed poles/zeros regions that cannot be minimal. In case
such spectral factors exist, a subsequent objective would be to calculate and/or pro-
vide meaningful upper bounds on the McMillan degree of these “pathological” J-
spectral factors. In order to tackle these problems via the approach used in Chapter 5,
the first step would be to investigate the structure of non-minimal J-factorizations of
the L-unimodular J-spectral density Ψ(z) introduced in Lemma 5.2.
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A. Ruling out the biproperness assumption

IN this appendix, we will show that Assumption 5.2 in Chapter 5 can be made without
any loss of generality, since all the results of Chapter 5 can be extended to the non-

biproper case.
Let Φ(z) ∈S

n
rat,J (T) be a J-spectral density satisfying Assumption 5.1 in Chapter 5

and with prescribed weakly unmixed-symplectic analyticity regions of the J-spectral
factor and of its (right) inverse, say Ap and Az , respectively. To extend the results
of Chapter 5 to the case of non-biproper Φ(z), we follow a reasoning similar to that
used in the first part of the proof of Theorem 4.1 in Chapter 4. More precisely, sup-
pose that Φ(z) has either a pole or zero at infinity (or both) and consider a Möbius
transformation λ : C→ C mapping z in λ(z) = z−a

1−az
, where a ∈ R is such that a 6= 0

and 1/a does not coincide with a pole/zero of Φ(z). The inverse of this map has
the same structure and maps λ 7→ z(λ) = λ+a

1+aλ
. Define Ãp := {λ(z) ∈ C : z ∈Ap } and

Ãz := {λ(z) ∈C : z ∈Az}. We observe that:

1) 1/λ(z) =λ(1/z);

2) |λ(z)| = 1 (resp. λ(z) ∈ Ãp , λ(z) ∈ Ãz) if and only if |z| = 1 (resp. z ∈Ap , z ∈Az);

3) λ(∞) =−1/a and λ(z) =∞ if and only if z = 1/a;

4) If F (z) ∈R(z)k×h and G(λ) = F (z(λ)) then δM (F (z)) = δM (G(λ)), see [Bart et al.,
1979, p. 83];

As a consequence,

1) Ãp and Ãz are unmixed-symplectic regions;

2) Φ̃(λ) :=Φ(z(λ)) is a para-Hermitian matrix satisfying Assumption 5.1;

3) since 1/a is not a pole/zero of Φ(z), then Φ̃(λ) is biproper;

4) W̃ (z) is a minimal J-spectral factor of Φ̃(λ) analytic in Ãp with (right) inverse

analytic in Ãz if and only if W (z) is a minimal J-spectral factor of Φ(λ) analytic
in Ap with (right) inverse analytic in Az ;

Thus, it follows that we can apply all the results presented in Chapter 5 to Φ̃(λ)
with corresponding analyticity regions Ãp , Ãz , and then transform back λ(z) 7→ z to
recover the same results for the starting Φ(z).
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1. Introduction

E
STIMATING the spectral density of a stochastic process from a finite set of

measurement is a central problem in many applications of signal/image
processing, control theory, econometrics, and bioengineering. Over the past
fifty years, many approaches have been developed to tackle this problem,

ranging from parametric to non-parametric techniques (we refer the interested reader
to McClellan [1982], Stoica and Moses [1997], Pillai and Shim [2012] for a comprehen-
sive and detailed treatment).

More recently, a novel extremely powerful paradigm for spectral estimation has
been advocated by Byrnes, Georgiou, and Lindquist and termed THREE (Tunable
High REsolution Estimation) Byrnes et al. [2000] (see also Georgiou [2001], Byrnes et al.
[2001b], Georgiou and Lindquist [2003]). In its general form, this paradigm consists of
recasting the estimation problem as an optimization problem subjected to a general-
ized moment constraint. This approach may be viewed as a (substantial) extension
of classical Burg-like maximum entropy methods Burg [1975], Jaynes [1982] (see also
Pavon and Ferrante [2013] for a unifying geometric picture). As a side comment, we
point out that the use of maximum entropy methods is long-established in estimation
and statistics since they are based on a very simple and natural rationale, namely,
using Dempster’s words [Dempster, 1972, p. 161],

“[...] the principle of seeking maximum entropy is a principle of seeking
maximum simplicity of explanation.”

Remarkably, THREE-like estimators can be tuned in order to achieve higher res-
olution within prescribed frequency bands and they typically outperform standard
estimation techniques, such as periodogram and AR methods, when short observation
records are available. Furthermore, these estimators have been successfully applied
in several applied contexts such as speech processing and recognition Byrnes et al.
[2007] and tissue temperature sensing Amini et al. [2005].

The THREE paradigm fits into the framework of generalized moment problems,
cf. Akhiezer [1965], Shohat and Tamarkin [1943], Akhiezer and Kreı̆n [1962], Kreı̆n
and Nudel’man [1977]. In the scalar case, given a sequence of complex numbers,
(c0,c1, . . . ,cn) and a basis, (α1,α2, . . . ,αn), of a (finite-dimensional) subspace of the
Banach space of complex-valued continuous functions defined on the real interval
[a,b], the generalized moment problem consists of finding a positive measure dµ such
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that ∫b

a
αk (t )dµ(t ) = ck , k = 0,1, . . . ,n −1.

This problem has a notable history. For the case αk (t ) = t k , it was studied by Russian
scholar Čebyšëv in Čebyšëv [1874] and his students, in particular Markov and Lya-
punov, as a tool to prove some important limit theorems in probability theory. On
a finite interval this problem is known as the Hausdorff moment problem and was
solved by Hausdorff for an infinite sequence of moments in Hausdorff [1921]. For the
case of infinite sequence of moments on an infinite interval, the problem is known
as the Hamburger moment problem Hamburger [1920], while on the semi-infinite
interval [0,∞) it is called the Stieltjes moment problem Stieltjes [1894]. In the latter
work, the term “moment problem”, borrowed from mechanics, was firstly introduced
in the context of studying the analytic behavior of continued fractions.

Since these seminal contributions, the moment problem, together with its modifi-
cations and generalizations, has been investigated by a number of illustrious mathe-
maticians such as Carathéodory, Schur, Toeplitz, Nevanlinna, Pick, and many others,
and has been influential in the development of modern analysis (we refer to [Kreı̆n
and Nudel’man, 1977, pp. 166–171], Grenander and Szegö [1958], Kjeldsen [1993],
Byrnes and Lindquist [2008] for an accurate historical account).

Generalized moment problems have found fruitful applications in Systems and
Control Theory as well. In the majority of these applications, the emphasis has been
put on solutions of the moment problem which are computable and feature low “com-
plexity”. This has fostered in the past twenty years a large research effort, pioneered by
Byrnes, Georgiou, Lindquist and co-workers, on the computation of rational solutions
of particular moment problems featuring bounded McMillan degree.

The mathematical tools used to tackle this class of problems are very profound
and beautiful: They embrace differential geometry, global inverse function theorems,
analytic interpolation, convex optimization, topological methods, etc. Byrnes and
Lindquist [2003], Georgiou [2005, 2006], Byrnes and Lindquist [2006, 2007, 2009],
Karlsson et al. [2016]. Besides the aforementioned THREE approach to spectral es-
timation, some remarkable applications include the covariance extension problem
Kálmán [1982], Georgiou [1983, 1987a], Byrnes et al. [1995], Byrnes and Lindquist
[1997], Byrnes et al. [1998], Carli et al. [2011], Lindquist and Picci [2013], Lindquist
et al. [2013], interpolation and robust H∞ control Georgiou [1987b, 1999], Byrnes
et al. [2001b], Blomqvist et al. [2003], Byrnes et al. [2006], Georgiou and Lindquist
[2006], stochastic modelling and identification Byrnes et al. [2001c,a], Enqvist [2004],
Georgiou and Lindquist [2008], Avventi et al. [2013], to mention just a few references.
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In this part of the dissertation, we will analyze several problems arising from the
THREE framework. We begin by outlining, in Chapter 2, a generalized version of
the THREE paradigm. Following Georgiou and Lindquist [2003], we will dwell on
the “Kullback–Leibler” scalar case and, specifically, on the numerical aspects of the
approach. In particular, one of the main drawbacks of the gradient-based algorithm
of Georgiou and Lindquist [2003] yielding to the solution of this problem relies on its
numerical instability. In order to tackle this issue, in Pavon and Ferrante [2006], the
authors presented an alternative numerically robust method based on a fixed-point
iteration in the space of unit-trace positive semi-definite matrices. In that paper, a
proof of the convergence of the algorithm, although conjectured and confirmed by a
large number of numerical evidences, was missing. Five years later, the work Ferrante
et al. [2011] provided a partial answer to this conjecture, proving local convergence to
the (closure of the set of) positive definite fixed points of the iteration by exploiting
the center manifold theory. In Chapter 3 we will address instead the issue of global

convergence of the Pavon–Ferrante iteration. Chapter 4 concerns a particular instance
of parametric THREE-like spectral estimation. More precisely, a parametric family
of estimators was introduced in Ferrante et al. [2010] that appears favourable from a
computational viewpoint. In the same paper, the authors proved the existence of a
solution to the problem only for a special case of prior. In this chapter, we will present
instead a general existence result which applies to any prior and whose proof hinges
on topological degree theory. To conclude, in Chapter 5, we will introduce and analyze
some new distances in the space of spectral densities arising from Finsler geometry.
In particular, we will focus the attention on several “appealing” properties enjoyed
by these distances and how the latter may be used to define a “robust” version of
THREE-like spectral estimation.
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2. THREE-like spectral estimation

T
HE aim of this chapter is to illustrate the THREE approach for spectral es-

timation firstly introduced by Byrnes, Georgiou, and Lindquist in Byrnes
et al. [2000]. In Section 2.1, we outline a multivariate version of the latter
approach which allows for the handling of an additional prior information.

This generalized THREE approach has been discussed in Georgiou and Lindquist
[2003] for the scalar case and, e.g., in Georgiou [2005], Ferrante et al. [2008] for the
multivariate case. According to this formulation, the estimation problem is recast
as an approximation problem in the space of spectral densities under a generalized
moment constraint. As in every approximation problem, a suitable “similarity” crite-
rion in the space of spectral densities must be selected. Subsection 2.1.1 deals with
the delicate issue of existence of solutions to the latter problem. In Section 2.2, we
follow the treatment in Georgiou and Lindquist [2003] and we stick to the scalar case
in which the chosen measure coincides with the Kullback–Leibler divergence. In
particular, in Subsection 2.2.1 we outline the derivation of the dual problem, which is
is finite-dimensional (Lagrange multipliers are indeed Hermitian matrices), and, in
Subsection 2.2.2, we briefly discuss some issues arising from the numerical solution of
the dual problem. The latter subsection provides the main motivation for the problem
that we will address in the next chapter.

2.1 Problem formulation

LET {y(t )}t∈Z be an m-dimensional zero-mean second-order purely nondetermin-
istic stationary stochastic process and suppose we possess a finite observation

record of the process, say {y(tk )}N
k=1. The task is to estimate the unknown spectral

density Φ ∈S
m
+ (T) of the process {y(t)}t∈Z from the data {y(tk )}N

k=1. Henceforth, we
will denote by S

m
+ (T) the space of m ×m functions that are well-defined and posi-

tive definite on T, that is the space of coercive and bounded discrete-time spectral
densities (when m = 1, we let S

1
+ (T) :=S+(T) to simplify the notation). A THREE-like

approach hinges on the following four ingredients:

1) A rational filter G(z) to process the data. Here, G(z) models a bank of filters of
the form

G(z) = (zI − A)−1B , A ∈C
n×n , B ∈C

n×m , (2.1)

where A is Schur stable, i.e., all the eigenvalues of A are strictly inside T, the pair
(A,B) is reachable, and B is of full column rank (n ≥ m).
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2) An estimate Σ ∈Hn of the steady-state covariance of the output state {x(t )}t∈Z of
the filter whose dynamics is described by

x(t +1) = Ax(t )+B y(t ), t ∈Z.

3) An a priori estimate Ψ ∈S
m
+ (T) of the spectral density Φ.

4) A distance-like function between spectral densities d : S
m
+ (T)×S

m
+ (T) →R≥0.

On the one hand, the possibility of selecting the filter bank (2.1) makes this ap-
proach very flexible. In fact, G(z) can be designed by the user in order to guarantee
higher resolution within certain frequency bands. On the other hand, the same filter
also imposes a generalized moment constraint on the available covariance estimate of
the form

∫
GΦG∗ :=

∫π

−π
G(e jθ)Φ(e jθ)G∗(e jθ)

dθ

2π
=Σ. (2.2)

Here, and throughout the remaining of the dissertation, we will use the above short-
hand where integration, unless otherwise specified, takes place on [−π,π] with respect
to normalized Lebesgue measure dθ/2π. Within this setting, the estimation problem
boils down to solving the following constrained approximation problem.

Problem 2.1 (THREE-like estimation). Let Ψ ∈S
m
+ (T) and Σ ∈H+,n . Find Φ̂ ∈S

m
+ (T)

that solves
min
Φ∈K

d(Φ,Ψ),

where

K :=
{
Φ ∈S

m
+ (T) :

∫
GΦG∗ =Σ

}
.

Remark 2.1. It is worth noting that the estimation of the covariance matrix Σ from
the filtered data {x(ti )}N

i=1 in the above setting is a most delicate issue that has been
addressed in Ramponi et al. [2009], Ferrante et al. [2012b], Zorzi and Ferrante [2012].
In the first paper the problem was solved using a projection-based technique, in the
second paper via a maximum-entropy method, and in the third one by means of an
approach that exploits an estimate of the covariance lags sequence of the process
{y(t )}t∈Z.

Remark 2.2. The index d(·, ·) plays a key role in the above problem. Indeed, a suitable
choice of this index should lead to a tractable solution of the corresponding dual
problem of Problem 2.1 and the latter solution should ideally be rational and of low
complexity (as measured by the McMillan degree), at least when the prior Ψ is such.
We just mention here that this choice is particularly crucial in the multivariate case.
This point will be discussed in greater detail in Chapter 4 and Chapter 5.
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Remark 2.3. The a priori estimate Ψ is usually taken to be a coarse estimate of the
to-be-estimated spectrum Φ. In case this information is not available, the most
reasonable choice is to set Ψ= Im .

The existence of Φ ∈S
m
+ (T) satisfying (2.2) and, hence the existence of solutions

to Problem 2.1, is a non-trivial issue that may be viewed as a (multivariate) generalized
moment problem. Before addressing this issue, we illustrate how we can recover
several important problems of Systems and Control Theory as special cases of Prob-
lem 2.1.

Example 2.1 (Covariance extension problem). Consider the scalar case m = 1 and pick

A =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

...
0 0 0 · · · 1
0 0 0 · · · 0




, B =




0
0
...
0
1




.

With this choice, the k-th component of the filter G(z) is gk (z) = zn−k (see also the
block diagram below).

g1(z)

g2(z)

gn(z)

...
...

G(z)

•y(t ) x1(t )

x2(t )

xn(t )

In addition, let

Σ=




c0 c1 0 cn−1

c̄1 c0 · · · cn−2
...

...
. . .

...
c̄n−1 c̄n−2 · · · c0




where
ck := E{y(k)ȳ(n −k)}

which corresponds to the k-th covariance lag of {y(t)}t∈Z. Therefore, Problem 2.1
consists in finding a suitable extension {ck }k>n of the partial covariance lags sequence
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{ck }n−1
k=0 such that

Φ(e jθ) =
∞∑

k=−∞
ck e− jθk , ∀θ ∈ [−π,π].

This is the maximum-entropy covariance extension problem Georgiou [1987a], Byrnes
and Lindquist [1997], Byrnes et al. [1995, 1997, 1998], Carli et al. [2011], Lindquist
and Picci [2013], Lindquist et al. [2013]. It is known that the set of spectral densities
consistent with the data is nonempty if Σ≥ 0 and contains infinitely many elements if
Σ> 0.

Example 2.2 (Nevanlinna–Pick interpolation). For the sake of simplicity, let us suppose
again that {y(t )}t∈Z is scalar and consider

A =




p1 0 0 · · · 0
0 p2 0 · · · 0

0 0
. . .

...
...

... pn−1 0
0 0 · · · 0 pn




, B =




1
1
...
1
1




, |pi | < 1, i = 1, . . . ,n.

In view of this choice, the k-th element of the filter bank is

gk (z) =
z

z −pk
, |pk | < 1.

