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Abstract

Computer vision is usually used as the perception channel of robotic platforms. These
platforms must be able of visually scanning the environment to detect specific targets and
obstacles. Part of detecting obstacles is knowing their relative distance to robot. In this
work different ways of detecting the distance of an object are analyzed and implemented.
Extracting this depth perception from a scene involves three different steps: finding features
in an image, finding those same features in another image and calculate the features’ distance.
For capturing the images two approaches were considered: single cameras, where we capture
an image, move the camera and capture another, or stereo cameras, where images are taken
from both cameras at the same time. Starting by SUSAN, then SIFT and SURF, these three
feature extraction algorithms will be presented as well as their matching procedure. An
important part of computer vision systems is the camera. For that reason, the procedure
of calibrating a camera will be explained. Epipolar geometry and the fundamental matrix
are two important concepts regarding 3D reconstruction which will also be analyzed and
explained. In the final part of the work all concepts and ideas were implemented and, for each
approach, tests were made and results analyzed. For controlled environments the relative
distance of the objects is correctly extracted but with more complex environment such results
are harder to obtain.

Keywords: Computer Vision; 3D reconstruction;
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Resumo

A visão por computador é, normalmente, usada como o canal de percepção do mundo
em plataformas robóticas. Estas plataformas têm de ser capazes de rastrear, visualmente, o
ambiente para detectar objectivos e obstáculos específicos. Parte da detecção de obstáculos
envolve saber da sua distância relativa ao robot. Neste trabalho, são analisadas e implemen-
tadas diferentes formas de extrair a distância de um objecto.

A extracção desta noção de profundidade de uma cena envolve três passos diferentes:
encontrar características numa imagem, encontrar estas mesmas características numa im-
agem diferente e calcular as suas distâncias. Para a captura de imagens foram considerados
dois métodos: uma única câmara, onde é tirada uma imagem, a câmara é movida e é tirada
a segunda imagem; e câmaras estéreo onde as imagens são tiradas de ambas as câmaras ao
mesmo tempo. Começando pelo SUSAN, depois o SIFT e SURF, estes três algoritmos de ex-
tracção de características são apresentados, assim como os seus métodos de emparelhamento
de características.

Uma parte importante dos sistemas de visão por computador é a câmara, por este motivo,
o procedimento de calibrar uma câmara é explicado. Geometria Epipolar e matriz funda-
mental são dois conceitos importantes no que refere a reconstrução 3D que também serão
analisados e explicados. Na parte final do trabalho, todos os conceitos e ideias são imple-
mentados e, para cada método, são realizados testes e os seus resultados são analisados. Para
ambientes controlados, a distância relativa é correctamente extraída mas, para ambientes
mais complexos, os mesmos resultados são obtidos com mais dificuldade.

Palavras chave : Visão por computador; reconstrução 3D;
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Chapter 1

Introduction

We can say that vision is a very, if not the most, important sense when we are moving in a
certain environment. Providing crucial information about the environment, one relies, must
of the times, only on vision to guide ourselves in a world full of obstacles. The importance
of vision in animals and humans can also be seen in robots. In various robotic platforms, the
vision system is the main perception device and robots must be able to rely on it to move and
detect objects in the world.

When an image is captured by computer vision systems a lot of information is obtained
but despite all that information, the depth of a scene point is not directly accessible. It is
easily understood that knowing the 3D localization of an object in space is very important
when talking about a moving robot. If there is no 3D information the robot that, for example,
finds an obstacle in its path does not know if the obstacle is near and it needs to be avoided
or if it is far away and there is no need to avoid it at the moment.

In this work we will discuss and implement different approaches to the problem of ex-
tracting 3D information from a scene. Different approaches to the image processing step
will be analyzed and the results compared. When extracting 3D information we will test two
different approaches, single and dual camera system.

