332 research outputs found

    Inter-domain traffic routing in vehicular delay tolerant networks

    Get PDF
    “Copyright © [2010] IEEE. Reprinted from IEEE International Conference on Communications (IEEE ICC 2010). ISSN:1550-3607. This material is posted here with permission of the IEEE. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.”In this paper, we consider the problem of dynamic inter-domain traffic routing between a VDTN and a non-DTN (e.g., Internet). The inter-domain traffic can be classified as inbound and outbound traffic. Our main contribution in this work is the intro- duction of several fault-tolerant routing algorithms for inbound and outbound traffic. Using simulations, we compare the performance of the proposed algorithms in terms of required resources, packet delivery time, and blocking probability.This work was supported in part by the Instituto de Telecomunicações, Next Generation Networks and Applications Group (NetGNA), CovilhĂŁ Delegation, Portugal in the framework of the VDTN@Lab Project

    Reliable Multicast in Heterogeneous Mobile Ad-hoc Networks

    Get PDF
    In disaster scenarios, communication infrastructure could be damaged orcompletely failed. Mobile Ad-hoc Networks (MANETs) can be used to substitutefailed communication devices and thus to enable communication. As group communicationis an important part in disaster scenarios, multicast will be used to addressseveral nodes. In this paper, we propose our new reliable multicast protocol RMDA(Reliable Multicast over Delay Tolerant Mobile Ad hoc Networks). We introducean efficient group management approach and a new method for reliable multicastdelivery over Delay Tolerant Networks. We show, that our protocol is adaptive todifferent kinds of MANETs, e.g. with or without clusterheads, respectively. Forthose without, we use our name resolution over adaptive routing approach

    CALAR: Community Aware Location Assisted Routing Framework for Delay Tolerant Networks

    Get PDF
    Infrastructure less communication strategies havegreatly evolved and found its way to most of our real lifeapplications like sensor networks, terrestrial communications,military communications etc. The communication pattern for allthese scenarios being identical i.e. encounter basedcommunication,characteristics of each communication domainare distinct. Hence the protocols applied for each environmentshould be defined carefully by considering its owncommunication patterns. While designing a routing protocol themain aspects under consideration include delay, connectivity,cost etc. In case of applications having limited connectivity,concept of Delay tolerant network (DTN) is deployed, whichassists delivering messages even in partitioned networks withlimited connectivity by using store and forward architecture.Node properties like contact duration, inter contact duration,location, community, direction of movement, angle of contact etc.were used for designing different classes of routing protocols forDTN. This paper introduces a new protocol that exploits thefeatures of both community based as well as location basedrouting protocols to achieve higher data delivery ratio invehicular scenarios. Results obtained show that proposedalgorithms have much improved delivery ratio comparedtoexisting routing algorithms which use any one of the aboveproperty individually

    A Novel IDS Security Scheme for Multicast Communication in DTN

    Get PDF
    This DTN routing should naturally support unicast and multicast routing strategies. A network node can register itself to any receiver group by setting the corresponding destination. In this research we proposed a new security algorithm with multi cast routing against malicious packet dropping attack in DTN. The proposed security method of finding attacker is based on the link detection method for data forwarding in between sender to receiver. The packet dropping on link through node is detected and prevented by IDS security system. This method not only identified the black hole and grey hole but also prevent from routing misbehavior of malicious nodes. The attacker is identified by data dropping of packets in excessive quantity and their prevention is possible by selecting the next possible route where attacker does not exist in connected link between senders to receivers. The intermediate nodes are identified the attacker through confirm positive reply of malicious node or nodes in dynamic network. The proposed secure IDS (Intrusion Detection and prevention) is securing the DTN and improves the network performance after blocking black hole and grey hole in network. The network performance in presence of attack and secure IDS is measures through performance metrics like throughput, routing packets flooding and proposed secures routing is improves data receiving and minimizes dropping data network

    Delay Analysis of Social Group Multicast-Aided Content Dissemination in Cellular System

    Full text link
    Based on the common interest of mobile users (MUs) in a social group, the dissemination of content across the social group is studied as a powerful supplement to conventional cellular communication with the goal of improving the delay performance of the content dissemination process. The content popularity is modelled by a Zipf distribution in order to characterize the MUs’ different interests in different contents. The Factor of Altruism (FA) terminology is introduced for quantifying the willingness of content owners to share their content. We model the dissemination process of a specific packet by a pure-birth based Markov chain and evaluate the statistical properties of both the network’s dissemination delay as well as of the individual user-delay. Compared to the conventional base station (BS)- aided multicast, our scheme is capable of reducing the average dissemination delay by about 56.5%. Moreover, in contrast to the BS-aided multicast, increasing the number of MUs in the target social group is capable of reducing the average individual userdelay by 44.1% relying on our scheme. Furthermore, our scheme is more suitable for disseminating a popular piece of content

    Routing Security Issues in Wireless Sensor Networks: Attacks and Defenses

    Get PDF
    Wireless Sensor Networks (WSNs) are rapidly emerging as an important new area in wireless and mobile computing research. Applications of WSNs are numerous and growing, and range from indoor deployment scenarios in the home and office to outdoor deployment scenarios in adversary's territory in a tactical battleground (Akyildiz et al., 2002). For military environment, dispersal of WSNs into an adversary's territory enables the detection and tracking of enemy soldiers and vehicles. For home/office environments, indoor sensor networks offer the ability to monitor the health of the elderly and to detect intruders via a wireless home security system. In each of these scenarios, lives and livelihoods may depend on the timeliness and correctness of the sensor data obtained from dispersed sensor nodes. As a result, such WSNs must be secured to prevent an intruder from obstructing the delivery of correct sensor data and from forging sensor data. To address the latter problem, end-to-end data integrity checksums and post-processing of senor data can be used to identify forged sensor data (Estrin et al., 1999; Hu et al., 2003a; Ye et al., 2004). The focus of this chapter is on routing security in WSNs. Most of the currently existing routing protocols for WSNs make an optimization on the limited capabilities of the nodes and the application-specific nature of the network, but do not any the security aspects of the protocols. Although these protocols have not been designed with security as a goal, it is extremely important to analyze their security properties. When the defender has the liabilities of insecure wireless communication, limited node capabilities, and possible insider threats, and the adversaries can use powerful laptops with high energy and long range communication to attack the network, designing a secure routing protocol for WSNs is obviously a non-trivial task.Comment: 32 pages, 5 figures, 4 tables 4. arXiv admin note: substantial text overlap with arXiv:1011.152
    • …
    corecore