The state covariance can be shown to have the form of a Pick matrix

Σ=




w1+w̄1
1−p1p̄1

w1+w̄2
1−p1p̄2

· · · w1+w̄n

1−p1p̄n
w2+w̄1
1−p2p̄1

w2+w̄2
1−p2p̄2

· · · w2+w̄n

1−p2p̄n

...
...

. . .
...

wn+w̄1
1−pn p̄1

wn+w̄2
1−pn p̄2

· · · wn+w̄n

1−pn p̄n




with

wk =
1

4π

∫π

−π

e− jθ+pk

e jθ−pk

Φ(e jθ)dθ, k = 1, . . . ,n.

In this case, Problem 2.1 turns into a classical Nevanlinna–Pick interpolation problem

(see, e.g., [Doyle et al., 1992, Chap. 9] for a general overview, and Georgiou [1999],
Byrnes et al. [2001b, 2006] for further results). As in the previous example, the set of
solutions is nonempty if Σ≥ 0 and contains infinitely many elements if Σ> 0.

120 |



Chapter 2. THREE-like spectral estimation

2.1.1 Existence of solutions

The first issue to worry about in solving Problem 2.1 concerns the existence of so-
lutions. To this end, let C (T,Hm) be the space of m ×m Hermitian matrix-valued
continuous function and consider the following linear operator

Γ : C (T,Hm) →Hn

Φ 7→
∫

GΦG∗. (2.3)

The following proposition (which is an assembly of results from Georgiou [2002],
Ferrante et al. [2008]) provides a series of equivalent conditions for the existence of a
solution to Problem 2.1.

Proposition 2.1. The following conditions are equivalent:

1) The set of solutions to Problem 2.1 is nonempty.

2) There exists H ∈C
m×n such that

Σ− AΣA∗ = B H +H∗B∗.

3) The following rank condition holds

rank

[
Σ− AΣA∗ B

B∗ 0

]
= 2m.

4) It holds Σ ∈ RangeΓ.

5) The following relation holds

(In −ΠB ′)(In − A′A′∗)(In −ΠB ′) = 0,

where B ′ := Σ
−1/2B, A′ := Σ

−1/2 AΣ−1/2, and ΠB ′ := B ′(B ′∗B ′)−1B ′∗ denotes the

orthogonal projection onto im(B ′).

2.2 The scalar Kullback–Leibler case

IN this section, following Georgiou and Lindquist [2003], we focus on the particular
case of Problem 2.1 in which:

1) the spectral densities are scalar (m = 1), and

2) d(·, ·) is chosen to be the Kullback–Leibler divergence, namely

d(Φ,Ψ) ≡D(Φ‖Ψ) :=
∫

Ψ log
Ψ

Φ
.
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This distance-like function arises in information-theoretic settings where probabil-
ity distributions are evaluated in terms of their entropy or the amount of information
they contain [Cover and Thomas, 2012, Ch. 2]. It is known under a variety names such
as relative entropy, cross entropy, information divergence, information gain, etc., and
applied in many areas of information theory, statistics, probability and estimation
theory. With this choice, Problem 2.1 reads as follows.

Problem 2.2 (THREE-like Kullback–Leibler estimation). Let Ψ ∈ S+(T) and Σ ∈Hn ,
Σ> 0. Find Φ̂ ∈S+(T) that solves

min
Φ∈K

D(Φ,Ψ),

where

K :=
{
Φ ∈S+(T) :

∫
GΦG∗ =Σ

}
.

Remark 2.4. Notice that, if the spectra Φ and Ψ have the same zero-th moment2020It can be shown
that this condition is met
for sure if A is singular.

, i.e.,

∫
Φ=

∫
Ψ,

then D(Φ‖Ψ) ≥ 0. The justification of the choice of D(Φ‖Ψ) even for spectra that
do not satisfy the previous condition is discussed in [Georgiou and Lindquist, 2003,
Sec. III]. This choice basically hinges on the possibility of rescaling Ψ. This implies
that in the corresponding optimization problem we are approximating the “shape”
of the a priori spectral density Ψ. We point out that in several applications requiring
the discrimination of two spectra, e.g., in speech processing, what really matters is
indeed the “shape” of the spectra rather then their relative scaling. In recent year,
this aspect has stimulated the search for sensible projective distances in the cone of
spectral densities Martin [2000], Georgiou [2007a,b]. This point will be also discussed
in Chapter 5.

Remark 2.5. In the majority of applications arising from statistics, probability, infor-
mation theory, etc., minimizing D(Φ‖Ψ) instead of D(Ψ‖Φ) is rather unusual. Here
the choice is justified by the fact that it leads to a more tractable problem (as we shall
see in what follows), and, more importantly, with this choice the maximum entropy
estimate can be recovered as a particular case (Ψ= 1).

Remark 2.6. As described in [Ferrante et al., 2011, Remark 2.2], without loss of gener-
ality, we can assume that Σ= In and

∫
Ψ= 1. As a matter of fact, if Σ 6= In , then we can

replace (A,B) with (Σ−1/2 AΣ−1/2,Σ−1/2B) to get an equivalent problem where Σ= In .
Likewise, if

∫
Ψ = α 6= 1, we can replace Ψ with Ψ/α and G with

p
αG to obtain an

equivalent version of the problem in which
∫
Ψ= 1.
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2.2.1 Variational analysis and dual problem

We outline here the variational analysis of Georgiou and Lindquist [2003] leading to the
optimal conditions of Problem 2.2 and to its dual (we refer also to Pavon and Ferrante
[2005, 2006], Ferrante et al. [2011] where some additional details and differences are
spelled out). In what follows, we will suppose that the spectral densities are continuous
functions and Σ= In (cf. Remark 2.6).

Let us define
L+ := {Λ ∈Hn : G∗

ΛG > 0, ∀θ ∈ [−π,π] }.

Now pick Λ ∈L+ and consider the Lagrangian functional

L(Φ,Λ) =D(Ψ‖Φ)+ tr

(
Λ

(∫
GΦG∗− In

))

=D(Ψ‖Φ)+
∫

G∗
ΛGΦ− trΛ.

Next, we consider the unconstrained minimization of L(Φ,Λ), namely

min
Φ∈S+(T)

L(Φ,Λ). (2.4)

Notice that, for each fixed Λ, Φ 7→ L(Φ,Λ) is a strictly convex function. Hence, the
problem in (2.4) is a unconstrained convex optimization problem. In addition, we
have the following optimality condition [Georgiou and Lindquist, 2003, Theorem 5].

Theorem 2.1. Suppose that the one of the feasibility conditions in Proposition 2.1 is

met and Λ̂ ∈L+ satisfies

∫
G

Ψ

G∗Λ̂G
G∗ = In . (2.5)

Then

Φ̂=
Ψ

G∗Λ̂G
(2.6)

is the unique solution of Problem 2.2.

Remark 2.7. Observe that, in view of the above theorem, the solution of the approx-
imation is unique and has a form parametrized by a suitable Hermitian matrix Λ̂.
Nevertheless, this does not implies that the matrix Λ̂ leading to this solution is unique.
In fact, it is apparent that all the Hermitian matrices Λ̂′ satisfying

G∗(Λ̂− Λ̂
′)G = 0, ∀θ ∈ [−π,π],

yield the same solution of the approximation problem. The previous condition is
equivalent to assert that Λ̂− Λ̂

′ ∈ (RangeΓ)⊥, where (RangeΓ)⊥ is the orthogonal
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complement (w.r.t. the standard trace inner product in Hn) of the range of the linear
operator Γ as defined in (2.3). The latter can be expressed by [Ferrante et al., 2008,
Sec. IV]

(RangeΓ)⊥ = { X ∈Hn : G∗XG = 0, ∀θ ∈ [−π,π] }. (2.7)

Thus, the set of all solutions of Problem 2.2 is the affine space {Λ̂+X , X ∈ (RangeΓ)⊥ }.

Thanks to Theorem 2.1 the original approximation problem is now reduced to
finding Λ ∈L+ satisfying (2.5). This can be accomplished via duality theory. Consider
the dual functional

Λ 7→ inf
Φ∈S+(T)

L(Φ,Λ).

For Λ ∈L
′
+, the latter takes the form

Λ 7→ L

(
Ψ

G∗ΛG
,Λ

)
=

∫
Ψ logG∗

ΛG − tr(Λ)+
∫

Ψ.

Next, consider the maximization of the dual functional over the set L+. By defining

J(Λ) :=−
∫

Ψ logG∗
ΛG + tr(Λ), (2.8)

the dual problem is then equivalent to

min
Λ∈L+

J(Λ). (2.9)

This problem is again a convex optimization problem. In Georgiou and Lindquist
[2003], Λ is further restricted to belong to RangeΓ. On this restricted domain, the dual
functional becomes strictly convex and J(·) has a unique minimum point as shown in
[Georgiou and Lindquist, 2003, Sec. V] (see also Ferrante et al. [2007] for a different
proof of this fact).

2.2.2 Some numerical considerations

When restricted to L̃+ :=L+∩RangeΓ the dual functional in J(·) is strictly convex,
so that the dual problem in (2.9) can be solved using an iterative algorithm based on
Netwon’s method. In order to apply this method, however, a suitable parametrization
of the elements in L̃+ that preserves global convexity is needed. In what follows
we briefly outline the parametrization considered in [Georgiou and Lindquist, 2003,
Sec. VII].

Given Λ ∈ L̃+, let M be the unique solution of the Lyapunov equation

M = A∗M A+Λ.
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It holds

G∗
ΛG =

(
G −

1

2
B

)∗
K +K ∗

(
G −

1

2
B

)
,

where K := MB . Let K+ the space of all K ∈C
n×1 such that G∗

ΛG > 0 on T. The dual
problem (2.9) can be shown to be equivalent to minimizing the convex functional

Ĵ (K ) := HK +K ∗H∗−
∫

Ψ log

((
G −

1

2
B

)∗
K +K ∗

(
G −

1

2
B

))

over K+, where H ∈C
1×n is the matrix satisfying the existence condition 2) of Propo-

sition 2.1. The above-defined functional Ĵ : K+ →R is strictly convex, and one can
apply a Newton-like method as the one described in Byrnes et al. [2000]. However,
using this parametrization, the gradient of the dual functional is unbounded in the
neighborhood of the boundary of K+ and this causes serious numerical difficulties in
practical implementations.

To conclude, we mention that an alternative parametrization has been proposed
at the end of [Georgiou and Lindquist, 2003, Sec. VII] which is better behaved on the
boundary but destroys global convexity of the problem. In this case, an homotopy
continuation method similarly to the one of Enqvist [2001], Nagamune [2003] can be
used to solve the problem.
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3. On the convergence of the

Pavon–Ferrante algorithm

A
S mentioned in the previous chapter, gradient-based numerical methods for

the solution of the scalar Kullback–Leibler estimation problem (Problem 2.2)
are severely affected by a number of numerical issues. These are mainly
due to the unboundedness of the gradient around the boundary of the set

wherein to look for a solution. This implies that such methods typically do not behave
numerically well and may require a significant number of back-stepping iterations be-
fore reaching convergence. To enhance numerical stability and reduce computational
burden, in Pavon and Ferrante [2005, 2006] an alternative iterative method based on
a fixed-point iteration in the space of trace-one positive semi-definite matrices was
introduced. On the one hand, in case of rational prior, the Pavon–Ferrante algorithm
can be efficiently implemented in a numerically robust way via the solution of an
Algebraic Riccati Equation and a Lyapunov equation [Ferrante et al., 2011, Sec. IV].
On the other hand, in spite of a huge amount of numerical evidences, showing the
global convergence of the algorithm to a prescribed set of fixed points which provide
the solution of Problem 2.2 has revealed to be an highly non-trivial challenge. This
open problem has been subsequently invesigated in Ferrante et al. [2007, 2011]. In
the first work, the authors showed that the iteration can be seen as a modified gra-
dient descent method with fixed step size. In the second work, a rather tortuous yet
enlightening proof of local convergence towards the prescribed set of fixed points of
the iteration was established. Both these results however were not completely satisfac-
tory since they do not provide an answer to the more challenging question of global

convergence of the iteration. In this chapter, we fill this gap by analyzing the global
convergence properties of the Pavon–Ferrante iteration. Specifically, after introducing
the algorithm in Section 3.1 and collecting some preliminary results in Section 3.2,
Section 3.3 presents a proof of global convergence of the Pavon–Ferrante algorithm to
one of its fixed point. In Section 3.4 we then discuss how to modify the algorithm in
order to guarantee convergence to a positive definite fixed point. Importantly, such a
fixed point is always guaranteed to yield the solution of Problem 2.2. We conclude by
illustrating a numerical example that demonstrates the effectiveness of the proposed
approach.

Except for the last section, this chapter is based on the material in Baggio [2017a].
We also mention that a global convergence analysis for a “discretized” version of the
Pavon–Ferrante iteration has been discussed in Baggio [2017b].



Chapter 3. On the convergence of the Pavon–Ferrante algorithm

3.1 The algorithm and its properties

THE Pavon–Ferrante algorithm, as introduced in Pavon and Ferrante [2005, 2006],
is a fixed-point iteration of the form

Λk+1 =Θ(Λk ) :=
∫

Λ
1/2
k G

(
Ψ

G∗ΛkG

)
G∗

Λ
1/2
k , k ∈Z, k ≥ 0, (3.1)

where the initialization is taken to be a positive definite Λ0 in Sn and the latter symbol
denote the set of unit-trace positive semi-definite matrices. Let us define

M := {Λ ∈Sn : G∗(e jθ)ΛG(e jθ) > 0, ∀θ ∈ [−π,π) }, (3.2)

M+ := {Λ ∈M : Λ> 0} ⊂M . (3.3)

Iteration (3.1) features several interesting properties. One of these properties is that
the map Θ(·) preserves positivity and unit-trace as described by the following result.

Proposition 3.1 ([Pavon and Ferrante, 2006, Thm 4.1]). Iteration Θ(·) maps elements

of M (M+) into elements of M (M+, respectively).

Another fundamental property is the following one. If iteration (3.1) converges to
a positive definite fixed point of Θ(·), say Λ̂> 0, then

1) G∗(e jθ)Λ̂G(e jθ) > 0, ∀θ ∈ [−π,π), and

2) by multiplying Equation (3.1) on both sides by Λ̂
−1/2,

∫
G

Ψ

G∗Λ̂G
G∗ = In . (3.4)

In view of Theorem 2.1, the previous two points readily imply that such a Λ̂ yields
the solution of Problem 2.2 via Equation (2.6). Importantly, such a fixed point always
exists. In fact, let S denote the space of Λ ∈Hn satisfying the optimality conditions in
Theorem 2.1. Then, we have the following result.

Proposition 3.2 ([Ferrante et al., 2011, Thm 3.2]). The set of positive definite fixed

points of iteration (3.1) is a nonempty open convex set P of the space S .

To conclude, we remark that the positive definite ones are not the only fixed points
of iteration (3.1) which provide the solution to Problem 2.2. Indeed, in the closure
of P there exist singular elements which still satisfy the aforementioned optimality
conditions and, therefore, solve Problem 2.2 via (2.6), see [Ferrante et al., 2011, Sec. II-
B]. In general, however, singular fixed points are not guaranteed to satisfy the required
optimality conditions and, therefore, to solve Problem 2.2 via (2.6).

We conclude this section with a characterization of a class of singular fixed points of
Θ(·) and with two concrete examples of fixed points that illustrate the above described
“special” situations.
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Proposition 3.3 ([Pavon and Ferrante, 2006, Prop. 4.3]). Let x ∈ C
n , x 6= 0, and let

Px := (xx∗)/(x∗x) denote the orthogonal projection rank-one projection onto span{x},

x ∈C
n . Then Px ∈Sn is a fixed point of Θ(·).

Example 3.1. Consider Ψ= 1, G(e jθ) = (e jθI − A)−1B , where

A =
[

0 1
0 0

]
, B =

[
0
1

]
.

Note that A is (strictly) Schur stable and the pair (A,B) is reachable. Observe also that
the feasibility condition in Proposition 2.1, point 3), is met. Indeed, by taking H =
[0, 1/2], it holds I2 − A A∗ = B H +H∗B∗. Let Px := (xx∗)/(x∗x) denote the orthogonal
projection onto span{x}, x ∈C

n , and consider x = [4, 3]>. From Proposition 3.3 Px is a
fixed point of the iteration, however

∫
GG∗

G∗PxG
=

[ 25
7 −75

28
−75

28
25
7

]
6= I2

so that condition (3.4) is not met and therefore Px does not lead to the solution of
Problem 2.2.