1.1 Motivation

Focusing merely on vision, the capability that the brain has of extracting information from
what our eyes see is simply amazing. There are computer vision systems that are faster
and have better performance in certain tasks, but generally, we are still faster and better.
One area where the human brain exceeds computer vision is the detection of objects and 3D
information extraction. By looking at a room we know, for example, which objects are closer
to us and when walking, if see an object, in this case an obstacle in our way, we know if have
to move around it or if it is still far away. Regarding moving robots, this vision capability

1



2 CHAPTER 1. INTRODUCTION

would be a very good thing to have.
In computer vision when an image is obtained from a camera we only have 2D informa-

tion, that is, x and y position. With this information we can say that a certain point is more
to the left/right or higher/lower but we cannot say if it is closer or further from us. Correctly
extracting the third coordinate z, allowing us to extract 3D information from a scene, is the
objective of this work. Having correct 3D information from a scene will give the robot better
moving abilities.

1.2 Objectives

In order to complete our main objective of extracting 3D information from a scene, three
steps must be accomplished.

• Point Extraction - Given images we should be able to extract defining points.

• Point Comparison - We must be able to find the same points in two different images.

• 3D Reconstruction - From the information received from previous steps we have to
extract 3D information.

1.3 Structure of Report

In Chapter 2 we will talk about the first step of the 3D reconstruction, image processing. In
this chapter we will analyze different approaches to the problem of extracting and comparing
points in an image. The process of 3D reconstruction will be explained in chapter 3. Starting
by explaining why and how to calibrate a camera following on what is the fundamental
matrix and what is it used for, and, finally the triangulation. After explaining the ideas and
methods used, we will show how this methods were implemented and tested and the results
obtained in each method in chapter 4. We will finish this work with a conclusion, explaining
the results obtained and the problems encountered.



Chapter 2

Image Processing - point extraction

2.1 Introduction

As mentioned before an image can only give us 2D information. When we look at a photo,
for example, we can tell which objects are closer or further away, but, this perception is
not only based in the information of the photo, one needs extra information to accurately
perceive the distances. One of that extra information is the common size of the object or, by
other words, what we think that the size should be. Let us consider the following situation:
an oversized beer can and a small car model, in a proportion that gives them similar sizes. If
we place the can and the car next to each other and take a photo what will we see? We will
see a can and a car with the same size and the brain will assume that the can is closer to the
camera (since we know that a can should be smaller than a car).

So, how can we extract 3D information from images (without knowing the size of ob-
jects)? We need at least two images of the same scene from different perspectives. This can
be done in two ways: with two cameras (stereo correspondence) or with one moving camera
(structure from motion). Usually the more cameras being used the better: this project will
use two cameras. Even humans need two images to extract 3D information. If we close
one eye, after a while, we will lose the 3D perspective, unless we move therefore obtaining
images from different perspectives.

The basic idea of 3D extraction from images is matching them and computing the differ-
ences. Image matching is a very important step in many computer vision problems such as
solving 3D structure from multiple images an stereo correspondence. Matching two images
is usually done by finding distinctive points (features) in one and finding the same points in
the other. When talking about image matching for 3D reconstruction, especially in moving
environments, it must be taken into account that the camera will move and lighting condi-
tions will probably change as well. For that, the image matching algorithm must be prepared
to find and match features even in those conditions. In image matching finding the features is

3



4 CHAPTER 2. IMAGE PROCESSING - POINT EXTRACTION

Figure 2.1: Same object from two different perspectives

not a simple procedure. One can have lots of features but if finding them again in the second
image is impossible, we will not be able to match both images. An algorithm must provide
us a way of differentiating a feature from another (i.e. a descriptor) so we can know if the
point we find is the same that we found before.

When classifying an feature detection algorithm for image matching there are some cri-
teria for determining its quality:

• Quality of detection
When finding features in an image the algorithm should produce very few false posi-
tives, usually originated from noise.

• Consistence
If an image is tested several times the same feature points should be detected.

• Speed of detection
As for most types of algorithms, the time it takes to produce results should be mini-
mum.

• Quality of descriptor
As mentioned before, what use do we have for lots of points if we can’t correctly find
and match them in another image.

• Speed of matching
In image matching algorithms a relatively big portion of time is spent in comparing
and matching points.

