6 research outputs found

    Optimal Computation of 3-D Rotation under Inhomogeneous Anisotropic Noise

    Get PDF
    We present a new method for optimally computing the 3-D rotation from two sets of 3-D data. Unlike 2-D data, the noise in 3-D data is inherently inhomogeneous and anisotropic, reflecting the characteristics of the 3-D sensing used. To cope with this, Ohta and Kanatani introduced a technique called “renormalization”. Following them, we represent a 3-D rotation in terms of a quaternion and compute an exact maximum likelihood solution using the FNS of Chojnacki et al. As an example, we consider 3-D data obtained by stereo vision and optimally compute the 3-D rotation by analyzing the noise characteristics of stereo reconstruction. We show that the widely used method is not suitable for 3-D data. We confirm that the renormalization of Ohta and Kanatani indeed computes almost an optimal solution and that, although the difference is small, the proposed method can compute an even better solution

    Theoretical and Numerical Analysis of 3D Reconstruction Using Point and Line Incidences

    Full text link
    We study the joint image of lines incident to points, meaning the set of image tuples obtained from fixed cameras observing a varying 3D point-line incidence. We prove a formula for the number of complex critical points of the triangulation problem that aims to compute a 3D point-line incidence from noisy images. Our formula works for an arbitrary number of images and measures the intrinsic difficulty of this triangulation. Additionally, we conduct numerical experiments using homotopy continuation methods, comparing different approaches of triangulation of such incidences. In our setup, exploiting the incidence relations gives both a faster point reconstruction and in three views more accurate.Comment: 27 pages, 5 Figures, 3 table

    Computer vision component to environment scanning

    Get PDF
    Dissertação de mestrado em Engenharia de InformáticaComputer vision is usually used as the perception channel of robotic platforms. These platforms must be able of visually scanning the environment to detect specific targets and obstacles. Part of detecting obstacles is knowing their relative distance to robot. In this work different ways of detecting the distance of an object are analyzed and implemented. Extracting this depth perception from a scene involves three different steps: finding features in an image, finding those same features in another image and calculate the features’ distance. For capturing the images two approaches were considered: single cameras, where we capture an image, move the camera and capture another, or stereo cameras, where images are taken from both cameras at the same time. Starting by SUSAN, then SIFT and SURF, these three feature extraction algorithms will be presented as well as their matching procedure. An important part of computer vision systems is the camera. For that reason, the procedure of calibrating a camera will be explained. Epipolar geometry and the fundamental matrix are two important concepts regarding 3D reconstruction which will also be analyzed and explained. In the final part of the work all concepts and ideas were implemented and, for each approach, tests were made and results analyzed. For controlled environments the relative distance of the objects is correctly extracted but with more complex environment such results are harder to obtain.A visão por computador é, normalmente, usada como o canal de percepção do mundo em plataformas robóticas. Estas plataformas têm de ser capazes de rastrear, visualmente, o ambiente para detectar objectivos e obstáculos específicos. Parte da detecção de obstáculos envolve saber da sua distância relativa ao robot. Neste trabalho, são analisadas e implementadas diferentes formas de extrair a distância de um objecto. A extracção desta noção de profundidade de uma cena envolve três passos diferentes: encontrar características numa imagem, encontrar estas mesmas características numa imagem diferente e calcular as suas distâncias. Para a captura de imagens foram considerados dois métodos: uma única câmara, onde é tirada uma imagem, a câmara é movida e é tirada a segunda imagem; e câmaras estéreo onde as imagens são tiradas de ambas as câmaras ao mesmo tempo. Começando pelo SUSAN, depois o SIFT e SURF, estes três algoritmos de extracção de características são apresentados, assim como os seus métodos de emparelhamento de características. Uma parte importante dos sistemas de visão por computador é a câmara, por este motivo, o procedimento de calibrar uma câmara é explicado. Geometria Epipolar e matriz fundamental são dois conceitos importantes no que refere a reconstrução 3D que também serão analisados e explicados. Na parte final do trabalho, todos os conceitos e ideias são implementados e, para cada método, são realizados testes e os seus resultados são analisados. Para ambientes controlados, a distância relativa é correctamente extraída mas, para ambientes mais complexos, os mesmos resultados são obtidos com mais dificuldade

    Generating depth maps from stereo image pairs

    Get PDF

    Why do we optimize what we optimize in multiple view geometry?