Example 3.2. Consider the quantities defined in the previous example and x = [1, 0]>.
In this case, it holds ∫

GG∗

G∗PxG
= I2

so that condition (3.4) is met although the fixed point Px is singular. Moreover, in this
case, it holds G(e jθ)∗PxG(e jθ) > 0 for all θ ∈ [−π,π). From these two facts it follows
that Px yields the solution of the spectral estimation problem via Equation (2.6).

3.2 Auxiliary results

IN this section, we collect some auxiliary results which will be used in the proof of
the main theorem presented in the next section. The first result is a consequence

of Jensen’s inequality.

Lemma 3.1. Let X ⊆R. Consider an integrable function f : X →R>0 and an integrable

function w : X →R>0 satisfying
∫

X w(x)dx = 1, then

log
∫

X
w(x) f (x)dx ≥

∫

X
w(x) log f (x)dx,

and the equality is attained if and only if f (x) is constant a.e. on X .

Proof. It follows from Jensen’s inequality [Cover and Thomas, 2012, Thm. 2.6.2] ap-
plied to the strictly concave function log(·).
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Another ancillary lemma is stated and proved below.

Lemma 3.2. Let X ⊆R. Let w : X →R and f : X ×X →R≥0 be integrable functions with

f (·, ·) symmetric, i.e., f (x, y) = f (y, x) for all x, y ∈ X . Then it holds

∫

X

∫

X
w(x)2 f (x, y)dx dy ≥

∫

X

∫

X
w(x)w(y) f (x, y)dx dy. (3.5)

Proof. Thanks to the symmetry of f (·, ·), we can rewrite the left hand-side of (3.5) as

∫

X

∫

X
w(x)2 f (x, y)dx dy =

∫

X

∫

X
w(y)2 f (y, x)dy dx

=
∫

X

∫

X
w(y)2 f (x, y)dx dy,

so that

∫

X

∫

X
w(x)2 f (x, y)dx dy =

∫

X

∫

X

(
w(x)2 +w(y)2

2

)
f (x, y)dx dy.

Now, since w(x)2 +w(y)2 ≥ 2w(x)w(y), due to the fact that (w(x)−w(y))2 ≥ 0, for all
x, y ∈ X , the claim follows.

Next we focus the attention on the cost functional J(·), as defined in Equation (2.8).
This function will play a key role in the convergence analysis of the next section.

Lemma 3.3. J(·) is a convex, bounded and continuous function on Sn .

Proof. We first note that convexity readily follows from the fact that − log(·) is convex.
Next, in view of the stability of A and reachability of the pair (A,B), for all Λ ∈Sn ,
G∗

ΛG is a nonzero rational spectral density analytic on (an open annulus containing)
T. This in turn implies that logG∗

ΛG is integrable on T, see, e.g., [Rozanov, 1967, p. 64].
Since Ψ is bounded on T, Ψ logG∗

ΛG is again integrable on T. This in turn implies
that J(·) is bounded on Sn . Now let Λ̄ ∈Sn and consider any sequence {Λk }k≥0, in
Sn such that limk→∞Λk = Λ̄. The corresponding sequence {G∗

ΛkG}k≥0 is composed
of nonzero rational spectral densities analytic on T and such that limk→∞G∗

ΛkG =
G∗

Λ̄G uniformly on T, where the limit G∗
Λ̄G is a spectral density as before. In fact, by

denoting with gi ,θ the i -th entry of G(e jθ) and by λk,i j , λ̄i j the (i , j )-th entry of Λk , Λ̄,
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respectively, uniform convergence follows from the fact that limk→∞Λk = Λ̄ and

∣∣∣G∗(e jθ)ΛkG(e jθ)−G∗(e jθ)Λ̄G(e jθ)
∣∣∣=

∣∣∣∣∣
∑

i , j

λk,i j g∗
i ,θg j ,θ−

∑

i , j

λ̄i j g∗
i ,θg j ,θ

∣∣∣∣∣

=

∣∣∣∣∣
∑

i , j

(λk,i j − λ̄i j )g∗
i ,θg j ,θ

∣∣∣∣∣

≤
∑

i , j

∣∣λk,i j − λ̄i j

∣∣ |g∗
i ,θg j ,θ| (3.6)

≤Gmax

∑

i , j

∣∣λk,i j − λ̄i j

∣∣ , ∀θ ∈ [−π,π),

where Gmax := maxi , j ,θ |g∗
i ,θg j ,θ| <∞ since each gi ,θ is analytic and bounded on T and

(3.6) uses the triangle inequality. Hence, from [Nurdin, 2006, Corollary 4.6], it follows
that the sequence {logG∗

ΛkG}k≥0 is uniformly integrable on T. Eventually, since Ψ

is bounded on T, {Ψ logG∗
ΛkG}k≥0 is again uniformly integrable, so that by Vitali’s

convergence theorem [Rudin, 1987, p. 133] it holds

lim
k→∞

J(Λk ) = 1− lim
k→∞

∫
Ψ logG∗

ΛkG

= 1−
∫

lim
k→∞

Ψ logG∗
ΛkG

= 1−
∫

Ψ logG∗
Λ̄G = J(Λ̄),

which proves continuity.

We observe that J(·) is not injective on Sn . As a matter of fact, consider the
orthogonal complement (w.r.t. the trace inner product in Hn) of RangeΓ, where the
linear operator Γ has been defined in Equation (2.3). In view of Equation (2.7), given
Λ ∈ Sn and any non-zero matrix Λ

⊥ ∈ (RangeΓ)⊥ such that Λ+Λ
⊥ ≥ 0, it follows

that J(Λ) = J(Λ+Λ
⊥). In addition, Λ+Λ

⊥ ∈Sn , since every element in (RangeΓ)⊥ is
traceless [Ferrante et al., 2011, Sec. II].

At this point, we analyze the behavior of J(·) in the region of the boundary of Sn

defined by

N :=
{
Λ ∈Sn : ∃ θ̄ ∈ [−π,π) s.t. G∗(e j θ̄)ΛG(e j θ̄) = 0

}
. (3.7)

The following lemma provides a useful result in this regard.

Lemma 3.4. For all Λ̄ ∈N , the (right-sided) directional derivative of J(·) at Λ̄ along

any direction ∆Λ̄ ∈Hn such that Λ̄+∆Λ̄ ∈M takes the value −∞.
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Proof. Let Λ̄ ∈N . First, we note that Λ̄+ε∆Λ̄ ∈M for all ∆Λ̄ ∈Hn such that Λ̄+∆Λ̄ ∈
M , and for all ε ∈ (0,1]. The (right-sided) directional derivative of J(·) at Λ̄ in the
direction ∆Λ̄ is given by

∇J(Λ̄;∆Λ̄) := lim
ε→0+

J(Λ̄+ε∆Λ̄)−J(Λ̄)

ε

= lim
ε→0+

(
1

ε
tr(Λ̄+ε∆Λ̄)−

1

ε
tr(Λ̄)−

1

ε

∫
Ψ log

G∗(Λ̄+ε∆Λ̄)G

G∗Λ̄G

)

=− lim
ε→0+

1

ε

∫
Ψ log

(
1+ε

G∗
∆Λ̄G

G∗Λ̄G

)

=−
∫

Ψ
G∗

∆Λ̄G

G∗Λ̄G
,

where we exploited the fact that tr(∆Λ̄) = 0, and, in the last step, the Taylor expansion of
log(1+x). Eventually, since (i) Λ̄ ∈N , and (ii) ∆Λ̄ is such that Λ̄+∆Λ̄ ∈M , there exists

(at least) a frequency θ̄ ∈ [−π,π) such that G∗(e j θ̄)Λ̄G(e j θ̄) = 0 and G∗(e j θ̄)∆Λ̄G(e θ̄) 6= 0.
Since Ψ(e jθ) > 0 for all θ ∈ [−π,π), this in turn implies

∫
Ψ

G∗
∆Λ̄G

G∗Λ̄G
=∞,

which yields the thesis.

Remark 3.1. Lemma 3.4 provides a characterization of the elements of N in terms of
directional derivatives of J(·) along directions belonging to the subset of Sn given by
M . Notice that this result typically does not characterize all directional derivatives
of J(·) evaluated at elements in N along directions pointing to Sn . However, for a
particular subset of N this is indeed the case. Let x ∈C

n , ‖x‖ = 1, and let Px := xx∗

denote the orthogonal projection onto the subspace spanned by x. Consider the
following subset of N

N0 :=
{

P x̄ ∈Sn : ∃ θ̄ ∈ [−π,π), x̄ ∈C
n , ‖x̄‖ = 1, s.t.

(i)
〈

x̄,G(e j θ̄)
〉
= 0, and

(ii)
〈

x,G(e j θ̄)
〉
6= 0, ∀x ∈C

n , ‖x‖ = 1, x 6= x̄
}

, (3.8)

where 〈A,B〉 = tr(AB∗) for A, B ∈C
n×n . By exploiting the same argument of the proof

of Lemma 3.4, it follows that the directional derivative of J(·) evaluated at Λ̄ ∈N0 along
any direction ∆Λ̄ ∈Hn \ {0} such that Λ̄+∆Λ̄ ∈Sn is unbounded below. Moreover, it is
worth noticing that, for the particular case n = 2, it holds N0 ≡N .
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To conclude this section, we recall the discrete-time version of LaSalle’s invariance
principle, whose proof can be found in [LaSalle, 1986, Prop. 2.6] or, with reference to
the continuous-time case, in [Khalil, 1996, Theorem 4.4].

Proposition 3.4 (Discrete-time LaSalle’s invariance principle). Consider a discrete-

time system

x(t +1) = f (x(t )), x(0) ∈X , t ≥ 0,

where f : X →X is continuous and X is an invariant and compact set. Suppose V (·)
is a continuous function of x ∈X , bounded below and satisfying

∆V (x) :=V ( f (x))−V (x) ≤ 0, ∀x ∈X ,

that is V (x) is non-increasing along (forward) trajectories of the dynamics. Then any

trajectory converges to the largest invariant subset I contained in

E := { x ∈X : ∆V (x) = 0}.

3.3 The main convergence result

IN this section, we present the main results of this chapter. The first result (The-
orem 3.1) states that the cost function (2.8) is always non-increasing along the

trajectories of (3.1). This result provides a positive answer to a conjecture raised in the
conclusive part of Ferrante et al. [2011] and paves the way for a global convergence
proof based on LaSalle’s principle.

Theorem 3.1. For every Λ ∈Sn it holds

∆J(Λ) := J(Θ(Λ))−J(Λ) ≤ 0, (3.9)

where J(·) has been defined in (2.8). Moreover ∆J(Λ) = 0 if and only if Θ(Λ) =Λ+Λ
⊥,

with Λ
⊥ ∈ (RangeΓ)⊥, where Γ is the linear operator defined in Equation (2.3).

Proof. For the sake of clarity, in what follows we will use the following shorthand:
Given a matrix-valued function defined on the unit circle we let Fθ := F (e jθ). By
plugging the expression of Θ(·) into (3.9), we get

∆J(Λ) = J(Θ(Λ))−J(Λ) ≤ 0

⇐⇒
∫

Ψθ logG∗
θΘ(Λ)Gθ−

∫
Ψθ logG∗

θΛGθ ≥ 0

⇐⇒
∫

Ψθ log fθ ≥ 0, (3.10)

where fθ := G∗
θ
Θ(Λ)Gθ

G∗
θ
ΛGθ

is well-defined and strictly positive on T, since Θ(Λ) has the same

rank and kernel of Λ ∈Sn , cf. [Ferrante et al., 2011, Prop. 2.1].
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Firstly, we notice that the following inequality holds
∫

Ψθ log fθ =−2
∫

Ψθ log f −1/2
θ ≥−2log

∫
Ψθ f −1/2

θ , (3.11)

which is a consequence of Lemma 3.1.

Secondly, by defining Πθ := Λ
1/4GθG∗

θ
Λ

1/4

G∗
θ
ΛGθ

, we have the following chain of equations

1 =
∫

Ψθ f −1
θ fθ =

∫∫
f −1
θ ΨθΨω〈Πθ,Πω〉 (3.12)

≥
∫∫

f −1/2
θ f −1/2

ω ΨθΨω〈Πθ,Πω〉 (3.13)

=
〈∫

Ψθ f −1/2
θ Πθ,

∫
Ψω f −1/2

ω Πω

〉

= ‖Λ1/2‖2
F

∥∥∥∥
∫

Ψθ f −1/2
θ Πθ

∥∥∥∥
2

F
(3.14)

≥
∣∣∣∣
〈
Λ

1/2,
∫

Ψθ f −1/2
θ Πθ

〉∣∣∣∣
2

(3.15)

=
(∫

Ψθ f −1/2
θ

)2

(3.16)

where

• Equation (3.12) follows by noticing that fθ =
∫
Ψω〈Πθ,Πω〉,

• Equation (3.13) uses Lemma 3.2 applied to the symmetric functionΨθΨω〈Πθ,Πω〉,

• Equation (3.14) exploits the fact that ‖Λ1/2‖2
F = tr(Λ) = 1,

• Equation (3.15) follows from Cauchy–Schwarz inequality, and

• Equation (3.16) uses the fact that 〈Λ1/2,Πθ〉 = 1.

Eventually, a combination of the two sets of inequalities (3.11) and (3.12)-(3.16) yields∫
Ψθ log fθ ≥ 0 which, in turn, implies ∆J(Λ) ≤ 0, in view of equivalence (3.10).

Now it remains to prove that we attain equality in (3.9) if only if Λ ∈Sn is such that
Θ(Λ) =Λ+Λ

⊥ with Λ
⊥ ∈ (RangeΓ)⊥. In view of the definition of (RangeΓ)⊥ given in

Equation (2.7), the “if” part becomes straightforward. Indeed, if Θ(Λ) =Λ+Λ
⊥, we

have

∆J(Λ) =
∫

Ψθ log
G∗

θ
Θ(Λ)Gθ

G∗
θ
ΛGθ

=
∫

Ψθ log
G∗

θ
(Λ+Λ

⊥)Gθ

G∗
θ
ΛGθ

=
∫

Ψθ log
G∗

θ
ΛGθ

G∗
θ
ΛGθ

= 0.
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So it remains to prove the “only if” part, i.e., if equality in (3.9) is attained for Λ then
Θ(Λ) =Λ+Λ

⊥ with Λ
⊥ ∈ (RangeΓ)⊥. To this end, we notice that a necessary condition

for (3.9) to hold with equality is to have (3.11) satisfied with equality. By Lemma 3.1,
this implies that the function fθ is constant for every θ ∈ [−π,π), namely

fθ =
G∗

θ
Θ(Λ)Gθ

G∗
θ
ΛGθ

= κ, ∀θ ∈ [−π,π),

where κ> 0 is a real constant. Now equality in (3.9) is attained (if and) only if κ= 1,
and therefore we have that

G∗
θΘ(Λ)Gθ =G∗

θΛGθ, ∀θ ∈ [−π,π).

From the latter equation and by definition of (RangeΓ)⊥ in Equation (2.7), it follows
that Θ(Λ) =Λ+Λ

⊥, Λ⊥ ∈ (RangeΓ)⊥. This completes the proof.

The following theorem is based on the previous one and states that iteration (3.1)
always converges to one of the fixed points of Θ(·).

Theorem 3.2. The trajectories generated by iteration (3.1) converge for all Λ0 ∈Sn to

elements belonging to F := {Λ ∈Sn : Θ(Λ) =Λ }.

Proof. The proof consists of an application of the discrete-time version of LaSalle’s
invariance principle (Proposition 3.4). The natural candidate Lyapunov function V (·)
of Proposition 3.4 is given in this case by J(Λ) which is continuous and bounded for
every Λ ∈Sn (Lemma 3.3), and, by virtue of Theorem 3.1, non-increasing along the
(forward) trajectories of the dynamics (3.1). Hence, by LaSalle’s invariance principle,
we have that the (forward) trajectories generated by iteration (3.1) converges to the
largest invariant set I contained in

E := {Λ ∈Sn : ∆J(Λ) = 0}.