2.2 SIFT-features Algorithm

Scale-invariant feature transform (SIFT) algorithm proposed by Lowe in [22, 23] is a com-
monly used algorithm used in computer vision to detect local features in images.
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Scale-invariant feature transform, as the name suggests, focus on features that are in-
variant to scaling and rotation and also partially invariant to change in illumination and 3D
camera viewpoint. SIFT algorithm also performs rather well when occlusion, clutter, or
noise occur in an image.

Fortunately, SFIT found features are also very distinctive making them relatively easy
to match in other images. Large numbers of distinctive features can be efficiently extracted
from images and then matched with SIFT making it very useful in image matching. In the
next section we will present the normal use of the SIFT algorithm.

2.2.1 Steps

In order to generate a set of distinctive scale-invariant image features several steps must be
taken. We can organize the process in four major steps. In early steps of the process several
points are found and if we were to apply the most expensive operations of the algorithm to all
points the algorithm’s efficiency would be compromised. So in order to increase efficiency,
initial tests are made to the points to determine which ones are worth passing to the next
stage. By doing so we guarantee that the most expensive operations are applied only to those
points that pass initial tests minimizing the cost of the algorithm.

Interest point localization

The first stage of the SIFT’s algorithm is finding scale invariant points, called interest points,
so they can be examined in further detail in the next steps. This is done by searching over all
scales and image locations and selecting those locations that are stable across all scales. A
difference-of-Gaussian is applied to obtain different scales.

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (2.1)

Function 2.1 defines a scaled image L(x, y, σ) obtained from applying to an image I(x, y)
a scale variable G(x, y, σ). When 2.1 is applied to an input image I we get a different scaled
image L.

D(x, y, σ) = L(x, y, kσ) − L(x, y, σ) (2.2)

Function 2.2 defines de difference-of-Gaussian (DoG) between two images where one
has a k times bigger scale. After the DoG is applied each point of the image is compared
with both neighbors at different scales. Considering a point in a scale k there are 8 neighbors
in the same scale and 9 in the k − 1 and k + 1 scales making a total of 26 neighbors. If the
point is either a minimum or maximum of all points the point is considered an interest point.
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Key point localization

In the first, step several interest points were found but, to increase efficiency, the number of
points must be reduced. This is done by selecting key points based on their stability. Scale
and location is determined to each point and those points that have a low contrast (therefore
sensitive to noise) are rejected. First for each interest point, its position is determined by
interpolation of nearby data, this is done using the quadratic Taylor expansion of the DoG
which gives an offset. If the offset is larger than 0.5 the point is close to another interest
point so we will change to that point and an interpolation is performed. If the offset is equal
or less than 0.5 it will be added to the interest point being analyzed giving an approximated
localization. Using the Taylor expansion again, if the offset is less than 0.03 the interest point
is discarded for having a very low contrast. Low contrast points are very sensitive to light
alterations and therefore, very unstable. Because DoG function is very sensitive to edges,
resulting in a lot of interest points in edge lines, points that have poorly determined location
but high edge response must be eliminated. After this step all points are now considered key
points.

Orientation assignment

This is the step where rotation invariance will be achieved. To each key point one or more
orientations will be assigned based on local image gradient directions. The invariance to
rotation is achieved because all future operations will be performed relative to the assigned
orientation. To find the correct orientation, an histogram of gradient orientations is created
based on the point’s neighbor. The peak orientation of the histogram is assigned to the point.

Key point descriptor

From the previous steps the algorithm was able to achieve scale, rotation and location in-
variance. This step aims to achieve illumination and 3D viewpoint invariable. This is done
by assigning a highly distinctive descriptor to each key-point. The key point descriptor is
created from magnitude and orientation gradients of the area around the key point. This step
is performed on the closest scale image.

