5 research outputs found

    Distributionally Robust Facility Location Problem under Decision-dependent Stochastic Demand

    Full text link
    Facility location decisions significantly impact customer behavior and consequently the resulting demand in a wide range of businesses. Furthermore, sequentially realized uncertain demand enforces strategically determining locations under partial information. To address these issues, we study a facility location problem where the distribution of customer demand is dependent on location decisions. We represent moment information of stochastic demand as a piecewise linear function of facility-location decisions. Then, we propose a decision-dependent distributionally robust optimization model, and develop its exact mixed-integer linear programming reformulation. We further derive valid inequalities to strengthen the formulation. We conduct an extensive computational study, in which we compare our model with the existing (decision-independent) stochastic and robust models. Our results demonstrate superior performance of the proposed approach with remarkable improvement in profit and quality of service by extensively testing problem characteristics, in addition to computational speed-ups due to the formulation enhancements. These results draw attention to the need of considering the impact of location decisions on customer demand within this strategic-level planning problem

    Balancing partner preferences for logistics costs and carbon footprint in a horizontal cooperation

    Get PDF
    Horizontal cooperation in logistics has gathered momentum in the last decade as a way to reach economic as well as environmental benefits. In the literature, these benefits are most often assessed through aggregation of demand and supply chain optimization of the partnership as a whole. However, such an approach ignores the individual preferences of the participating companies and forces them to agree on a unique coalition objective. Companies with different (potentially conflicting) preferences could improve their individual outcome by diverging from this joint solution. To account for companies preferences, we propose an optimization framework that integrates the individual partners’ interests directly in a cooperative model. The partners specify their preferences regarding the decrease of logistical costs versus reduced CO2 emissions. Doing so, all stakeholders are more likely to accept the solution, and the long-term viability of the collaboration is improved. First, we formulate a multi-objective, multi-partner location-inventory model. Second, we distinguish two approaches for solving it, each focusing primarily on one of these two dimensions. The result is a set of Pareto-optimal solutions that support the decision and negotiation process. Third, we propose and compare three different approaches to construct a unique solution which is fair and efficient for the coalition. Extensive numerical results not only confirm the potential of collaboration but, more importantly, also reveal valuable managerial insights on the effect of dissimilarities between partners with respect to size, geographical overlap and operational preferences

    A distributionally robust optimization approach for two-stage facility location problems

    Get PDF
    In this paper, we consider a facility location problem where customer demand constitutes considerable uncertainty, and where complete information on the distribution of the uncertainty is unavailable. We formulate the optimal decision problem as a two-stage stochastic mixed integer programming problem: an optimal selection of facility locations in the first stage and an optimal decision on the operation of each facility in the second stage. A distributionally robust optimization framework is proposed to hedge risks arising from incomplete information on the distribution of the uncertainty. Specifically, by exploiting the moment information, we construct a set of distributions which contains the true distribution and where the optimal decision is based on the worst distribution from the set. We then develop two numerical schemes for solving the distributionally robust facility location problem: a semi-infinite programming approach which exploits moments of certain reference random variables and a semi-definite programming approach which utilizes the mean and correlation of the underlying random variables describing the demand uncertainty. In the semi-infinite programming approach, we apply the well-known linear decision rule approach to the robust dual problem and then approximate the semi-infinite constraints through the conditional value at risk measure. We provide numerical tests to demonstrate the computation and properties of the robust solutions. © 2020, The Author(s)

    Facility Location Planning Under Disruption

    Get PDF
    Facility Location Problems (FLPs) such as the Uncapacitated Facility Location (UFL) and the Capacitated Facility Location (CFL) along with the k-Shortest Path Problem (k-SPP) are important research problems in managing supply chain networks (SCNs) and related operations. In UFL, there is no limit on the facility serving capacity while in CFL such limit is imposed. FLPs aim to find the best facility locations to meet the customer demands within the available capacity with minimized facility establishment and transportation costs. The objective of the (k-SPP) is to find the k minimal length and partial overlapping paths between two nodes in a transport network graph. In the literature, many approaches are proposed to solve these problems. However, most of these approaches assume totally reliable facilities and do not consider the failure probability of the facilities, which can lead to notably higher cost. In this thesis, we investigate the reliable uncapacitated facility location (RUFL)and the reliable capacitated facility location (RCFL) problems, and the k-SPP where potential facilities are exposed to disruption then propose corresponding solution approaches to efficiently handle these problems. An evolutionary learning technique is elaborated to solve RUFL. Then, a non-linear integer programming model is introduced for the RCFL along with a solution approach involving the linearization of the model and its use as part of an iterative procedure leveraging CPLEX for facility establishment and customer assignment along with a knapsack implementation aiming at deriving the best facility fortification. In RUFL and RCFL, we assume heterogeneous disruption with respect to the facilities, each customer is assigned to primary and backup facilities and a fixed fortification budget allows to make a subset of the facilities totally reliable. Finally, we propose a hybrid approach based on graph partitioning and modified Dijkstra algorithm to find k partial overlapping shortest paths between two nodes on a transport network that is exposed to heterogeneous connected node failures. The approaches are illustrated via individual case studies along with corresponding key insights. The performance of each approach is assessed using benchmark results. For the k-SPP, the effect of preferred establishment locations is analyzed with respect to disruption scenarios, failure probability, computation time, transport costs, network size and partitioning parameters
    corecore