Therefore, it remains to show that the trajectories in I consist of fixed points of
Θ(·) only, that is, I ≡ F . To this end, by Theorem 3.1, we know that the elements
Λ ∈ E satisfy the condition

Θ(Λ) =Λ+Λ
⊥, (3.17)

with Λ
⊥ ∈ (RangeΓ)⊥. In view of the latter constraint on the dynamics (3.1) and the

definition of (RangeΓ)⊥ in Equation (2.7), it follows that any trajectory belonging to E

must obey to the recurrence relation

Λk+1 =Λ
1/2
k MΛ

1/2
k , Λ0 ∈ E , k ≥ 0, (3.18)

where

M :=
∫

Ψ
GG∗

G∗Λ0G
,
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depends on the initial condition Λ0 only, in view of Equation (3.17). Now, since (3.18)
must generate unit trace trajectories starting from any Λ0 ∈ Sn , we have tr(Λ0) =
tr(Λ1) = tr(Λ2) = 1. By exploiting the cyclic property and the linearity of the trace, this
in turn implies that

tr(Λ0)−2tr(Λ1)+ tr(Λ2) = tr(Λ0)−2tr(Λ1/2
0 MΛ

1/2
0 )+ tr(MΛ

1/2
0 MΛ

1/2
0 )

= tr(Λ0)− tr(Λ3/4
0 MΛ

1/4
0 )− tr(Λ1/4

0 MΛ
3/4
0 )+ tr(Λ1/4

0 MΛ
1/2
0 MΛ

1/4
0 )

= tr
(
Λ

1/4
0 (I −M)Λ1/4

0

)2

=
∥∥Λ1/4

0 (I −M)Λ1/4
0

∥∥2
F = 0.

The previous equation is satisfied if and only if Λ1/4
0 (I −M)Λ1/4

0 = 0, or, equivalently, if
and only if

Λ0 =Λ
1/2
0 MΛ

1/2
0 .

From the latter equation and Equation (3.18) it readily follows that Λ0 must be a fixed
point of Θ(·). This ends the proof.

As a final result of this section, we characterize a whole family of fixed points of Θ(·)
that are not asymptotically stable. The following result provides a partial answer to
another conjecture of [Ferrante et al., 2011, Sec. V] claiming that orthogonal rank-one
projections which do not belong to the closure of the set of positive definite fixed
points P are unstable equilibrium points of Θ(·).

Proposition 3.5. The set N0 defined in Equation (3.8) consists of fixed points that are

not asymptotically stable for the dynamics (3.1).

Proof. Let Λ̄ ∈ N0. Notice that Λ̄ is a rank-one orthogonal projection so that Λ̄ is
a fixed point of Θ(·) by Proposition 3.3. Now observe that, in view of Lemma 3.4
and Remark 3.1, all the (right-sided) directional derivatives at J(Λ̄) along directions
pointing to Sn take the value −∞. This implies that in a sufficiently small neighbour-
hood U of Λ̄, it holds J(Λ̄) > J(Λ), ∀Λ ∈ U ∩Sn , Λ 6= Λ̄. In light of this, the claim
follows from the fact that J(·) is non-increasing along trajectories of the dynamics (3.1)
(Theorem 3.1).

3.4 A modified version of the algorithm

THE main result of the previous section (Theorem 3.2) showed that the Pavon–
Ferrante algorithm globally converges to one of its fixed points in Sn . This result

however does not tell whether this fixed point also leads to the solution of Problem 2.2.
As previously described, this is automatically verified if the fixed point is positive
definite.
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The purpose of this section is to introduce and analyze the convergence properties
of a new algorithm that can be seen as a modified version of the Pavon–Ferrante
iteration. The proposed iteration is proved to be globally convergent to a positive

definite fixed point of the Pavon–Ferrante agorithm. Consequently, it always globally
converges to a point which yields the solution of Problem 2.2. Further, we show that
this algorithm is amenable to an efficient and numerically robust implementation in
case the prior is rational.

3.4.1 Preliminaries

The following preliminary results will be crucial for the proof in the next section.

Proposition 3.6. Suppose that the sequence {Λk }k≥0 generated by iteration (3.1) con-

verges to an element Λ̄ ∈N . Then there exists N > 0 such that for every k ≥ N there is a

Λ̂k ∈Sn satisfying

Λ̂k ≥µI , µ> 0, and (3.19)

J(Λ̂k )−J(Λk ) ≤ ν, ν< 0. (3.20)

Proof. Given Λ ∈Sn , we define21 21Observe that
G∗

ΛG could have sev-
eral minima (even an
uncountable number,
for instance if G∗

ΛG is
flat). If this is actually the
case, we pick one of these
minima.

θmin := argmin
θ

G(e jθ)∗ΛG(e jθ).

Let ΠN ∈Hn denote the orthogonal projection onto span
{
G(e jθmin )

}
. We have that

ΛN :=
Π

⊥
N
ΛΠ

⊥
N

tr(Π⊥
N
ΛΠ

⊥
N

)
,

with Π
⊥
N

:= I −ΠN , is such that G(e jθmin )∗ΛN G(e jθmin ) = 0, and therefore ΛN ∈ N .
Associate to any element of the sequence Λk , k ≥ 0, a corresponding projected term

Λk,N , k ≥ 0, as above. Since the sequence {Λk }k≥0
k→∞−−−−→ Λ̄ ∈N and {G∗

ΛG}k≥0 uni-
formly converges to the continuous spectral density G∗

Λ̄G featuring a finite number
of zeros on T, it follows that

{Λk,N }k≥0
k→∞−−−−→ Λ̄ ∈N ,

that is, Λ̄ is an accumulation point for {Λk,N }k≥0.
Next, by virtue of Lemma 3.4, we have that the (right-sided) directional derivative

of the cost functional J(·) along directions evaluated at every element of N and
pointing to M takes the value −∞. Since J(·) is decreasing along trajectories generated
by the iteration, this implies that given Λ ∈ N , for all γ ∈ (0,1], Λ̂ :=Λ+γ

(
I
n
−Λ

)
≥
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µΛ,γI , so that there always exists γ̄ ∈ (0,1] such that J(Λ̂)−J(Λ) ≤ νλ,γ̄. Further, since
N is compact, we can define

µ := min
Λ∈N

µΛ,γ̄ > 0, ν̄ := min
Λ∈N

νΛ,γ̄ < 0;

Since Λ̄ is an accumulation point for both {Λk }k≥0 and {ΛN ,k }k≥0 and J(·) is a
continuous function, for all ε> 0 there exists N such that for all k ≥ N

|J(Λk )−J(ΛN ,k )| < ε.

By defining Λ̂k = ΛN ,k + γ̄
(

I
n
−ΛN ,k

)
and ν = ν̄+ ε, we have that (3.19)-(3.20) are

met.

Remark 3.2. As described in the proof of the previous proposition the term Λ̂k can be
computed as

Λ̂k =ΛN ,k +γ

(
I

n
−ΛN ,k

)
,

where the step size γ > 0 must be properly chosen, in order to satisfy conditions
(3.19)-(3.20).

In order to select γ, one can adopt the following iterative method: Start from a
fixed pre-selected value of γ and then halve it until the following condition is met

J(Λ̂k )−J(Λk ) =
∫

Ψ logΥ< 0, (3.21)

where Υ := G∗
ΛkG

G∗Λ̂kG
is a rational function analytic on (an open annulus containing) T.

Notice that, since J(Λ) is a continuous, convex function of Λ, a sufficient condition
for (3.21) to hold is that the (right-sided) directional derivative of J(·) evaluated at Λ̂k ,
along the direction pointing to Λk is positive, namely

∇J(Λ̂k ;Λk ) := lim
ε→0+

J(Λ̂k +ε(Λk − Λ̂k ))−J(Λ̂k )

ε
> 0. (3.22)

An explicit calculation of the latter derivative yields (cf. the proof of Lemma 3.4)

∇J(Λ̂k ;Λk ) = 1−
∫

ΨΥ

Hence, checking (3.22) boils down to check whether
∫
ΨΥ< 1. In case of rational Ψ,

this can be efficiently carried out by exploiting the residue theorem [Ahlfors, 1953,
p. 155]. Indeed, in this case, it holds

∫
ΨΥ=

∑

i : |pi |<1
Resi , (3.23)

with Resi being the residue of the pole pi of the rational function Ψ(z)Υ(z)/z.
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Proposition 3.7. For every Λ ∈ Mc where Mc is any compact set in M there exists

Λ
⊥ ∈ (RangeΓ)⊥ such that Λ̂ :=Λ+Λ

⊥ ≥ εc I , εc > 0, and J(Λ̂) = J(Λ).

Proof. As done in the proof of Theorem 3.1, for the sake of clarity, in what follows we
will use the shorthand Fθ := F (e jθ) for a matrix-valued function defined on T. The
proof goes along the lines of [Ferrante et al., 2011, Lemma 3.1 and Theorem 3.2] and is
constructive. Considers Λ ∈Mc . From [Ferrante et al., 2011, Lemma 3.1], there exists
a vector v ∈C

n×1 such that

G∗
θΛGθ =G∗

θ v v∗Gθ, ∀θ ∈ [−π,π). (3.24)

On the unit circle G∗
θ
ΛGθ is continuous and (strictly) positive and G∗

θ
Gθ is continuous.

Thus,

µΛ := min
θ∈[−π,π)

G∗
θΛGθ > 0,

ν := max
θ∈[−π,π)

G∗
θGθ <∞.

By defining εΛ :=µΛ/κν> 0, κ> 2, we have

G∗
θ

(
1

2
Λ−εΛI

)
Gθ ≥

µΛ

2
−
µΛ

κν
ν

=
κ−2

2κ
µΛ > 0,

for all θ ∈ [−π,π). Hence, by invoking again [Ferrante et al., 2011, Lemma 3.1], there
exists a vector v̄ ∈C

n×1 such that for all θ ∈ [−π,π)

G∗
θ

(
1

2
Λ−εΛI

)
Gθ =G∗

θ v̄ v̄∗Gθ. (3.25)

Consequently, for all θ ∈ [−π,π), it holds

G∗
θΛGθ =G∗

θ

(
1

2
Λ+εΛI

)
Gθ+G∗

θ

(
1

2
Λ−εΛI

)
Gθ

=G∗
θ

(
1

2
v v∗+εΛI

)
Gθ+G∗

θ v̄ v̄∗Gθ

=G∗
θ

(
1

2
v v∗+εΛI + v̄ v̄∗

)
Gθ.

Then, by defining

Λ
⊥ :=

1

2
v v∗+εΛI + v̄ v̄∗−Λ,

we have Λ
⊥ ∈ (RangeΓ)⊥ and Λ+Λ

⊥ ≥ εΛI . Eventually, we can define

εc := min
Λ∈Mc

εΛ,

and the latter is strictly greater than zero in view of the compactness of Mc .
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Remark 3.3. It is worth observing that, once calculated the value of εΛ, the vectors
v and v̄ in (3.24) and (3.25) can be computed in closed-form through the stabilizing
solution of a Riccati equation, as described in the proof of [Ferrante et al., 2011,
Lemma 3.1]. This follows from the fact that for any Λ ∈ M , the following (right)
spectral factorization holds (cf. [Ferrante et al., 2011, Lemma A.1])

G∗(z)ΛG(z) =W ∗
Λ

(z)WΛ(z),

where WΛ(z) can be explicitly expressed in the form

WΛ(z) = (B∗PB)−1/2B∗P (A(zI − A)−1 + I )B (3.26)

and P ∈Hn is the stabilizing solution of the discrete-time algebraic Riccati equation

Π= A∗
ΠA− A∗

ΠB(B∗
ΠB)−1B∗

ΠA+Λ. (3.27)

From this fact, it is a matter of direct computation to check that the vector

v := PB(B∗PB)−1/2 ∈C
n , (3.28)

is such that G∗(e jθ)v v∗G(e jθ) =G∗(e jθ)ΛG(e jθ) for all θ ∈ [−π,π) (see also [Ferrante
et al., 2011, Lemma 3.1]).

3.4.2 The new algorithm

The structure of the proposed algorithm goes as follows. We run iteration (3.1) until
either we reach a limit point that is positive definite or a point Λk that is very close to
be singular. In the first case we terminate the procedure, while in the second case we
distinguish two situations, namely

1) if Λk is sufficiently close to N , we compute Λ̂k as in Proposition 3.6. Such Λ̂k is
bounded away from singularity and is such that the cost functional J(·) strictly
decreases. Next, we restart the iteration (3.1) initialized at Λ̂k ;

2) otherwise, Λk is converging to an element contained in M . In this case, we
compute a term Λ̂k as in Proposition 3.7 and we restart iteration (3.1) with
initialization Λ̂k .

The next key result asserts that the proposed algorithm is globally convergent to a
positive definite fixed point.

Theorem 3.3. For every initializationΛ0 ∈Sn , the above described algorithm converges

to a positive definite fixed point of Θ(·).
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Proof. From Theorem 3.2 we know that the fixed-point iteration converges to a fixed
point of Θ(·) in Sn . Clearly, if the iteration automatically converges to a positive
definite fixed point, the thesis immediately follows. If the iteration converges to a
singular fixed point, the latter belongs either to N or to M . In the first case, by virtue
of Proposition 3.6, when Λk is sufficiently close to N , we can always find a term
Λ̂ such that Λ̂ is bounded away from being singular and the cost functional J(·) is
decreasing by a quantity that is bounded away from zero. In the second case, the
iteration is converging to a point that belongs to a compact subset of M defined by
the complement in Sn of a suitable open neighbourhood of N . Hence, by virtue of
Proposition 3.7, we can find a term Λ̂ which is bounded away from singularity and
leaves invariant the cost functional J(·). In either case, by restarting the iteration with
the new initialization Λ̂, we have that J(·) is always decreasing along the trajectories
of the algorithm and, at the same time, is bounded away from the boundary of Sn .
Hence, asymptotic convergence to a positive definite fixed point of Θ(·) is guaranteed
by LaSalle’s invariance principle, as described in the proof of Theorem 3.2.

The numerical analysis outlined in [Ferrante et al., 2011, Sec. IV] for the case of
a rational prior spectral density Ψ and the observations made in Remark 3.2 and
Remark 3.3 can be exploited to design an efficient numerical implementation of the
above introduced algorithm. In what follows, we will illustrate this implementation,
which is also schematically reported in Algorithm 1 at the end of this subsection.

As initialization step, we pick any n ×n unit-trace positive definite matrix, and we
fix to some small values the parameters δ1, δ2, ε> 0. We suppose that Ψ is rational.
At each step of the algorithm, we evaluate the condition ‖Θ(Λ)−Λ‖F ≥ δ1. If the
latter condition is met, we apply the Pavon–Ferrante iteration (3.1) as it is. Otherwise,
we have two possible cases. If the current iterate Λ is “sufficiently” bounded away
from singularity (Λ≥ δ2I ), then we stop the algorithm. If not, we employ one of the
following “correction” strategies and then restart the iteration:

• In case the iteration is approaching the region N , i.e., minθG∗
ΛG < ε, then we

compute a correction term Λ̂ as in Proposition 3.6 and Remark 3.2, namely

Λ̂=ΛN +γ

(
I

n
−ΛN

)
, γ> 0,

where

ΛN :=
Π

⊥
N
ΛΠ

⊥
N

tr(Π⊥
N
ΛΠ

⊥
N

)
, (3.29)

and ΠN denotes the orthogonal projection onto span
{
G(e jθmin )

}
, where θmin is

a frequency minimizing the coercive spectral density G∗
ΛG .
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• Otherwise, the iteration is approaching the region M , so that we add a correction
term Λ

⊥ to the current iterate of the form described in Proposition 3.7 and
Remark 3.3, namely

Λ
⊥ :=

1

2
v v∗+εΛI + v̄ v̄∗−Λ, (3.30)

with v, v̄ ∈C
n such that, for all θ ∈ [−π,π),

G∗v v∗G =G∗
ΛG , (3.31)

G∗v̄ v̄∗G =G∗
(

1

2
Λ−εΛI

)
G , (3.32)

and

εΛ =
‖W −1

Λ
(z)‖−2

H∞

κ‖WI (z)‖2
H∞

, (3.33)

where κ> 2, W#(z) denotes the minimum-phase (right) spectral factor of G∗(#)G ,
as defined in (3.26), and ‖·‖H∞ denotes the H∞-norm of a discrete-time transfer
function. We recall that for a stable discrete-time transfer function T (z) the latter
norm is defined as

‖T (z)‖H∞ := sup
z∈C : |z|>1

σmax(T (z)),

where σmax(·) denotes the maximum singular value of a matrix.