Key point matching

As we told before, for image matching we need more than scale-invariant features found
in an image. If we cannot match the features found in an image to those found in another
image, matching is not possible. SIFT gives a highly distinctive descriptor for each key point,
making it a reliable method even when large features databases are being used. Normally
when features are extracted they are stored in various ways and when a new image is captured
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and its features extracted, each of the new points must be compared to stored points for a
match. [23] shows a good reliability even when large databases are used. Two important
determinants of SIFT’s algorithm performance are: how the points are stored and how the
search is made. Searches in large databases can sometimes be a bottleneck to algorithms
performance. KD-Tree [14] is a normally used data structure that allows for points to be
organized in space according to the value. This kind of data structure is used in applications
where we have to find the values closest to a given value. As in any tree-organized data
structure any search for a given value is much more efficient than regular searches.

2.3 SURF-features Algorithm

Speeded Up Robust Feature (SURF) [1] [2] is another feature extraction and matching algo-
rithm also intended to be scale and rotation invariant. Although it is based on SIFT, it is said
be faster and have better performance against image transformations. One of the reasons of
it’s speed is the use of Integral Images as an aid structure throughout the rest of the process.
It is also based in Hessian detectors, as it was done by Lindberg [20], for the extraction of in-
terest points, and Haar Wavelet [10] responses as the points descriptors. As for SIFT, SURF
as two important stages: interest point detection and point descriptor matching.

2.3.1 Interest point detection

As in many other algorithms, we must start by finding interest points.In SURF this is done in
four sub-steps starting by using Integral Images as a helpful way to speed things up. Using
a Hessian detector we then find interest points across the image and construct a scale space
representation. The final step in interest point detection is to use non-maximum suppression.

Integral Images

Integral Images or Summed Area Table first appeared in [6] and have become very useful
in box type convolution filters. When for each pixel we compute something based on a
mask, such as circular mask in SUSAN, we have a convolution filter. In order to use integral
images, the filter mask must have a box shape because Integral Images use rectangles as the
base of calculation.

I(x, y) =

i′<x∑
i=0

j≤y∑
j=0

I(i, j) (2.3)

From 2.3 we can see that for each pixel A = (x, y) it’s integral image result will be the sum
of all pixels from (0, 0) to A. Therefore we can say that integral images represent the sum of
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all pixels within a rectangle defined by (0, 0) and (x, y). The reason why Integral Images are
so useful is that for any pixel, we can find the sum of intensities of the surrounding area with
just three operations and four memory accesses, as showed in figure 2.2. The time in which
we can find a result in an Integral image is independent of filter size, this is very important
as SURF usually uses big filters

Figure 2.2: Integral Image sum of intensities
∑

= I(A) + I(D) − I(B) − I(C)

Moreover Integral Images are relatively easy to compute as we only need one pass over
the image.

I(x, y) = i(x, y) + I(x − 1, y) + I(x, y − 1) − I(x − 1, y − 1) (2.4)

The fact that Integral Images are fast to compute and make finding the sum of intensities
an easy and fast task, is one of the reasons for SURF speed.

Hessian Detector

The previous step was only to give us a way to speed calculations involving sums of inten-
sities. Now we will start the process of finding those points using an Hessian-based detector
for every pixel.

H(X, σ) =

Lxx(X, σ) Lxy(X, σ)
Lxy(X, σ) Lyy(X, σ)

 (2.5)

In equation 2.5 H(X, σ) defines the Hessian matrix at point X where Lab(X, σ) is the
Gaussian second derivative in the a and b directions. These derivatives are computed for the
smoothing scale σ, which has the same meaning as in equation 2.1 in Section 2.2.1. Box
filters are used to approximate the results of these second order Gaussian derivatives and can
be evaluated using integral images at low cost. For a real valued Gaussian with σ = 1.2 the
box filter that approximates result will have a size of 9 ∗ 9.

In a Hessian matrix the value of its determinant is used to classify the maxima and min-
ima by the second derivative test. In SURF the determinant’s sign is used to classify the
point.
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det(H) = LxxLyy − (wLxy)2 (2.6)

For each pixel we can calculate the determinant and use it to classify the point. We can
consider a point as an extremum if its discriminant is positive. We refer to this determinant
as the blob response and all responses are stored in a blob response map over different scales.
They will later be used to locate interest points.

