10,879 research outputs found

    Linear complexity of sequences and multisequences

    Get PDF

    Non-Schlesinger Isomonodromic Deformations of Fuchsian Systems and Middle Convolution

    Full text link
    The paper is devoted to non-Schlesinger isomonodromic deformations for resonant Fuchsian systems. There are very few explicit examples of such deformations in the literature. In this paper we construct a new example of the non-Schlesinger isomonodromic deformation for a resonant Fuchsian system of order 5 by using middle convolution for a resonant Fuchsian system of order 2. Moreover, it is known that middle convolution is an operation that preserves Schlesinger's deformation equations for non-resonant Fuchsian systems. In this paper we show that Bolibruch's non-Schlesinger deformations of resonant Fuchsian systems are, in general, not preserved by middle convolution

    Design of First-Order Optimization Algorithms via Sum-of-Squares Programming

    Full text link
    In this paper, we propose a framework based on sum-of-squares programming to design iterative first-order optimization algorithms for smooth and strongly convex problems. Our starting point is to develop a polynomial matrix inequality as a sufficient condition for exponential convergence of the algorithm. The entries of this matrix are polynomial functions of the unknown parameters (exponential decay rate, stepsize, momentum coefficient, etc.). We then formulate a polynomial optimization, in which the objective is to optimize the exponential decay rate over the parameters of the algorithm. Finally, we use sum-of-squares programming as a tractable relaxation of the proposed polynomial optimization problem. We illustrate the utility of the proposed framework by designing a first-order algorithm that shares the same structure as Nesterov's accelerated gradient method

    A survey on signature-based Gr\"obner basis computations

    Full text link
    This paper is a survey on the area of signature-based Gr\"obner basis algorithms that was initiated by Faug\`ere's F5 algorithm in 2002. We explain the general ideas behind the usage of signatures. We show how to classify the various known variants by 3 different orderings. For this we give translations between different notations and show that besides notations many approaches are just the same. Moreover, we give a general description of how the idea of signatures is quite natural when performing the reduction process using linear algebra. This survey shall help to outline this field of active research.Comment: 53 pages, 8 figures, 11 table
    corecore