We now analyze more in detail the numerical properties of the above outlined
implementation. As shown in [Ferrante et al., 2011, Sec. IV], running the Pavon–
Ferrante iteration (line 3 of Algorithm 1) essentially requires the calculation of:

1) the stabilizing solution of the ARE of order n in (3.27);

2) the solution of a discrete-time Lyapunov equation of order n +nΨ, where nΨ

denote the state-space dimension of a minimal spectral factor of Ψθ.

The first correction action in lines 6–15 of Algorithm 1 boils down to the computa-
tion of:

1) the following H∞-norm

min
θ

G∗
ΛG = ‖W −1

Λ
(z)‖−2

H∞
,

where WΛ(z) is the minimum-phase spectral factor in (3.26) (which in turn can
be computed via the solution of ARE (3.27)), and a corresponding minimum
frequency θmin. This can be performed by means of several efficient numerical
routines, see, e.g., Boyd et al. [1989], Bruinsma and Steinbuch [1990];
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2) the evaluation of the condition at line 10, which in turn can be reduced to the
computation of the integral in (3.23), as described in Remark 3.2.

The second correction action of lines 17–19 of Algorithm 1 needs the computation
of:

1) the value of εΛ in (3.33) that, in essence, consists of the computation of two
AREs of the form in (3.27), and two H∞-norms;

2) the vectors v and v̄ that have the form in (3.28) and whose calculation requires
the stabilizing solution of two AREs of the form in (3.27) (one of which has been
already computed in the previous step).

In view of the previous analysis, we argue that all the required operations can be
implemented by numerically efficient and robust routines.

Algorithm 1 Modified Pavon–Ferrante algorithm
1: Pick Λ ∈Sn , Λ> 0, κ> 2, and sufficiently small ε, δ1, δ2 ∈R>0.
2: while ‖Θ(Λ)−Λ‖F ≥ δ1 do

3: Set Λ←Θ(Λ)
4: end while

5: if Λ 6> δ2I then

6: Set γ ∈R>0

7: if minθG∗
ΛG < ε then

8: Compute ΛN as in (3.29)
9: Set Λ̂←ΛN +γ( I

n
−ΛN )

10: while J(Λ̂)−J(Λ) ≥ 0 do

11: Set γ← γ/2
12: Set Λ̂←ΛN +γ( I

n
−ΛN )

13: end while

14: Set Λ← Λ̂

15: go to 2
16: else

17: Compute Λ
⊥ as in (3.30)

18: Set Λ←Λ+Λ
⊥

19: go to 2
20: end if

21: end if

22: return Λ
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S2, with the cone in R
3

{
(x, y, z) ∈R

3 : z ≥
√

x2 + y2

}
.

Thus, the circle in the plots represents the section of this cone corresponding to
unit-trace matrices, after a suitable normalization.

In the left plot, the black trajectories represent those trajectories that converge to a
positive definite fixed point without requiring a “correction” action, whereas the green
ones are those in which, at least, one “correction” step is applied. In the right plot, one
particular trajectory is plotted. In this case, the red trajectory is obtained by running
the Pavon–Ferrante algorithm without any “correction” step, and the green one by
running Algorithm 1 using the same initialization. In the former case the iteration
numerically converges to a “bad” singular matrix, in the sense that this matrix does
not yield the solution of Problem 2.2. In the latter case the iteration converges to a
positive definite matrix which automatically leads to the solution of Problem 2.2.

We stress that convergence to a “bad” singular fixed point for the Pavon–Ferrante
iteration could be due either to a numerical issue23 23More precisely,

one possible issue could
be due to numerical
round-off errors in the
computation of the
square root of a nearly
singular positive definite
matrix.

or to the fact that the iteration
indeed is indeed not globally convergent to the (closure of the) set of positive definite
fixed points. This fact represents still an open problem. In either case, by using the
new algorithm proposed in the previous subsection convergence to a positive definite
fixed point is always guaranteed, and this comes at a very little extra computational
cost.
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4. Multivariate parametric estimation:

An existence result

I
N contrast to the scalar case, the analysis and solution of THREE-like multivariate

spectral estimation problems represent a much more difficult challenge. Indeed,
in this case the feasibility of Problem 2.1 strongly depends on the selected
distance-like index. We mention, in particular, the works Georgiou [2006],

where a multivariate extension of the Kullback–Leibler divergence, the quantum
relative entropy, is considered; Ferrante et al. [2008], Ramponi et al. [2009], which deal
with a sensible generalization of the Hellinger distance; and Ferrante et al. [2012a],
Georgiou and Lindquist [2017], where the selected distance index coincides with
the multivariate Itakura–Saito distance, and the latter is shown to be the “correct”
generalization of the Kullback–Leibler distance for the case of stochastic processes.
It is worth remarking that the latter two approaches lead to rational solutions with
bounded McMillan degree when the prior is rational. Further, Zorzi [2014a] and
Zorzi [2015] introduce two more general frameworks based on the notion of Beta and
Tau divergence families, wherein the multivariate Kullback–Leibler and Itakura–Saito
distance can be recovered as special cases.

In Ferrante et al. [2010] an alternative approach to the problem was pursued. In
that paper, the authors considered a parametric version of the THREE-like approach
that does not need the definition of a distance index. The proposed parametric family
was mainly motivated by the fact that: (i) for the particular case of no prior information
(Ψ= I ) the maximum-entropy solution belongs to this class, and (ii) the computation
of a solution of the problem can be carried out by means of a multivariate version
of the efficient fixed-point iteration discussed in the previous chapter. However, the
result in Ferrante et al. [2010] was not satisfactory because the authors only showed
that a parametric solution of the problem exists when the prior Ψ has a very special
structure. In fact, this provides the motivation of the current chapter. As a continuation
of the work in Ferrante et al. [2010], here we will show that a solution to the parametric
spectral estimation problem exists given any fixed matrix-valued prior density that is
bounded and coercive.

The main machinery behind our existence proof is the topological degree theory

from non-linear analysis. As an historical remark, Georgiou was the first to apply the
degree theory to rational covariance extension Georgiou [1983, 1987a,b] to show exis-
tence of a solution, and it was further developed by Byrnes, Lindquist, and coworkers
Byrnes et al. [1995] to prove the uniqueness and well-posedness. These theories were
established before the discovery of the cost function in the optimization framework
Byrnes et al. [2001b, 1998, 2001c], which was later called generalized entropy criterion.



Chapter 4. Multivariate parametric estimation: An existence result

The present chapter builds upon Zhu and Baggio [2017] and is structured as follows.
In Section 4.1 we introduce the parametric family of multivariate estimators described
in Ferrante et al. [2010] and formulate the existence problem. In Section 4.2, we review
some notions of topological degree theory that will be instrumental for the proof the
main existence result presented in Section 4.3. To conclude, Section 4.4 illustrates the
application of the main result to the special case of covariance extension.

4.1 A parametric family of estimators

THE problem setting is exactly the same of that discussed in Chapter 2. Let us define
the set

L+ := {Λ ∈Hn : G∗(z)ΛG(z) > 0, ∀z ∈T }, (4.1)

where G(z) denotes the filter bank defined in (2.1). Notice that, by the continuous
dependence of eigenvalues on the matrix entries, one can verify that L+ is an open
subset of Hn . Before introducing the parametric family of estimators that will be the
object of our investigation we need the following lemma.2424This result is

stated without proof in
Ferrante et al. [2010]. An
actual proof of it, with a
different notation, can be
found in [Avventi, 2011,
Sec. A.5.1].

Lemma 4.1 ([Ferrante et al., 2010, Lemma 11.4.1]). Consider the filter bank G(z) as

defined in (2.1) and let Λ ∈L+. Then, the discrete-time algebraic Riccati equation

Π= A∗
ΠA− A∗

ΠB(B∗
ΠB)−1B∗

ΠA+Λ,

admits a unique stabilizing solution PΛ ∈ Hn . The corresponding matrix B∗PΛB is

positive definite and the spectrum of closed loop matrix

ZΛ := A−B(B∗PΛB)−1B∗PΛA

lays in the open unit disk. Let LΛ be the unique (upper triangular) right Cholesky factor

of B∗PΛB, so that it holds B∗PΛB = L∗
Λ

LΛ. The following (right) spectral factorization

holds

G∗
ΛG =W ∗

Λ
WΛ (4.2)

where

WΛ(z) := L−∗
Λ

B∗PΛA(zI − A)−1B +LΛ,

is the unique stable and minimum-phase (right) spectral factor of G∗
ΛG such that

WΛ(∞) is lower triangular.

The following class of spectral estimator was introduced in Ferrante et al. [2010]

ΦΛ :=W −1
Λ

ΨW −∗
Λ

, Λ ∈L+, (4.3)

where Ψ ∈S
m
+ (T) is a coercive spectral density encoding prior information.
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As mentioned in the beginning of the chapter, the main motivation behind this
choice is that this class of estimators is suitable for the implementation of the following
multivariate version of the Pavon–Ferrante algorithm

Λk+1 =
∫

Λ
1/2
k G(W −1

Λk
ΨW −∗

Λk
)G∗

Λ
1/2
k , Λ0 > 0, (4.4)

which has proved to feature several interesting numerical properties. Additionally, the
considered parametric class contains the maximum-entropy estimator when Ψ= I .

The first delicate issue to address when considering the class of estimators (4.3)
concerns the existence of an estimate of this class compatible with the covariance
data Σ ∈ RangeΓ generated as in Chapter 2. This problem formally reads as follows.

Problem 4.1. Given the rational filter bank G(z) in (2.1). Let Σ ∈ Range+Γ, where

Range+Γ := RangeΓ ∩H+,n , (4.5)

and Ψ ∈S
m
+ (T). Find Λ ∈L+ such that

ΦΛ :=W −1
Λ

ΨW −∗
Λ

satisfies ∫
GΦΛG∗ =Σ. (4.6)

Define L
Γ
+ :=L+∩RangeΓ, and consider the map

ω : L
Γ

+ → Range+Γ

Λ 7→
∫

GΦΛG∗. (4.7)

As indicated in Ferrante et al. [2010] and will be clear in the next section, this is a
continuous map between open subsets of the linear space RangeΓ, and Problem 4.1 is
feasible if and only if ω is surjective. Theorem 11.4.3 in Ferrante et al. [2010] guarantees
such surjectivity when the prior is a scalar density times a positive definite matrix. In
the remaining of this chapter, we shall extend that result to accommodate a generic
matrix spectral density Ψ.

4.2 A short review of topological degree theory

THE proof of our main result relies on the notion of topological degree of a contin-
uous map. The degree theory forms an important part of differential topology

and is closely related to fixed-point theory, cf. [Outerelo and Ruiz, 2009, Ch. I] for a
rather informative historical account. In particular, the degree theory is a powerful
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tool to prove existence of a solution to a system of non-linear equations. There are
several versions of the theory for different types of maps. Although the maps that we
consider in this chapter are between open subsets of the Euclidean space, we shall
use the more general degree theory for continuous maps between smooth, connected,
boundary-less manifolds. Some salient points of the theory are reviewed below.

We mainly follow the lines of [Outerelo and Ruiz, 2009, Ch. III]. Suppose U , V ⊂R
n

are open and connected, and f : U →V is a proper C
1 function. Recall that f is called

proper if the preimage of every compact set in V is compact in U . Our major concern
is solvability of the equation

f (x) = y. (4.8)

A point y ∈V is called a regular value of f if either

(i) for any x ∈ f −1(y), det f ′(x) 6= 0 or

(ii) f −1(y) is empty.

Here f −1(y) denotes the preimage of y under f , i.e., the set
{

x ∈U : f (x) = y
}

,

and f ′(x) denotes the Jacobian matrix of f evaluated at x. Let y be a regular value of
type (i), the degree of f at y is defined as

degT ( f , y) :=
∑

f (x)=y

sign det f ′(x), (4.9)

where the sign function

sign(x) =
{

1 if x > 0
−1 if x < 0

and not defined at 0.
Throughout this chapter, properness will be a crucial property of our function.

Since f is proper, one can show that the preimage f −1(y) is finite following the classical
inverse function theorem, and hence the sum above is well defined. For regular values
of type (ii), we set degT ( f , y) = 0. Moreover, the set of regular values is dense in V

by Sard–Brown Theorem [Outerelo and Ruiz, 2009, p. 63]. Further properties of the
degree related to our problem are listed below:

• The degree of f at y does not depend on the choice of regular value. Therefore,
we can define the degree of f as

degT ( f ) = degT ( f , y)

for any regular value y .
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• If degT ( f ) 6= 0, then for any y ∈V , there exists x ∈U such that f (x) = y , that is,
the map f is surjective. A proof of this fact can be found in [Byrnes et al., 1995,
p. 1849].

• Homotopy invariance. If H : U × [0,1] → V , (x, t) 7→ y is jointly continuous in
(x, t ) and proper, then degT (Ht , y) is defined and independent of t ∈ [0,1]. Here
Ht : U →V is defined by Ht (x) = H(x, t ).

One important point of theory is that degree can be defined for continuous func-
tions through approximation by smooth functions [Outerelo and Ruiz, 2009, Proposi-
tion and Definition 3.1, p. 111], and (4.9) is just a way of computing it in the special
case of C

1 [Schwartz, 1969, Remark p. 71]. In particular, the homotopy invariance
of the degree holds in the continuous case [Outerelo and Ruiz, 2009, Proposition 3.4,
p. 112].

4.3 A general existence result

OUR main theorem will be preceded by some lemmata. Take Ψ = I the identity
matrix, and the map ω would reduce to

ω̃ : L
Γ

+ → Range+Γ

Λ 7→
∫

G(G∗
ΛG)−1G∗.

(4.10)

Lemma 4.2. The map ω̃ is continuously differentiable.

Proof. The map

inv: GL(n,C) → GL(n,C)

X 7→ X −1 (4.11)

is smooth, which follows from Cramer’s rule in linear algebra. Hence, the function
F̃Λ(e jθ) :=G(G∗

ΛG)−1G∗ inside the integral of (4.10) is also smooth in Λ. Moreover,
since G is a rational function, all the partial derivatives of F̃Λ(e jθ) with respect to Λ are
continuous in θ (and Λ). Then by Leibniz’s rule for differentiation under the integral
sign, partial derivatives of ω̃ of all orders exist.

Next, we show that the first order partial derivatives are continuous. For the time
being, let us consider the map ω̃ defined on L+. (We made the domain restricted
to the intersection with RangeΓ out of the consideration of dimensionality.) From
Brookes [2011], the directional derivative of the map (4.11) at X ∈ GL(n,C) along
direction ∆X is given by

∇inv(X ;δX ) =−X −1(∆X )X −1.
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Using this fact, the directional derivative of ω̃ at Λ ∈L+ along direction ∆Λ is

∇ω̃(Λ;∆Λ) =−
∫

G(G∗
ΛG)−1(G∗

∆ΛG)(G∗
ΛG)−1G∗ (4.12)

such that δΛ ∈Hn and Λ+∆Λ stays in L+. Let us denote the integrand in (4.12) by
F̃Λ,∆Λ(e jθ). For a fixed ∆Λ, one can see that the directional derivative ∇ω̃(Λ;∆Λ) is
continuous w.r.t. Λ. To see this fact, let a sequence {Λk }k≥1 ⊂L+ converge to some
Λ̄ ∈L+ as k →∞. Notice that, the corresponding sequence of matrix-valued functions
{G∗

ΛkG}k≥1 is such that G∗(e jθ)ΛkG(e jθ) > 0 for all θ ∈ [−π,π] and k ≥ 1. Since
the eigenvalues of a continuous matrix-valued function F : [a,b] → C

n×n , θ 7→ F (θ),
depend continuously on θ (see, for instance, [Bhatia, 2013, Cor. VI.1.6]), we have that
G∗

ΛkG ≥µk I where

µk := min
θ

λmin

(
G∗(e jθ)ΛkG(e jθ)

)
> 0

and λmin(·) denotes the smallest eigenvalue. Further, since the sequence {Λk }k≥1 con-
verges to an element Λ̄ ∈L+, then {G∗

ΛkG}k≥1 converges uniformly to the function
G∗(e jθ)Λ̄G(e jθ) which is positive definite for all θ ∈ [−π,π]. Hence, there exists µ> 0
such that µk ≥ µ for all k. On the other hand, since ∆Λ is fixed, it must hold that
G∗

∆ΛG ≤ M I , where

M := max
θ

λmax

(
G∗(e jθ)∆ΛG(e jθ)

)
.