Scale Space representation

In order for the algorithm to be able to detect the same point over different scaled images,
we need to search for interest points across the different image scales. We therefore need a
structure that allows us to represent this scale space. In computer vision pyramids are used to
implement this scale space. Starting, with the original image at the base level of the pyramid
we smooth, using Gaussian, and sub-sample (reduced in size) it to get to the next level of the
pyramid. This method of creating an image pyramid is used in SIFT but, with the help of
integral images and box filters, this computationally heavy step is improved in SURF.
The use of integral images and box filters allows SURF to apply box filters of any size
directly on the same image with a constant speed, instead of reapplying the same filter to
a previously filtered image. This is a considerably big difference between image pyramids
used in SIFT since we upscale the filter size rather than reduce the image size. As mentioned
before "normal" image pyramids are computationally heavy, on the other hand, SURF image
pyramids are not. This is another reason why the SURF algorithm is faster.

In SURF, this image pyramid is divided into octaves and each octave refers to a series
of response maps. These octaves are then subdivided into a constant number of scale levels.
For the first level of the pyramid, a 9 ∗ 9 sized filter is used and for subsequent layers the
filter is up-scaled. At any iteration the next scale the window has to increase a minimum of
2 pixels, since we always need a center pixel.

Points Location

Now that we have the image pyramids constructed for each pixel, we have to find those that
are invariant to scale and rotation and therefore points of interest. First we start by using
a threshold to eliminate all points that have responses below the predetermined threshold.
With this we can control the quantity of points detected and we can choose to increase the
threshold and, by this, allowing only the most invariant points to continue. Once all the
points are threshold, a non-maximum suppression, as explained in section 2.4.1, is done to
find the candidate points. Considering that an image is on a layer of the pyramid and there
are two more layers next to it (each one of the scales above and below), we can say that a
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pixel has a total of 26 neighbors as illustrated in figure 2.3.

Figure 2.3: Non-maxima Suppression.

Considering point X in figure 2.3, during non-maxima suppression, the point will be
considered a maxima if it is greater than his neighbors, represented as blue balls.

After this two steps we have a set of points that are both higher than the threshold and
local maxima. From here we interpolate the points using the method purpose by Brown and
Lowe in [5] resulting in a set of detected features.

2.3.2 Interest point description and matching

Now that we have a set of points found in an image, we need to find the same points in
a different image. Since the same method of finding points will be used in both images,
chances are that points found in the first image, will be found again in the second. But there
is still the question of knowing if it is the same point or not. As mentioned before we have to
find a way of describing the points (i.e. a descriptor). This descriptor describes the content
of the area around the pixel in terms of intensity.

Orientation assignment

As said before an image feature should be invariant to image rotation. In SURF, as in SIFT,
this is done by identifying an orientation for each interest point. Like explained in section
2.2.1 all future operations will be performed relative to the assigned orientation, therefore
achieving orientation invariance. Instead of gradient histograms, as used in SIFT, SURF
uses Haar wavelet to find the assigned orientation. One of the uses for the Haar Wavelet is
to find gradients, both in x and y directions.

To facilitate the explanation of how an orientation is found, we will divide the process
into three steps. For each point we:
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Figure 2.4: Haar Wavelets.

• Calculate wavelets
To do this, we start by choosing a circular area around the point. This area has the
radius size of 6σ, where σ is the scale in which the point was detected. For all points
inside the area we calculate the wavelet responses. The wavelets used have a size of
4σ. Once again the integral images came in handy as we only need six operations to
compute the response in x or y direction at any scale.

• Map responses
All wavelet responses are weighted with a Gaussian centered in the interest point.
Again the scale, in which the point was detected, is taken into account and a deviation
of 2.5σ is used. With all responses weighted we map them in a 2D space.

• Sum wavelets
Imagining a circle in the 2D space centered at the origin, we divide this circle in 6
slices. For each slice we sum all responses within, resulting in a response vector. After
all 6 vectors are calculated, the longest one is chosen as the interest point orientation.
The size of the slice, in this case Π

3 can be altered although caution must be taken.

