2,174 research outputs found

    A RELIABILITY-BASED ROUTING PROTOCOL FOR VEHICULAR AD-HOC NETWORKS

    Get PDF
    Vehicular Ad hoc NETworks (VANETs), an emerging technology, would allow vehicles to form a self-organized network without the aid of a permanent infrastructure. As a prerequisite to communication in VANETs, an efficient route between communicating nodes in the network must be established, and the routing protocol must adapt to the rapidly changing topology of vehicles in motion. This is one of the goals of VANET routing protocols. In this thesis, we present an efficient routing protocol for VANETs, called the Reliable Inter-VEhicular Routing (RIVER) protocol. RIVER utilizes an undirected graph that represents the surrounding street layout where the vertices of the graph are points at which streets curve or intersect, and the graph edges represent the street segments between those vertices. Unlike existing protocols, RIVER performs real-time, active traffic monitoring and uses this data and other data gathered through passive mechanisms to assign a reliability rating to each street edge. The protocol then uses these reliability ratings to select the most reliable route. Control messages are used to identify a node’s neighbors, determine the reliability of street edges, and to share street edge reliability information with other nodes

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    PDPD: Packet Delivery Prediction-based Data Forwarding to Moving Targets in Vehicular Networks

    Get PDF
    Department of Electrical EngineeringVehicular Ad hoc Network (VANET) is one of technologies to realize various ITS services that provide safe driving and efficient traffic condition. VANET consists of moving nodes, and hence its topology frequently changes. In VANETs, multi-hop data delivery is complicated by the fact that vehicular networks are highly mobile and frequently disconnected. In this thesis, we develop a novel forwarding scheme that accounts for the vehicle density, and delivers packets in a reliable and timely manner. We pay attention to the encounter event between two vehicles and the probability of successful transmission at the encounter place to guide forwarding decision. The proposed forwarding scheme uses traffic statistics to predict vehicle encounters, and optimize forwarding decision by taking into consideration the quality of wireless communications. We verify the results through simulations and show that our proposed scheme achieves reliable data transmission in VANET.ope

    USING NS-2 COMPARISON OF GEOGRAPHICAL AND TOPOLOGICAL MULTICAST ROUTING PROTOCOLS ON WIRELESS AD HOC NETWORKS

    Get PDF
    Performance evaluation of geographical and topological multicast routing algorithms for cellular Wi-Fi ad-hoc networks is offered. Flooding and On-call for Multicast Routing Protocol (ODMRP) are simulated and in comparison with novels protocols: Topological Multicast Routing (ToMuRo) and Geographical Multicast Routing (GeMuRo) in pedestrian and vehicular situations. The situations evaluated recollect one multicast transmitter and one, two and three multicast receivers under numerous mobility and transmission levels. The conduct of 150 nodes is evaluated in terms of cease to end postpone (EED), jitter, packet delivery ratio, and overhead. Consequences display that ToMuRo is suitable for pedestrian eventualities because of its tree-based structure and GeMuRo is right for vehicular situations because its miles based on a mesh topology
    corecore