Here λmax(·) denotes the largest eigenvalue of a matrix. Therefore, we have

F̃Λk ,∆Λ ≤ Mµ−2GG∗, ∀k.

Moreover, ∣∣[F̃Λk ,∆Λ]i`

∣∣≤ Mµ−2Gmax, ∀k ≥ 1, ∀ i ,`,

where Gmax := maxθ,i ,` |[GG∗]i`| <∞ since the entries of G(e jθ)G∗(e jθ) are continuous
functions of θ, analytic in an open annulus containing the unit circle. Hence, by
Lebesgue’s dominated convergence theorem [Rudin, 1987, p. 26], we have

lim
k→∞

∇ω̃(Λ;δΛ) =−
∫

lim
k→∞

F̃Λk ,∆Λ =∇ω̃(Λ̄;∆Λ).

Partial derivatives can then be recovered by the operation 〈∆Λ1,∇ω̃(Λ;∆Λ2)〉 by choos-
ing∆Λk , k = 1,2 to be the standard basis matrices ofHn , where the notation 〈M1, M2〉 :=
tr(M1M2) denotes the standard inner product in Hn . In this way, one can see that
every partial derivative of ω̃ is continuous in Λ.
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Lemma 4.3. The map

H : L
Γ

+ × [0,1] → Range+Γ

(Λ, t ) 7→
∫

GΦΛ,tG∗.
(4.13)

is a proper continuous homotopy between ω and ω̃, where

ΦΛ,t :=W −1
Λ

[ tΨ+ (1− t )I ]W −∗
Λ

. (4.14)

Proof. By definition we need to show two things, namely that H is jointly continuous
in Λ and t and that H is proper. In order to prove joint continuity, we first prove that
the spectral factor WΛ(z) is a continuous function of Λ ∈L

Γ
+ for all θ ∈ [−π,π].25 25An alternative

proof of this claim can
be found in [Avventi,
2011, Thm. A.5.5], where
the author proved the
stronger fact that the
function Λ ∈L

Γ
+ 7→WΛ is

an homeomorphism.

To
this end we first recall that, in view of Lemma 4.1, the spectral factor WΛ(z) has the
form

WΛ(z) = L−∗
Λ

B∗PΛA(zI − A)−1B +LΛ,

where PΛ is the unique stabilizing solution of the following Discrete-time Algebraic
Riccati Equation (DARE)

Π= A∗
ΠA− A∗

ΠB(B∗
ΠB)−1B∗

ΠA+Λ, (4.15)

and LΛ is the (right) Cholesky factor of B∗PΛB > 0. Hence, since the Cholesky factor
is a continuous function of a positive definite matrix argument [Schatzman, 2002,
Lemma 12.1.6], it suffices to show that PΛ is a continuous function of Λ ∈L

Γ
+ . This

follows from the fact that PΛ is associated to the stable subspace of an extended
symplectic pencil [Ionescu et al., 1999, Thm. 5.5.1]. More precisely, consider the
following extended symplectic matrix pencil associated to DARE (4.15)

z




I 0 0

0 −A∗ 0

0 −B∗ 0


−




A 0 B

Λ −I 0

0 0 0


 , z ∈C. (4.16)

From [Avventi, 2011, Thm. A.5.1], The above pencil admits a stable deflating sub-
space26 26A subspace V of

a matrix pencil zM − N

is said to be deflating if
dim(MV +NV ) = dim(V ).

V of dimension n and any matrix V ∈ C
(2n+m)×n generating V can be parti-

tioned as

V =




V1

V2

V3


 ,

where V1 ∈C
n×n invertible, V2 ∈C

n×n , and V3 ∈C
m×n . In light of his fact, the stabilizing

solution PΛ of DARE (4.15) can be written as

PΛ =V2V −1
1 ,
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Finally, since the extended symplectic pencil (4.16) has no generalized eigenvalues on
the unit circle, the stable and antistable generalized eigenvalues are strictly separated
and the existence of a continuous basis for the stable deflating subspace and hence
the continuous dependence on Λ of the stabilizing solution PΛ of DARE (4.15) can be
found, for instance, in Stewart [1973].

Consider now

ΦΛ,t (e jθ) =W −1
Λ

(e jθ)[ tΨ(e jθ)+ (1− t )I ]W −∗
Λ

(e jθ).

As a linear combination in t ∈ [0,1] of continuous functions of Λ, ΦΛ,t (e jθ) is jointly
continuous w.r.t. t ∈ [0,1] and Λ ∈L

Γ
+ , for all θ ∈ [−π,π].

Next we need to show the continuity together with the integral. Consider any
sequence {(Λk , tk )}k≥1 ⊂L

Γ
+ × [0,1] such that limk→∞ tk = t̄ ∈ [0,1] and limk→∞Λk =

Λ̄ ∈L
Γ
+ . By the same line of reasoning as in the proof of Lemma 4.2, there exists µ> 0

such that G∗
ΛkG ≥µI , ∀k. Therefore, it holds that

GΦΛk ,tk
G∗ ≤ KmaxG(G∗

ΛkG)−1G∗

≤ Kmaxµ
−1GG∗, ∀k ≥ 1,

where Kmax := maxt ,θλmax (tΨ+ (1− t )I ) < ∞ since Ψ is bounded. The rest of the
argument is also similar. Given the joint continuity of ΦΛ,t in Λ and t , one can show
that the following limit holds

lim
k→∞

∫
GΦΛk ,tk

G∗ =
∫

lim
k→∞

GΦΛk ,tk
G∗ =

∫
GΦ

Λ̄,t̄G∗.

This proves joint continuity of H in t and Λ.

Once we have joint continuity, the properness is not difficult to prove. In fact, let
K ⊂ Range+Γ be a compact subset, and we next show that the set

H−1(K ) :=
{

(Λ, t ) ∈L
Γ

+ × [0,1] : H(Λ, t ) ∈ K
}

is compact. The argument is essentially the same as the proof of Theorem 11.4.1 of
Ferrante et al. [2010]. Since our setting is finite-dimensional, a set being compact is
equivalent to being closed and bounded. If H−1(K ) is unbounded, one can then find
a sequence {(Λk , tk )} ⊂ H−1(K ) such that ‖(Λk , tk )‖→∞ as k →∞, which necessarily
implies ‖Λk‖→∞. However, in this case H(Λk , tk ) would tend to be singular, which
contradicts the premise of K being compact. This proves the boundedness.

To prove the closedness, if a sequence {(Λk , tk )} in H−1(K ) converges to (Λ, t),
then Λ cannot be on the boundary of L+, otherwise ‖H(Λk , tk )‖→∞, which again
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contradicts the compactness of K . To see the latter fact, notice that

H(Λk , tk ) =
∫

GΦΛk ,tG∗

=
∫

GW −1
Λk

[ tΨ+ (1− t )I ]W −∗
Λk

G∗

≥ Kmin

∫
G(G∗

ΛkG)−1G∗,

where Kmin := mint ,θλmin
(
tΨ(e jθ)+ (1− t )I

)
> 0 since Ψ is coercive. Now if {Λk }

approaches the boundary of L+, ∂L+, then G∗(e jθ)ΛkG(e jθ) tends to be singular for
some θ. Since G has rank m on T, this in turn implies that ‖H(Λk , tk )‖→∞ as k →∞.
Therefore, by the joint continuity of H , (Λ, t) ∈ H−1(K ). This concludes the proof of
properness.

Theorem 4.1. The map ω is surjective.

Proof. Given the second listed property of the degree, the claim follows directly if we
can show that

degT (ω) 6= 0.

We notice first that ω is proper by Theorem 11.4.1 from Ferrante et al. [2010], and thus
the degree is well defined. By Lemma 4.3 and the homotopy invariance of the degree,

degT (ω) = degT (ω̃).

As a consequence of Sard–Brown theorem [Outerelo and Ruiz, 2009, p. 63], the codo-
main Range+Γmust contain a regular value of ω̃ since it has positive RangeΓ-Lebesgue
measure. By Lemma 4.2, the C

1 degree (4.9) of ω̃ at a regular value is well-defined.
Meanwhile, from Theorem 11.4.2 of Ferrante et al. [2010], we know that ω̃ is bijective.
Therefore, we must have

degT (ω̃) 6= 0,

and this concludes the proof.

4.4 The special case of covariance extension

IN this conclusive section, we shall particularize the main result of the previous sec-
tion to the special case of multivariate covariance extension. To this aim, consider

the matrix pair (A,B):

A =




0 Im 0 · · · 0
0 0 Im · · · 0
...

...
. . .

...
0 0 0 · · · Im

0 0 0 · · · 0




, B =




0
0
...
0

Im




. (4.17)
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Here each block in A or B is of m ×m and A is a (p +1)× (p +1) block matrix while B

is a (p +1)-block column vector. It is easy to verify that in this case

G(z) = (zI − A)−1B =




z−p−1Im

z−p Im
...

z−2Im

z−1Im




, (4.18)

Symbolically, the steady state vector is given by

x(t ) =G(z)y(t ) =




y(t −p −1)
...

y(t −2)
y(t −1)


 , (4.19)

and the covariance matrix Σ has a block-Toeplitz structure, i.e.,

Σ=




C0 C∗
1 C∗

2 · · · C∗
p

C1 C0 C∗
1 · · · C∗

p−1

C2 C1 C0 · · · C∗
p−2

...
...

. . . . . .
...

Cp Cp−1 · · · C1 C0




, (4.20)

with Ck := E{y(t +k)y(t )∗} ∈C
m×m . In fact, the constraint (4.6) is equivalent to the set

of moment equations

∫π

−π
e j kθ

Φ(e jθ)
dθ

2π
=Ck , k = 0,1, . . . , p. (4.21)

To find a spectral density Φ satisfying (4.21) is the classical (multivariate) covariance

extension problem. It is known that a solution exists if Σ≥ 0 and there are infinitely
many solutions if Σ> 0.

Given Λ ∈L+ and G(z) in (4.18), G∗
ΛG is now an L-polynomial matrix that takes

positive definite values on the unit circle. Let us take

Q(z) :=
p∑

k=−p

Qk zk ≡G∗
ΛG , Q−k =Q∗

k ∈C
m×m . (4.22)

Then according, for instance, to the main result of Chapter 2 in Part I, Q(z) admits a
spectral factorization

Q(z) = D∗(z)D(z), (4.23)
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where D(z) =
∑p

k=0 Dk z−k is a m ×m matrix polynomial (with negative powers) and
the scalar polynomial detD(z) has all its roots strictly inside the unit circle. We shall
call such D(z) Schur.27 27Moreover, one

can make such spectral
factor unique if the con-
stant matrix coefficient
D0 is required to be
lower triangular with real
and positive diagonal
elements.

Therefore, the outer spectral factor in (4.2) is just

WΛ(z) ≡ D(z). (4.24)

We have the following corollary of Theorem 4.1.

Corollary 4.1. Given a finite matrix covariance sequence C0,C1, . . . ,Cn , for any Ψ ∈
S

m
+ (T), there exists a Schur polynomial D(z) such that the spectral density

Φ := D−1
ΨD−∗ (4.25)

satisfies the moment equations (4.6). The polynomial D(z) is a right Schur spectral

factor of G∗
ΛG for some Λ ∈L

Γ
+ .

In particular, when taking Ψ(z) = N (z)N∗(z) with N (z) =
∑p

k=0 Nk z−k , Nk ∈C
m×m ,

which is the spectral density of a moving-average process, the spectral density Φ in
(4.25) would correspond to an m-dimensional vector ARMA process

p∑

k=0

Dk y(t −k) =
p∑

k=0

Nk w(t −k), t ∈Z, (4.26)

and we recover the main result of [Georgiou, 1983, Sec. V] under a more general
setting.
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5. Finsler geometries in the cone

of spectral densities

R
ECENTLY, the design and analysis of distances between spectral densities (or,

equivalently, between stationary stochastic processes) have witnessed a
renewed interest in the control and signal processing community, cf. Mar-
tin [2000], De Cock and De Moor [2002], Georgiou and Lindquist [2003],

Georgiou [2006, 2007a,b,c], Georgiou et al. [2009], Jiang et al. [2012b], Ferrante et al.
[2008, 2012a], Basseville [2013], Afsari and Vidal [2013, 2014], Zorzi [2014a,b, 2015]
and references therein. This interest has been primarily triggered by the large number
of applications in which the problem of measuring the discrepancy between spec-
tral densities represents a key aspect. Besides the previously described THREE-like
spectral estimation methods, these applications include speech processing Gray et al.
[1980], Jiang et al. [2012a], time-series clustering Boets et al. [2005], Lauwers and
De Moor [2017], and model reduction of linear (stochastic) systems Afsari and Vidal
[2017], to cite just a few relevant ones.

When designing a distance between points of a given space with the aim of solving
computational engineering problems, one has to take care of aspects concerning the
modelling, mathematical, and computational features of the to-be-designed distance.

Modelling considerations consist of endowing the distance with some suitable
invariance properties, which ensure that the distance is consistent with what is mod-
elled. For instance, for the case of covariance (i.e., positive definite) matrices such
an invariant property coincides with the so-called congruence or affine invariance,
whereas for rational spectral densities, we will show that filtering invariance emerges
as a natural invariance property. This invariance property usually takes the form of
an invariant group action on the space, which leads to the notion of homogeneous

space. More generally, the study of invariants of homogeneous spaces lies at the heart
of modern geometry. Indeed, as Felix Klein stated in the Erlangen program [Klein,
1893, p. 67], the principal aim of geometry is

“[...] to investigate those properties of the images belonging to the
manifold which remain unchanged under the transformations in the
group.”28 28“[...] Es ist eine

Mannigfaltigkeit und in

derselben eine Transfor-

mationsgruppe gegeben;

man soll die der Man-

nigfaltigkeit angehörigen

Gebilde hinsichtlich

solcher Eigenschaften

untersuchen, die durch

die Transformationen der

Gruppe nicht geändert

werden.”

From a mathematical viewpoint, another standard requirement is to equip the
underlying space with a differential metric structure such that the distance between
two points corresponds to the length of a minimal geodesic. This is especially relevant
when dealing with optimization problems on finite and infinite dimensional mani-
folds, and therefore for problems involving approximation, smoothing, and averaging
of spectral densities, e.g., in the context of speech morphing Jiang et al. [2008a,b,
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2012a]. The classical framework is Riemannian geometry, in which the differential
structure involves an inner product on the tangent space. The present chapter focuses
on the broader framework of Finsler geometry, where the differential structure only
requires a norm.

Numerical considerations include the existence of an algorithmic framework to
perform the calculations necessary to the considered engineering problem, starting
with the evaluation of the distance itself. These are of primary importance in high-
dimensional problems, and, a fortiori, so for “infinite-dimensional” objects such as
spectral densities.

The starting point in this chapter is to acknowledge that the space of spectral
densities is a cone and to revisit two classical and, in a sense, natural distances that
have been studied in cones: The part metric (often called Thompson metric) and
the projective metric introduced by Hilbert. Applying this classical framework to the
space of rational spectral densities, which seems novel, we show that the resulting
distances have a number of particularly desirable properties:

1) they endow the cone of spectral densities with a Finsler geometry with explicit
geodesics,

2) they are filtering invariant, and

3) efficient algorithms exist to compute them.

The layout of this chapter is as follows. Section 5.1 briefly reviews some standard
definitions and results from differential geometry and some properties of cones. In
the same section, an overview of Hilbert and Thompson geometries on cones will
be provided. In Section 5.2, we revisit the Hilbert and Thompson distances for the
case of rational multivariate spectral densities and we illustrate the properties of
such distances. Eventually, in Section 5.3, we discuss a promising application of the
proposed distances concerning a robust version of THREE estimation. The chapter is
mostly based on Baggio et al. [2017].

5.1 Preliminaries

IN this section, we give some background definitions/results from metric and dif-
ferential geometry, theory of cones, and, ultimately, we introduce the Hilbert and

Thompson metrics on cones. A comprehensive overview of the topics treated in this
chapter can be found, for instance, in the monographs Burago et al. [2001], Absil et al.
[2009], Deng [2012], Lemmens and Nussbaum [2012].
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5.1.1 Metric and geodesic spaces

A metric space consists of a pair (X ,d), where X is a set and d : X × X → R≥0 is a
function, called metric or distance function, such that the following hold for all x, y, z ∈
X :

1) d(x, y) ≥ 0 (non-negativity),

2) d(x, y) = 0 if and only if x = y (definiteness),

3) d(x, y) = d(y, x) (symmetry),

4) d(x, z) ≤ d(x, y)+d(y, z) (triangle inequality).