This process is exemplified in figure 2.5.

Figure 2.5: Wavelets Sum. In this case the assigned orientation would be the one in last
image.
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Haar wavelets based Descriptors

The process of calculating a descriptor for each point starts by constructing a square region
centered in the point along the point’s orientation. This square has a size of 20σ and contains
the all pixels which will take part in the calculation of the descriptor vector. The square is
then divided into 16 (4 ∗ 4) sub-regions and for each one, we calculate the Haar wavelets
(size 2σ), responses obtaining this way a descriptor vector.

Descriptorsubregion = [
∑

dx,
∑

dy,
∑
|dx|,
∑
|dy|] (2.7)

From equation 2.7 we can see that each sub-region will have a sized 4 vector containing
dx dy which are the wavelet responses in x and y respectively and they’re absolute values
|dx||dy|. Note that these directions are defined in relation to the point’s assigned orientation.
Therefore we have 4 descriptor values for each sub-region with a total of 16 sub-regions
making a total of 64 values. These 64 values are the entries of the point’s descriptor vector.
Another version of SURF called SURF-128 doubles the number of descriptors values. It
does this by splitting the sum according to their sign, we therefore get two descriptors for
each of older ones as we can see in 2.8.

Descriptorsubregion = [
∑

dx < 0,
∑

dy < 0,
∑
|dx < 0|,∑

|dy < 0|,
∑

dx ≥ 0,
∑

dy ≥ 0,
∑
|dx ≥ 0|,

∑
|dy ≥ 0|]

(2.8)

If we double the descriptor values with the same 16 sub-regions we get 8 × 16 = 128
values. Having a descriptor with twice the number of the values, we get a more distinctive
descriptor. This reduces the number of mismatches but, on the down side, even though the
computing time is not much slower than normal, the matching stage is much slower.

Indexing for matching

In order to help in the process of indexing and matching, SURF uses the sign of the trace of
the Hessian matrix, computed in the detection phase, as a way to differentiate points. The
sign of the Laplacian (trace of the Hessian matrix) allows us to distinguish between bright
blobs on dark backgrounds and the reverse. This simple and "free"(already computed) infor-
mation gives a way of differentiating the points on a high level, if the points have different
signs they are not a match. It is easily understood the advantages this gives us, at the index-
ing phase we can create 2 areas and when searching for a match we only have in one of the
areas. Even in more complex indexing systems such as K-d trees we can split the search area
therefore improving the matching time.
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2.4 SUSAN Algorithm with Kirsch

In this section we will explain the methods used to attempt the extraction and matching of
points. This method starts by finding points using SUSAN’s corners and giving each point a
descriptor based on Kirsch Gradient.

2.4.1 SUSAN Corners

Smallest Univalue Segment Assimilating Nucleus (SUSAN),proposed by Stephen M. Smith.
[26], is a commonly used algorithm in computer vision to extract features from an image.
SUSAN, as many other algorithms, follows the method of applying to each pixel’s neigh-
boring area a set of rules and getting a response that defines the pixel. This area, in this
case, is a circular window and all pixels inside that area are compared in terms of brightness
to the nucleus (center of window). This area of similar pixels is called "Univalue Segment
Assimilating Nucleus" (USAN) and is later used to determine if the pixel is a corner. Im-
age matching requires that a number of features are extracted from an image. When using
SUSAN corners as the extractor of features, we assume that corners are the most important
points. When we say that a point is the most important it means that it is an easily detectable
point in a sequence of images or images from different perspectives.

The principle

The basic concept of SUSAN is having, for each pixel, a local area of similar brightness,
the USAN. The USAN contains important information about the area surrounding the pixel.
Considering the area of the mask window and the area of the USAN we can see in figure 2.6
why we can say that if a pixel is in a corner or edge the area of the USAN it will always be
less than half the size of the window.

Figure 2.6: USAN area

In 2.6b we can see that when the nucleus is in a flat area (no corners or edges) the USAN
area is at a maximum. If the nucleus lies in an edge the area will be half 2.6c and the sharper
the corner the less the area of the USAN will be2.6a. The area of the USAN will decrease
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as an edge is approached reaching a minimum at the correct location of the edge. Looking
at the relation between the area of the USAN and where the pixel is, we can say that corners
will be the minimum responses to the algorithm.

