6 research outputs found

    Reliable Probabilistic Classification with Neural Networks

    Full text link
    Venn Prediction (VP) is a new machine learning framework for producing well-calibrated probabilistic predictions. In particular it provides well-calibrated lower and upper bounds for the conditional probability of an example belonging to each possible class of the problem at hand. This paper proposes five VP methods based on Neural Networks (NNs), which is one of the most widely used machine learning techniques. The proposed methods are evaluated experimentally on four benchmark datasets and the obtained results demonstrate the empirical well-calibratedness of their outputs and their superiority over the outputs of the traditional NN classifier

    Reliable Prediction Intervals with Regression Neural Networks

    Full text link
    This paper proposes an extension to conventional regression Neural Networks (NNs) for replacing the point predictions they produce with prediction intervals that satisfy a required level of confidence. Our approach follows a novel machine learning framework, called Conformal Prediction (CP), for assigning reliable confidence measures to predictions without assuming anything more than that the data are independent and identically distributed (i.i.d.). We evaluate the proposed method on four benchmark datasets and on the problem of predicting Total Electron Content (TEC), which is an important parameter in trans-ionospheric links; for the latter we use a dataset of more than 60000 TEC measurements collected over a period of 11 years. Our experimental results show that the prediction intervals produced by our method are both well-calibrated and tight enough to be useful in practice

    Guaranteed Coverage Prediction Intervals with Gaussian Process Regression

    Full text link
    Gaussian Process Regression (GPR) is a popular regression method, which unlike most Machine Learning techniques, provides estimates of uncertainty for its predictions. These uncertainty estimates however, are based on the assumption that the model is well-specified, an assumption that is violated in most practical applications, since the required knowledge is rarely available. As a result, the produced uncertainty estimates can become very misleading; for example the prediction intervals (PIs) produced for the 95\% confidence level may cover much less than 95\% of the true labels. To address this issue, this paper introduces an extension of GPR based on a Machine Learning framework called, Conformal Prediction (CP). This extension guarantees the production of PIs with the required coverage even when the model is completely misspecified. The proposed approach combines the advantages of GPR with the valid coverage guarantee of CP, while the performed experimental results demonstrate its superiority over existing methods.Comment: 12 pages. This work has been submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Reliable confidence intervals for software effort estimation

    No full text
    CEUR Workshop Proceedings Volume 475, 2009, Pages 211-220This paper deals with the problem of software effort estimation through the use of a new machine learning technique for producing reliable confidence measures in predictions. More specifically, we propose the use of Conformal Predictors (CPs), a novel type of prediction algorithms, as a means for providing effort estimations for software projects in the form of predictive intervals according to a specified confidence level. Our approach is based on the well-known Ridge Regression technique, but instead of the simple effort estimates produced by the original method, it produces predictive intervals that satisfy a given confidence level. The results obtained using the proposed algorithm on the COCOMO, Desharnais and ISBSG datasets suggest a quite successful performance obtaining reliable predictive intervals which are narrow enough to be useful in practice
    corecore