If d(·, ·) satisfies properties 1) and 2) only , then d(·, ·) is said to be a divergence. A
complete metric space is a metric space in which every Cauchy sequence is convergent.
A geodesic path (or, simply, a geodesic) in a metric space (X ,d) is a path γ : [a,b] → X

that is distance-preserving, that is, such that |γ(t1)−γ(t1)| = |t1 − t2| for all t1 and t2 in
X . A metric space (X ,d) is said to be geodesic if given two arbitrary points in X there
exists a geodesic path that joins them. If the geodesic connecting the two points is
unique then (X ,d) is said to be uniquely geodesic.

5.1.2 Geometry of homogeneous spaces

An homogeneous space is a differentiable manifold with a transitive action of a Lie
group G ,29 29We recall that a

Lie group is a smooth
manifold with an addi-
tional, compatible struc-
ture of group.

whence it has a representation as a quotient M = G/H with H a closed
subgroup of G . A homogeneous space M =G/H is said to be reductive if there exists
a decomposition g=m+h (direct sum) such that AdH (m) :=

{
h Ah−1 : h ∈ H , A ∈m

}
,

where g and h are the Lie algebras of G and H , respectively. The most relevant property
of a reductive homogeneous space is the existence of a (unique, up to multiplication
by a constant) H-invariant bilinear form 〈·, ·〉x defined in the tangent space of every
point x ∈G/H . Equipped with such a family of inner products on the tangent space
G/H becomes a Riemannian manifold. The length of any C

1 path γ : [a,b] →G/H is
defined as

`(γ) :=
∫b

a

〈
γ′(t ),γ′(t )

〉
γ(t ) dt .

and the geodesic distance between any two elements of the space is equal to the
infimum of the lengths of C

1 paths in G/H joining them, namely

d(x, y) := inf
{
`(γ) : γ ∈C

1[x, y]
}

, (5.1)

where C
1[x, y] denotes the set of all differentiable paths γ : [a,b] → K̊ such that

γ(0) = x and γ(1) = y . With this distance (G/H ,d) becomes a complete geodesic
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metric space. In general, one can define a family of H-invariant norms ‖ · ‖x in the
tangent space of every x ∈G/H . This yields a so-called Finsler manifold. As before,
one can define the length of any C

1 path γ : [a,b] →G/H as

`(γ) :=
∫b

a

∥∥γ′(t )
∥∥
γ(t ) dt .

and the geodesic distance between any two elements as in (5.1).

5.1.3 Cones in Banach spaces

A subset K of a real Banach space B with norm ‖ ·‖B is a cone if for each x ∈K and
positive scalars λ, the product λx is in K . A cone K is said to be

• closed if K is a closed subset of B;

• (strictly) convex if K +K ⊆ K and λK ⊆ K (λK ⊂ K , resp.) for positive
scalars λ;

• solid if the interior of K , here denoted by K̊ , is non-empty;

• pointed if K ∩−K = {0}.

A cone that satisfies all the above listed properties will be called proper. A proper
cone K induces a partial ordering ≤K on B by

x ≤K y ⇐⇒ y −x ∈K .

For x, y ∈K , we say that y dominates x if there exists β> 0 such that x ≤K βy . We
write x ∼K y if y dominates x, and x dominates y . The relation ∼K is an equivalence
relation on K . The corresponding equivalence classes are called parts or components

of K .

5.1.4 Hilbert and Thompson geometries

Let K be a proper cone. Given two elements x, y ∈K \ {0}, we define the following
quantities

M(x, y) := inf{λ : x ≤K λy}, (5.2)

if the set is non-empty, and M(x, y) :=∞ otherwise, and

m(x, y) := sup{µ : µy ≤K x} =
1

M(y, x)
. (5.3)
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Definition 5.1 (Bushell [1973], Thompson [1963]). The Hilbert (projective) metric and
the Thompson (part) metric between elements x, y ∈K \ {0} are defined respectively
by

dH (x, y) := log
M(x, y)

m(x, y)
, (5.4)

dT (x, y) := logmax
{

M(x, y), M(y, x)
}

, (5.5)

if x ∼K y , and dH (x, y) = dT (x, y) :=∞, otherwise.

As a simple example, consider B =R
n and K to be the positive orthant of Rn ,i.e.,

K := {(x1, . . . , xn) : xi ≥ 0, 1 ≤ i ≤ n}. In this case, for x, y ∈ K̊ , it holds

M(x, y) = max
i

{xi /yi },

m(x, y) = min
i

{xi /yi },

so that Hilbert and Thompson metrics on K̊ read, respectively, as

dH (x, y) = log
maxi {xi /yi }

mini {xi /yi }
,

dT (x, y) = logmax

{
max

i
{xi /yi },max

i
{yi /xi }

}
.

Thompson metric is a bona fide distance on each part of the cone K (and, in
particular, on the interior K̊ ). The main result in Thompson [1963] states that each
part of K is a complete metric space with respect to this metric provided that K is
normal,i.e., there exists γ> 0 such that ‖x‖B ≤ γ‖y‖B holds whenever 0 ≤K x ≤K y .
Hilbert metric is a distance between rays in each part of K : dH (x, y) = 0, x, y ∈ K ,
x ∼K y , if and only if x =λy with λ> 0.

Hilbert and Thompson metrics have been of great interest to analysts, especially
for their contractive properties. As a matter of fact, many naturally occurring maps
in analysis, both linear and non-linear, are either non-expansive or contractive with
respect to these metrics Bushell [1973], Liverani and Wojtkowski [1994], Lemmens and
Nussbaum [2012]. Moreover, it has been proven that among all projective distances d

on K for which the positive linear transformations are contractive w.r.t. d , Hilbert
metric is the one with the best possible contraction ratio Kohlberg and Pratt [1982].

Importantly, Thompson and Hilbert metric endow the cone with a structure of
Finsler manifold Nussbaum [1994]. In the finite-dimensional case, the interior of the
cone K defines an n-dimensional manifold and the tangent space at each point may
be identified with R

n and the Finsler structure is recovered by defining the norm

‖v‖T
x := inf{α> 0 : −αx ≤K v ≤K αx} (5.6)
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on the tangent space at each point x ∈ K̊ . Thompson distance between two points
in K̊ is then recovered by minimizing the lengths of a C

1 curve over all C
1 paths

connecting the points as in (5.1). Hilbert metric is obtained along the same lines when
the norm above is replaced by the semi-norm

‖v‖H
x := M(v, x)−m(v, x).

The Finslerian nature of Hilbert and Thompson geometries allows for the defini-
tion of minimal geodesics connecting two points in the interior of the cone K . Dif-
ferently from the Riemannian framework, minimal geodesics connecting two points
are usually not unique [Lemmens and Nussbaum, 2012, Ch. 2]. A class of minimal
geodesics w.r.t. both the Thompson and Hilbert metric connecting x, y ∈ K̊ , is given
by ϕ : [0,1] → K̊ ,

ϕ(t ) =
{(

βt−αt

β−α

)
y +

(
βαt−αβt

β−α

)
x, if β 6=α,

αt x, if β=α,
(5.7)

where β := M(y, x) and α := m(y, x). These are projective straight lines. It is interesting
to note that if K is strictly convex then the curves in (5.7) are the only minimal
geodesics w.r.t. the Hilbert metric Nussbaum and Walsh [2004]. Clearly, there might
exist more suitable choices of minimal geodesics, depending on the particular cone
considered.

In particular, if K is the cone of n ×n positive semi-definite Hermitian matrices,
then the Thompson distance between X ,Y ∈ K̊ ≡H+,n is given by

dT (X ,Y ) = logmax
{
λmax(X Y −1),λmax(X −1Y )

}
,

where λmax(·) denotes the maximum eigenvalue, and a natural class of minimal
geodesics connecting X to Y , w.r.t. Thompson metric, is given by ϕT : [0,1] →H+,n ,

ϕT (t ) = X 1/2(X −1/2Y X −1/2)t X 1/2. (5.8)

This is precisely the (unique, up to a re-parametrization) Riemannian geodesic of H+,n

connecting X to Y , see, e.g., [Bhatia, 2009, Thm. 6.1.6]. Furthermore, in this case, the
Hilbert distance reads as

dH (X ,Y ) = log
λmax(X Y −1)

λmin(X Y −1)
,

and

ϕH (t ) =
ϕT (t )

tr(ϕT (t ))
, 0 ≤ t ≤ 1, (5.9)
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is a minimal geodesic connecting X ,Y ∈H+,n , tr(X ) = tr(Y ) = 1, w.r.t. Hilbert metric
[Lemmens and Nussbaum, 2012, Prop. 2.6.8].

Finally, we remark that the Finslerian framework so far discussed for the case
of finite-dimensional spaces applies without any substantial change to the case of
infinite-dimensional manifolds of bounded positive self-adjoint operators on an
Hilbert space. For further details on this generalization we refer to the works by
Corach and co-workers Corach et al. [1993, 1994], and, in particular, to Corach and
Maestripieri [1999, 2000].

5.2 Finsler distances in the cone of spectral densities

LET L
n
2 [−π,π] be the space of n-dimensional vector-valued functions on T that are

square integrable w.r.t. the normalized Lebesgue measure. The space L
n
2 [−π,π]

endowed with the inner product 〈 f , g 〉2 :=
∫π
−π f (e jθ)∗g (e jθ) dθ

2π , f , g ∈ L
n
2 [−π,π],

forms an Hilbert space. In what follows, we denote by S
n(T) the cone of n × n

bounded positive self-adjoint operators on L
n
2 [−π,π], namely,

S
n(T) :=

{
Φ : T→C

n×n s.t. Φ(e jθ) =Φ(e jθ)∗, ∀e jθ ∈T,

and 〈 f ,Φ f 〉2 ≥ 0, ∀ f ∈L
n
2 [−π,π]

}
.

Elements of S
n(T) will be thought of as n ×n real discrete-time spectral densities (in

case n = 1 we use the shorthand S (T) :=S
1(T)). Further, we use the symbol S

n
b,rat(T)

to denote the set of rational n ×n spectral densities that are bounded (that is, do not
have poles) on T. Notice that S

n
b,rat(T) ⊂S

n(T).
In view of the above definitions, the framework outlined in the previous sec-

tion provides Finslerian distances in the cone S
n(T), and, therefore, in the space of

(bounded) rational spectral densities S
n

b,rat(T) . Interestingly, it turns out that in the
latter case the expressions of Thompson and Hilbert metric are connected with the
classical spectral factorization problem discussed in Part I of the dissertation. Before
giving the explicit expressions of these distances, we recall that the L∞-norm of a
matrix-valued function G which is bounded on T is defined as Zhou et al. [1996]

‖G‖L∞ := ess sup
θ∈[−π,π)

σmax(G(e jθ)),

where σmax(·) denotes the maximum singular value of a matrix and esssupx∈X f (x)
the essential supremum of a measurable function f on X , that is the supremum of f

almost everywhere on X . If, in addition, G is analytic in (an open set containing) the
complement of the open unit disk, it holds

‖G‖L∞ ≡ ‖G‖H∞ = sup
z∈C : |z|>1

σmax(G(z)).
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Theorem 5.1. Consider two full normal rank spectral densities Φ1,Φ2 ∈ S
n

b,rat(T) ⊂
S

n(T) and let W1,W2 ∈ R(z)n×n denote the corresponding minimum-phase spectral

factors. If W −1
2 W1 has no zero/pole on T, then the Hilbert and Thompson metrics

between Φ1 and Φ2 are given, respectively, by

dH (Φ1,Φ2) = log
∥∥W −1

2 W1
∥∥2

H∞

∥∥W −1
1 W2

∥∥2
H∞

,

dT (Φ1,Φ2) = log max
{∥∥W −1

2 W1
∥∥2

H∞
,
∥∥W −1

1 W2
∥∥2

H∞

}
.

Otherwise, it holds dH (Φ1,Φ2) = dT (Φ1,Φ2) =∞.

Proof. In view of the definition of M(·, ·) in (5.2), for any full normal rank Φ1,Φ2 ∈
S

n
b,rat(T), it holds

M(Φ1,Φ2) = inf
{
λ ∈R : Φ1(e jθ) ≤λΦ2(e jθ),θ ∈ [−π,π]

}

= inf

{
λ ∈R : Φ

− 1
2

2 (e jθ)Φ1(e jθ)Φ
− 1

2
2 (e jθ) ≤λIn ,θ ∈ [−π,π]

}

=
∥∥∥∥Φ

− 1
2

2 Φ1Φ
− 1

2
2

∥∥∥∥
L∞

, (5.10)

if Φ
− 1

2
2 Φ1Φ

− 1
2

2 is analytic on T, and M(Φ1,Φ2) =∞ otherwise. In order to deal with ratio-
nal matrix-valued functions we can replace, without affecting the value of M(Φ1,Φ2),
the square root Φ1/2

2 in the latter expression with the minimum-phase spectral factor
W2 ∈R

n×n(z) of Φ2. (In fact, Φ1/2
2 U =W2, where U is a suitable n ×n matrix all-pass

function). Therefore, Equation (5.10) becomes

M(Φ1,Φ2) =
∥∥∥∥Φ

− 1
2

2 Φ1Φ
− 1

2
2

∥∥∥∥
L∞

=
∥∥W −1

2 Φ1W −∗
2

∥∥
L∞

=
∥∥W −1

2 W1W ∗
1 W −∗

2

∥∥
L∞

=
∥∥W −1

2 W1
∥∥2

L∞
,

if W −1
2 W1 has no pole on T, and M(Φ1,Φ2) = ∞ otherwise. Further, if W −1

2 W1 has
no pole on T, W −1

2 W1 is analytic in (an open set containing) the complement of the
(open) unit disk, so that we have

M(Φ1,Φ2) =
∥∥W −1

2 W1
∥∥2

H∞
,

where we have replaced the L∞-norm with the H∞-norm. Similarly, we have

M(Φ2,Φ1) =
∥∥W −1

1 W2
∥∥2

H∞
,
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if W −1
1 W2 has no pole onT, or, equivalently, if W −1

2 W1 has no zero onT, and M(Φ2,Φ1) =
∞ otherwise.

Eventually, observing that m(Φ1,Φ2) = M(Φ2,Φ1)−1, a substitution of the values
of M(Φ1,Φ2) and M(Φ2,Φ1) into the expressions of Hilbert and Thompson metrics in
Definition 5.1 yields the thesis.

Theorem 5.1 shows that the computation of Hilbert and Thompson metrics in the
cone of rational spectral densities essentially consists of:

1) the calculation of the minimum-phase spectral factors W1 and W2, and

2) the calculation of the H∞-norm of the “ratio” of the latter spectral factors.

Remarkably, these two steps represent two extensively studied problems in Systems
and Control Theory and several algorithms are available in the literature to perform
these steps. More specifically, as discussed in Part I of the dissertation there ex-
ist several efficient routines for the calculation of minimum-phase spectral factors
based on the solution of suitable Stein and Riccati equations, see, e.g., Oară [2005].
Whereas, an efficient method for computing H∞/L∞-norms of rational matrix-
valued transfer functions is the Boyd–Balakrishnan–Bruinsma–Steinbuch method
Bruinsma and Steinbuch [1990], Boyd and Balakrishnan [1990] which is based on an
iterative bisection-like algorithm and leads to quadratic convergence.30 30The approach

is formulated in the
continuous-time case,
however there exist vari-
ants of this algorithm for
computing the discrete-
time H∞-norm, based
on computing eigenval-
ues of symplectic instead
of Hamiltonian matrices,
see, e.g., Genin et al.
[1998].

Moreover,
an upper bound to these norms can be found by inspecting the eigenvalues of the
symplectic matrix associated with the state-space representation of the system [Zhou
et al., 1996, Lemma 21.10].

Remark 5.1. The proof of Theorem 5.1 shows that the expressions of the Hilbert and
Thompson metric still hold if we replace the canonical (i.e., minimum-phase) spectral
factors of the two spectra Φ1, Φ2 with any other spectral factor of Φ1, Φ2 (i.e., spectral
factors not necessarily analytic in the complement of the unit disk and with analytic
inverse in the complement of the closure of the unit disk). The important difference is
that, in this case, the H∞-norm must be replaced by the L∞-norm.

