22 research outputs found

    Mechanical Design and Analysis of All‐terrain Mobile Robot

    Get PDF
    This paper presents the conceptual mechanical analysis of the all-terrain mobile robot (AMoBo). The locomotion concept for all-terrain mobile robot is based on six independent motorized wheels. The mobile robot has a steering wheel in the front and the rear, and two wheels arranged on a bogie on each side. The front wheel has a spring suspension to guarantee optimal ground contact of all wheels at any time. The steering of the vehicle is realized by synchronizing the steering of the front and rear wheels and the speed difference of the bogie wheels. A prototype AMoBo was designed and fabricated. The developed prototype is about 66 cm in length and 23 cm in height. Testing size results show that the prototype able to overcome obstacles of same height as its wheel diameter and can climb stairs with step height of over 10 cm. Finite element analysis was used to analyse and verify the strength of each critical part of AMoBo. The base plate appeared to be the critical part with the highest shear stress and the lowest safety factor

    Mechanical Design and Analysis of All‐terrain Mobile Robot

    Get PDF
    This paper presents the conceptual mechanical analysis of the all-terrain mobile robot (AMoBo). The locomotion concept for all-terrain mobile robot is based on six independent motorized wheels. The mobile robot has a steering wheel in the front and the rear, and two wheels arranged on a bogie on each side. The front wheel has a spring suspension to guarantee optimal ground contact of all wheels at any time. The steering of the vehicle is realized by synchronizing the steering of the front and rear wheels and the speed difference of the bogie wheels. A prototype AMoBo was designed and fabricated. The developed prototype is about 66 cm in length and 23 cm in height. Testing size results show that the prototype able to overcome obstacles of same height as its wheel diameter and can climb stairs with step height of over 10 cm. Finite element analysis was used to analyse and verify the strength of each critical part of AMoBo. The base plate appeared to be the critical part with the highest shear stress and the lowest safety factor

    Conceptual Design for Multi Terrain Mobile Robot

    Get PDF
    This paper presents the conceptual design of the multi terrain mobile robot with total design approach. Twenty conceptual designs were generated for selection purpose. To determine the final design of multi terrain mobile robot, the matrix evaluation method was used. The weight of the concept was obtained through weighted analysis. The final design of the multi terrain mobile robot is the mobile robot with six independent motorized wheels. The mobile robot has a steering wheel in the front and the rear, and two wheels arranged on a bogie on each side. Each wheel can operate separately on different type of terrain. Twenty conceptual designs were generated for selection. To determine the final design of multi terrain mobile robot,the matrix evaluation method was used. The weight of the concept was obtained through weight analysis

    Planetary Rover Hybrid Locomotion-System Design

    Get PDF
    Having already proven their worth several times in extraterrestrial environments, rovers can be highly versatile and valuable machines. Previous rovers have been designed to transport astronauts and materials, perform strenuous tasks that an astronaut in a pressurized suit may be unable to do, analyze foreign substances, create virtual maps of regions, and serve as a life support platform to increase operational safety and chances of mission success. However, a successful rover design is often difficult to engineer and manufacture. Before a rover can be considered a valuable asset to mission success, it must be capable of operating in a variety of conditions and without requiring a great deal of human supervision. Specifically, it must be able to traverse irregular and treacherous terrain in a timely and efficient manner; it must be able to safely go where an astronaut can travel, and, in some cases, go and return from areas deemed too dangerous for human exploration. To do this, the rover needs an effective, yet simple locomotion system capable of crossing relatively flat terrain quickly and efficiently while also capable of adapting to rough terrain without undue difficulty. Inspired by the Jet Propulsion Laboratory (JPL) All-Terrain Hex-Legged Extra-Terrestrial Explorer (ATHLETE) and the University of Pennsylvania (UPenn) RHex, this paper proposes a simple experimental prototype locomotion system design that enables a rover to alternate between alkingand ollingmodes to successfully navigate variable and unpredictable terrain

    Semi-autonomous exploration of multi-floor buildings with a legged robot

    Full text link

    Free-Standing Leaping Experiments with a Power-Autonomous, Elastic-Spined Quadruped

    Get PDF
    We document initial experiments with Canid, a freestanding, power-autonomous quadrupedal robot equipped with a parallel actuated elastic spine. Research into robotic bounding and galloping platforms holds scientific and engineering interest because it can both probe biological hypotheses regarding bounding and galloping mammals and also provide the engineering community with a new class of agile, efficient and rapidly-locomoting legged robots. We detail the design features of Canid that promote our goals of agile operation in a relatively cheap, conventionally prototyped, commercial off-the-shelf actuated platform. We introduce new measurement methodology aimed at capturing our robot’s “body energy” during real time operation as a means of quantifying its potential for agile behavior. Finally, we present joint motor, inertial and motion capture data taken from Canid’s initial leaps into highly energetic regimes exhibiting large accelerations that illustrate the use of this measure and suggest its future potential as a platform for developing efficient, stable, hence useful bounding gaits. For more information: Kod*La

    A literature review on the optimization of legged robots

    Get PDF
    Over the last two decades the research and development of legged locomotion robots has grown steadily. Legged systems present major advantages when compared with ‘traditional’ vehicles, because they allow locomotion in inaccessible terrain to vehicles with wheels and tracks. However, the robustness of legged robots, and especially their energy consumption, among other aspects, still lag behind mechanisms that use wheels and tracks. Therefore, in the present state of development, there are several aspects that need to be improved and optimized. Keeping these ideas in mind, this paper presents the review of the literature of different methods adopted for the optimization of the structure and locomotion gaits of walking robots. Among the distinct possible strategies often used for these tasks are referred approaches such as the mimicking of biological animals, the use of evolutionary schemes to find the optimal parameters and structures, the adoption of sound mechanical design rules, and the optimization of power-based indexes

    Free-standing leaping experiments with a power-autonomous elastic-spined quadruped

    Full text link
    corecore