    Get PDF
    Para que un computador sea capaz de entender la geometría 3D de su entorno, necesitamos derivar las relaciones geométricas entre las imágenes 2D y el mundo 3D.La geometría de múltiples vistas es el área de investigación que estudia este problema.La mayor parte de métodos existentes resuelve pequeñas partes de este gran problema minimizando una determinada función objetivo.Estas funciones normalmente se componen de errores algebraicos o geométricos que representan las desviaciones con respecto al modelo de observación.En resumen, en general tratamos de recuperar la estructura 3D del mundo y el movimiento de la cámara encontrando el modelo que minimiza la discrepancia con respecto a las observaciones.El enfoque de esta tesis se centra principalmente en dos aspectos de los problemas de reconstrucción multivista:los criterios de error y la robustez.Primero, estudiamos los criterios de error usados en varios problemas geométricos y nos preguntamos`¿Por qué optimizamos lo que optimizamos?'Específicamente, analizamos sus pros y sus contras y proponemos métodos novedosos que combinan los criterios existentes o adoptan una mejor alternativa.En segundo lugar, tratamos de alcanzar el estado del arte en robustez frente a valores atípicos y escenarios desafiantes, que a menudo se encuentran en la práctica.Para ello, proponemos múltiples ideas novedosas que pueden ser incorporadas en los métodos basados en optimización.Específicamente, estudiamos los siguientes problemas: SLAM monocular, triangulación a partir de dos y de múltiples vistas, promedio de rotaciones únicas y múltiples, ajuste de haces únicamente con rotaciones de cámara, promedio robusto de números y evaluación cuantitativa de estimación de trayectoria.Para SLAM monocular, proponemos un enfoque híbrido novedoso que combina las fortalezas de los métodos directos y los basados en características.Los métodos directos minimizan los errores fotométricos entre los píxeles correspondientes en varias imágenes, mientras que los métodos basados en características minimizan los errores de reproyección.Nuestro método combina de manera débilmente acoplada la odometría directa y el SLAM basado en características, y demostramos que mejora la robustez en escenarios desafiantes, así como la precisión cuando el movimiento de la cámara realiza frecuentes revisitas.Para la triangulación de dos vistas, proponemos métodos óptimos que minimizan los errores de reproyección angular en forma cerrada.Dado que el error angular es rotacionalmente invariante, estos métodos se pueden utilizar para cámaras perspectivas, lentes de ojo de pez u omnidireccionales.Además, son mucho más rápidos que los métodos óptimos existentes en la literatura.Otro método de triangulación de dos vistas que proponemos adopta un enfoque completamente diferente:Modificamos ligeramente el método clásico del punto medio y demostramos que proporciona un equilibrio superior de precisión 2D y 3D, aunque no es óptimo.Para la triangulación multivista, proponemos un método robusto y eficiente utilizando RANSAC de dos vistas.Presentamos varios criterios de finalización temprana para RANSAC de dos vistas utilizando el método de punto medio y mostramos que mejora la eficiencia cuando la proporción de medidas espúreas es alta.Además, mostramos que la incertidumbre de un punto triangulado se puede modelar en función de tres factores: el número de cámaras, el error medio de reproyección y el ángulo de paralaje máximo.Al aprender este modelo, la incertidumbre se puede interpolar para cada caso.Para promediar una sola rotación, proponemos un método robusto basado en el algoritmo de Weiszfeld.La idea principal es comenzar con una inicialización robusta y realizar un esquema de rechazo de valores espúreos implícito dentro del algoritmo de Weiszfeld para aumentar aún más la robustez.Además, usamos una aproximación de la mediana cordal en SO(3)SO(3) que proporciona una aceleración significativa del método. Para promediar rotaciones múltiples proponemos HARA, un enfoque novedoso que inicializa de manera incremental el grafo de rotaciones basado en una jerarquía de compatibilidad con tripletas.Esencialmente, construimos un árbol de expansión priorizando los enlaces con muchos soportes triples fuertes y agregando gradualmente aquellos con menos soportes y más débiles.Como resultado, reducimos el riesgo de agregar valores atípicos en la solución inicial, lo que nos permite filtrar los valores atípicos antes de la optimización no lineal.Además, mostramos que podemos mejorar los resultados usando la función suavizada L0+ en el paso de refinamiento local.A continuación, proponemos el ajuste de haces únicamente con rotaciones, un método novedoso para estimar las rotaciones absolutas de múltiples vistas independientemente de las traslaciones y la estructura de la escena.La clave es minimizar una función de coste especialmente diseñada basada en el error epipolar normalizado, que está estrechamente relacionado con el error de reproyección angular óptimo L1 entre otras cantidades geométricas.Nuestro enfoque brinda múltiples beneficios, como inmunidad total a translaciones y triangulaciones imprecisas, robustez frente a rotaciones puras y escenas planas, y la mejora de la precisión cuando se usa tras el promedio de promedio de rotaciones explicado anteriormente.También proponemos RODIAN, un método robusto para promediar un conjunto de números contaminados por una gran proporción de valores atípicos.En nuestro método, asumimos que los valores atípicos se distribuyen uniformemente dentro del rango de los datos y buscamos la región que es menos probable que contenga solo valores atípicos.Luego tomamos la mediana de los datos dentro de esta región.Nuestro método es rápido, robusto y determinista, y no se basa en un límite de error interno conocido.Finalmente, para la evaluación cuantitativa de la trayectoria, señalamos la debilidad del Error de Trayectoria Absoluta (ATE) comúnmente utilizado y proponemos una alternativa novedosa llamada Error de Trayectoria Discernible (DTE).En presencia de solo unos pocos valores espúreos, el ATE pierde su sensibilidad respecto al error de trayectoria de los valores típicos y respecto al número de datos atípicos o espúreos.El DTE supera esta debilidad al alinear la trayectoria estimada con la verdadera (ground truth) utilizando un método robusto basado en varios tipos diferentes de medianas.Usando ideas similares, también proponemos una métrica de solo rotación, llamada Error de Rotación Discernible (DRE).Además, proponemos un método simple para calibrar la rotación de cámara a marcador, que es un requisito previo para el cálculo de DTE y DRE.<br /
    corecore