Remark 5.2. As discussed in the previous section, the difference between Hilbert and
Thompson metric consists of the fact that the Thompson metric is a bona fide distance
on each part of a cone (and, in particular, on its interior), while Hilbert metric is a
distance between rays in each part of a cone. It is worth remarking that, for the case of
spectral densities, projective invariance has proved to be a desirable property since
in many applications, such as speech processing, the shape of the spectral densities
rather than their relative scalings is the discriminative feature Afsari and Vidal [2014],
Georgiou [2007a].

The following result provides a class of interesting and computable minimal
geodesics w.r.t. Hilbert and Thompson metrics.
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Proposition 5.1. A minimal geodesic in S
n(T) connectingΦ1, Φ2 ∈ S̊

n(T) w.r.t. Thomp-

son metric is given by

ϕT (t ) =W1(W −1
1 Φ2W −∗

1 )t W ∗
1 , (5.11)

where W1 ∈R
n×n(z) is the minimum-phase spectral factor of Φ1. A minimal geodesic

in S
n(T) between Φ1, Φ2 ∈ S̊

n
b,rat(T) s.t.

∫π
−π tr(Φ1(e jθ)) dθ

2π =
∫π
−π tr(Φ2(e jθ)) dθ

2π = 1, w.r.t.

Hilbert metric is given by

ϕH (t ) =
W1(W −1

1 Φ2W −∗
1 )t W ∗

1∫π
−π tr(W1(W −1

1 Φ2W −∗
1 )t W ∗

1 ) dθ
2π

. (5.12)

Proof. The result follows from a generalization of the expressions (5.8)-(5.9) of the
Thompson and Hilbert geodesics in the constant positive definite case to the case
of bounded positive operators on an Hilbert space. A detailed derivation of this
generalization w.r.t. Thompson metric can be found in Corach et al. [1993, 1994]. As a
consequence, by adapting the expressions (5.8)-(5.9) to spectral densities in S

n(T)
and by using the fact that Φ1/2

1 =W1U with U being an n ×n matrix all-pass function,
Equation (5.11) and Equation (5.12) are recovered.

Remark 5.3. The expressions of Hilbert and Thompson metrics in Theorem 5.1 and
of the geodesics in Proposition 5.1 apply also to the case of general non-rational
spectral densities in S

n(T).3131Notice that in
case the minimum-phase
spectral factors of Φ1,
Φ2 do not exist, the ex-
pressions in Theorem 5.1
and Proposition 5.1 still
hold by replacing the
minimum-phase spectral
factors with the corre-
sponding matrix square
roots Φ1/2

1 , Φ1/2
2 .

In this case, however, one issue that arises is that the
distance between almost identical spectral densities can be made arbitrarily large.
With reference to the scalar case, this occurs when one of the two spectral densities
exhibits a very sharp and narrow frequency peak. For the sake of illustration, consider
the two scalar spectral densities in S (T)

φ1(e jθ) = 1, φ2,ε(e jθ) =
{
ε−1 if |θ| ≤ ε,

1 otherwise,
(5.13)

where θ ∈ [−π,π] and ε > 0. It can be seen that, for ε → 0, dH (φ1,φ2,ε) → ∞ and
dT (φ1,φ2,ε) →∞, in spite of the fact that the two spectral densities are identical with
the only exception of a neighbourhood of the frequency θ = 0 (see also Figure 5.1).
Importantly, when restricting the attention to spectral densities that are “sufficiently
regular”, e.g., those belonging to the space of rational spectral densities with bounded
McMillan degree, these pathological cases are ruled out.
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θ
−π π−ε1 ε1−ε2 ε2

1

ε−1
1

ε−1
2

φ1

φ2,ε2

φ2,ε1

Figure 5.1: Qualitative plot of the spectral densities in Equation (5.13) for two values
of ε, i.e., ε2 > ε1 > 0.

5.2.1 Filtering invariance

Let R∗(z)n×n denote the set of n ×n real matrix-valued rational functions of full rank
on T. The above-introduced distances possess the following important property:

∀T ∈R∗(z)n×n : d(Φ1,Φ2) = d(TΦ1T ∗,TΦ2T ∗). (5.14)

This property readily follows from the definition of Hilbert and Thompson dis-
tances and the expression of M(Φ1,Φ2) in (5.10). Since the set R∗(z)n×n defines a
group, the mapping Φ 7→ TΦT ∗ defines a congruence group action of R∗(z)n×n on the
set of rational spectral densities. This group action is transitive, that is, any rational
spectral density can be obtained by acting on the identity element.

A metric that satisfies (5.14) can be said to be filtering invariant because of the fol-
lowing statistical interpretation. Any spectral density Φ with minimum-phase spectral
factor W can be identified to a n-dimensional zero-mean second-order stationary
purely nondeterministic stochastic process {y(t)}t∈Z generated by filtering a white
noise process {e(t )}t∈Z through W (see also the block diagram representation below).

W (z)e(t ) y(t )

Φ=W W ∗

The action Φ 7→ TΦT ∗ has therefore the interpretation of filtering the process with
the linear time-invariant filter T ∈R∗(z)n×n , as pictorially shown below.

W (z) T (z)e(t )
y(t )

y ′(t )

Φ=W W ∗
Φ

′ = TΦT ∗
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Likewise, property (5.14) has the interpretation that the distance between two spectral
densities, or, equivalently, two zero-mean second-order stationary purely nondeter-
ministic stochastic processes, is unchanged when the two processes are filtered by the
same filter. Any filtering invariant metric is entirely specified by defining the distance
to identity. Furthermore, one has d(Φ, I ) = d(Φ−1, I ). In other words, the distance is a
distortion measure.

Filtering invariance is a fundamental property of classical metrics. In the scalar
case, φ1,φ2 ∈Sb,rat(T), the log spectral deviation Gray et al. [1980]

(∫π

−π

∥∥∥∥log
φ1

φ2

∥∥∥∥
2 dθ

2π

)1/2

is an early example of filtering invariant distortion measure. The recent work Jiang
et al. [2012b] shows that the multivariate generalization

dR (Φ1,Φ2) =
(∫π

−π

∥∥logΦ−1/2
1 Φ2Φ

−1/2
1

∥∥2
F

dθ

2π

)1/2

=
(∫π

−π

∥∥logW −1
1 Φ2W −∗

1

∥∥2
F

dθ

2π

)1/2

(5.15)

is the unique Riemannian distance that is filtering invariant. This metric is a natural
generalization of the affine-invariant metric between positive definite matrices. Affine
invariance corresponds to filtering invariance in the static case: The congruence group
action reduces to an action of the general linear group. The metric is in this case a
distance between n-dimensional zero-mean second-order random vectors, and the
invariance property is an invariance with respect to an affine change of coordinates.
The importance of this invariance property in the context of estimation problems
has been emphasized for instance in Smith [2005]. In Jiang et al. [2012b], filtering
invariance emerges as a natural property when measuring the “flatness” of innovations
processes. Filtering invariance is also a leading prerequisite in the work Martin [2000],
whose resulting metric, which applies to scalar spectral densities φ1,φ2 ∈ Sb,rat(T),
can be written as

dM (φ1,φ2) =
(∫π

−π

(
D

1
2 log

φ1

φ2

)2 dθ

2π

)1/2

,

where Dλ, λ> 0, is the fractional derivative operator in the frequency domain.
The Riemannian distance (5.15) and the Thompson metric introduced in Theo-

rem 5.1 are thus close relatives: They are bona fide distances which satisfy filtering
invariance and endow the cone of spectral densities with a differential metric struc-
ture. The first one induces a Riemannian structure through an invariant inner product
(that reduces to the standard inner product at identity), while the second induces a
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Finslerian structure through the invariant norm (5.6). Both distances depend on the
same log spectral quantity frequency-wise, but the Riemannian distance results in a
two-norm of that frequency-domain function, whereas the Finsler distance results in
an infinite-norm.

A merit of the Finslerian distance over its Riemannian relative is at the computa-
tional level. The calculation of the Riemannian distance requires the frequency-wise
computation of the matrix logarithm of W −1

1 Φ2W −∗
1 , an operation which appears

numerically challenging. In contrast, the calculation of the Thompson metric involves
the computation of minimum-phase spectral factors and H∞-norms, for which ef-
ficient numerical algorithms are available. It is worth observing that the Thompson
geodesic in Proposition 5.1 coincides with the (unique, up to a re-parametrization)
Riemannian geodesic between spectral densities.

For completeness, it should be mentioned that one way of overcoming the compu-
tational burden of the Riemannian distance is to replace it with a divergence measure.
In the static case, Kullback–Leibler divergence approximates the Riemannian dis-
tance up to third order. In the dynamic case, the paper Jiang et al. [2012b] considers
quadratic approximations of divergence measures. In the rational case, one such
quantity takes the form

dF (Φ1,Φ2) = ‖W −1
2 W1‖2

H2
+‖W −1

1 W2‖2
H2

−2n,

where ‖ ·‖H2 denotes the H2-norm of a discrete-time transfer function [Zhou et al.,
1996, Sec. 4.3]. It is not a distance (in fact, it does not obey the triangle inequality) but
it provides a tractable quadratic approximation of the Riemannian distance.

5.3 Towards robust spectral estimation

CONSIDER the THREE-like estimation problem introduced in Chapter 2. In this
setting, the spectral estimation problem reduces to a constrained optimization

problem of the form in Problem 2.1. As previously pointed out, one crucial aspect
in this problem concerns the choice of the distance index d(·, ·) to minimize. Many
works have addressed Problem 2.1 using various distance-like functions both in the
scalar and multivariate case. A common feature of all those distance-like functions
is that they involve the two-norm of a frequency-wise quantity defined on the unit
circle.

Choosing the Finsler distances of this chapter in place of the distance d(·, ·) in
Problem 2.1 could lead to a robust version of the THREE estimation problem. A
main motivation for this modified formulation concerns the reduction of artifacts in
the solution of Problem 2.1. The presence of artifacts is an issue that affects many
of the spectral estimation methods proposed in the literature, see, for instance, the
discussion in [Ferrante et al., 2012a, Sec. VII-B]. Artifacts are usually present in the form
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of high and narrow frequency peaks in the spectral estimate Φ̂. In light of Remark 5.3,
the advantage of using either Thompson and Hilbert distance in Problem Problem 2.1
consists of the fact that these artifacts are highly penalized by these distances, and,
consequently, they should not appear in the optimal spectral estimate Φ̂.

More generally, the optimization of H∞-norms in place of or in complement
to H2-norms has been a very frutiful direction of research in linear system theory.
Building upon this heritage, we envision that the distances introduced in the present
chapter could also open novel avenues in robust statistical estimation.
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6. Conclusions

I
N this second part of the dissertation, we have addressed a few problems arising

from the THREE-like approach to spectral estimation. We first reviewed, in
Chapter 2, the scalar estimation problem that hinges on the Kullback–Leibler
criterion. We then focused on a particularly efficient numerical approach for the

solution of the latter problem, proposed in Pavon and Ferrante [2006]. This approach
is based on a fixed-point iteration. Complementing some previous (partial) attempts
in the literature Ferrante et al. [2007, 2011], in Chapter 3, we provided a proof a global

convergence of the iteration to one of its fixed points. Furthermore, we discussed
a modification of the Pavon–Ferrante iteration, for which convergence to the set of
positive definite fixed points is guaranteed. Importantly, such fixed points always yield
the solution of the Kullback–Leibler spectral estimation problem. In Chapter 4, we
considered the parametric approach to multivariate spectral estimation introduced in
Ferrante et al. [2010]. Our main contribution there has been a proof of the existence of
a solution to the problem for any (bounded and coercive) prior spectral density. This
considerably extends the main result of Ferrante et al. [2010]. Ultimately, in Chapter 5,
we addressed the problem of geometrizing the space of multivariate spectral densities.
We showed that a natural class of distances on this space is that arising from a Finsler

geometry framework. Notable representatives of this class are the Hilbert and Thomp-
son metrics. In the end of the chapter, using these distances, we formulated an open
problem regarding a robust version of the THREE-like spectral estimation paradigm.

Besides the latter very interesting open problem, other aspects that are currently
under investigation are related to the topics touched in Chapter 3 and Chapter 4.

With reference to Chapter 3, a question which remains unanswered concerns the
global convergence of the Pavon–Ferrante algorithm to the closure of the the set of
positive definite fixed points of the iteration. On the one hand, numerical simulations
suggest that there do exist some particular cases in which the latter fact is not verified
(see the numerical example in Subsection 3.4.3). On the other hand, it is also true that
this could be due to numerical issues in the computation of the matrix square root
which occur when the sequence generated by the iteration approaches the boundary
of the set of unit trace positive semi-definite matrices. In the light of this observation,
it would be interesting to provide a formal argument to either prove or disprove the
above conjecture.

Regarding Chapter 4, an immediate question concerns the uniqueness of the
solution to the parametric estimation problem and, more strongly, well-posedness of
the problem. Following previous work on rational covariance extension Byrnes et al.
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[1995], we intend to pursue the uniqueness problem in the frame of the global inverse
function theorem now attributed to Hadamard. More precisely, we aim at applying
the following result3232We refer to Gor-

don [1972] and also
[Krantz and Parks, 2013,
p. 127] for a slightly
weaker version of the
theorem.

to the map ω : L
Γ
+ → Range+Γ, as defined in (4.7).

Theorem 6.1 (Hadamard). Let M1 and M2 be connected, oriented, boundary-less n-

dimensional manifolds of class C
1, and suppose that M2 is simply connected. Then a

C
1 map f : M1 → M2 is a diffeomorphism if and only if f is proper and the Jacobian

determinant of f never vanishes.

To this end, we first need to check whether the codomain of ω is simply connected.
This is provided by the following simple propositon.

Proposition 6.1. The set Range+Γ defined in (4.5) is simply connected.

Proof. By definition [Krantz and Parks, 2013, p. 127], we need to show that: Whenever
f : [0,1] → Range+Γ is a closed curve, i.e., f is continuous with f (0) = f (1) =Σ, there
exists a continuous function F : [0,1]× [0,1] → Range+Γ such that

(i) F (t ,0) = f (t ), for all t ∈ [0,1],

(ii) F (0,u) = F (1,u) =Σ, for all u ∈ [0,1], and

(iii) F (t ,1) =Σ, for all t ∈ [0,1].

One can easily verify that F (t ,u) := (1−u) f (t )+uΣ is the desired function.

Given Theorem 6.1 and the above proposition, the open question becomes: Is the
map ω continuously differentiable? If so, how to compute its Jacobian?

Finally, another research direction concerns the computation of a solution to the
estimation problem via the “multivariate” Pavon–Ferrante algorithm in Equation (4.4).
In this case, a compelling question is how to extend the “scalar” global convergence
result presented in Chapter 3 to this more general case.
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Summary and outlook

T
HE present dissertation dealt with two different, yet intimately connected,

problems. The first problem, spectral factorization, constitutes the back-
bone of many areas of Systems and Control Theory. In the first part of the
dissertation, we focused on the discrete-time setting, and, without intro-

ducing any facilitating assumptions, we derived a general spectral factorization result.
Our approach has been inspired by the well-known Youla’s method and relies mainly
on tools from polynomial matrix theory. Furthermore, we analyzed a number of
intriguing issues stemming from this result, namely

• uniqueness and parameterization of minimal spectral factors, and

• extension to the indefinite “J-spectral” case.

We believe that our results provide a rather deep and comprehensive “road-map” on
spectral factorization and related problems.

The second problem we considered is the so-called THREE-like spectral estimation
problem introduced by Byrnes, Georgiou, and Lindquist at the beginning of the 2000s.
This problem, albeit quite recent, is rooted in the celebrated and widely investigated
theory of (generalized) moment problems. In the second part of the dissertation,
we addressed a number of questions, mostly of technical nature, arising from the
THREE-like framework. Specifically, these questions concerned:

• the convergence of an efficient numerical estimation procedure,

• the existence of solutions to a parametric multivariate estimation problem,

• the geometrization of the space of spectral densities.

Besides a large amount of advanced (linear-)algebraic techniques, in the derivation of
our results, we used a combination of a variety of powerful mathematical tools arising
from non-linear systems theory, differential topology and geometry. From our study,
several open problems have emerged. These offer interesting and worthwhile avenues
for future research.
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