4 research outputs found

    Relief mapping on cubic cell complexes

    Get PDF
    In this paper we present an algorithm for parameterizing arbitrary surfaces onto a quadrilateral domain defined by a collection of cubic cells. The parameterization inside each cell is implicit and thus requires storing no texture coordinates. Based upon this parameterization, we propose a unified representation of geometric and appearance information of complex models. The representation consists of a set of cubic cells (providing a coarse representation of the object) together with a collection of distance maps (encoding fine geometric detail inside each cell). Our new representation has similar uses than geometry images, but it requires storing a single distance value per texel instead of full vertex coordinates. When combined with color and normal maps, our representation can be used to render an approximation of the model through an output-sensitive relief mapping algorithm, thus being specially amenable for GPU raytracing.Postprint (author’s final draft

    RELIEF MAPPING ON CUBIC CELL COMPLEXES

    No full text

    Relief mapping on cubic cell complexes

    No full text
    In this paper we present an algorithm for parameterizing arbitrary surfaces onto a quadrilateral domain defined by a collection of cubic cells. The parameterization inside each cell is implicit and thus requires storing no texture coordinates. Based upon this parameterization, we propose a unified representation of geometric and appearance information of complex models. The representation consists of a set of cubic cells (providing a coarse representation of the object) together with a collection of distance maps (encoding fine geometric detail inside each cell). Our new representation has similar uses than geometry images, but it requires storing a single distance value per texel instead of full vertex coordinates. When combined with color and normal maps, our representation can be used to render an approximation of the model through an output-sensitive relief mapping algorithm, thus being specially amenable for GPU raytracing

    Relief mapping on cubic cell complexes

    No full text
    In this paper we present an algorithm for parameterizing arbitrary surfaces onto a quadrilateral domain defined by a collection of cubic cells. The parameterization inside each cell is implicit and thus requires storing no texture coordinates. Based upon this parameterization, we propose a unified representation of geometric and appearance information of complex models. The representation consists of a set of cubic cells (providing a coarse representation of the object) together with a collection of distance maps (encoding fine geometric detail inside each cell). Our new representation has similar uses than geometry images, but it requires storing a single distance value per texel instead of full vertex coordinates. When combined with color and normal maps, our representation can be used to render an approximation of the model through an output-sensitive relief mapping algorithm, thus being specially amenable for GPU raytracing
    corecore