How it works

Now that we understand the principle behind SUSAN algorithm we will describe the work
flow of extracting corners from an image. This process can be divided in five steps.

• Place a circular mask in each pixel.
For each pixel we start by centering a circular mask window, in most cases with a
size of 37 pixels, and we compare the nucleus brightness with all the pixels inside the
mask. Originally the following equation 2.9 was used to determine if a pixel had an
acceptable brightness, meaning, if it’s brightness was similar to the nucleus.

c(−→r ,−→r0) =

1 i f |I(−→r ) − I(−→r0)| ≤ t

0 i f |I(−→r ) − I(−→r0)| ≥ t

 (2.9)

I(−→r ) and I(−→r0) are the brightness’s of any pixel and the nucleus respectively, c is the
output comparison and t is the brightness difference threshold. With t we can control
the acceptable differences in brightness within the USAN. If we increase t, there-
fore allowing greater differences in brightness, the algorithm will consequently give a
greater number of responses. We can say, then, that t allows to control the number of
responses. In 2.10 we can see later version of 2.9.

c(−→r ,−→r0) = e−( I(c(−→r ))−I(c(−→r0))
t )6

(2.10)

With 2.10 we get more stable and sensitive results. While 2.9 gives us binary results, 1
or 0 depending on the threshold, with 2.10 we get continuous results between 0 and 1.
Because of this, with 2.10, small variations to a pixel’s brightness will not have major
effects on c.

• Define the USAN.
Now that we have a way of defining which pixels belong to the USAN, we have to
calculate the number of pixels that belong to the USAN. For that we use:

n(−→r0) =
∑
−→r

c(−→r ,−→r0) (2.11)

Applying 2.11 to each pixel within the mask we get n, the area of the USAN.
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• Geometric threshold.
As mentioned before, we can define a pixel has being in a corner based on the relation
between the area of the window and the size of the USAN. The corner response, which
defines "the level of corner" that a pixel is in, can be defined as:

R(−→r0) =

g − n(−→r0) i f n(−→r0) < g

0 otherwise

 (2.12)

R(−→r0) being the initial corner response, is determined by comparing the area of the
USAN, n(−→r0), with a geometrical threshold g. We now have two different thresholds,
g and t, while t mostly affects the quantity of responses, g also affects the quantity but
most importantly it also affects the quality of the corners. We can define the quality
of a corner as it’s level of sharpness, for lower values in g only sharper corners will
be detected. From figure 2.6 we can define certain values for g to get different results.
Let us consider nmax the maximum value that n could take, this happens when we are
looking at a flat colored area and n will have the same size as the mask window. If we
consider g = nmax in 2.10 all points would have positive results, for g = 3nmax/4 only
pixels that are on edges or corners. Since an USAN size includes the nucleus, an edge
will always have n > nmax/2 therefore we can say that for corners, g can be defined
has nmax/2.

• Eliminate false positives.
Before we can declare a point as a corner we have to take into account that false
positives will be produce. In images extracted from the real world, this can occur
where the boundary limits of the image are blurred. In order to eliminate this problem
a simple method was implemented and applied the points found in the previous step. If
we find the center of gravity of the USAN and then the distance from it to the nucleus,
we can reject those which have the center of gravity near the nucleus. A USAN from
a corner will not have it’s center of gravity near the nucleus. Another problem in real
images is the noise. To overcome this problem SUSAN implements a contiguity rule
which states that all pixel’s, within the mask, in the direction of the center of gravity
starting in the nucleus must be part of the USAN. By doing so we ensure that a corner
must be part of a bigger part of the image thus eliminating single pixel’s usually created
from noise.

• Find corners.
The final step on SUSAN corners algorithm is to find the correct location of the cor-
ners. At this step of the algorithm, we have several points in the image which are
possible corners. A corner will not have only one response in it’s area, it will have
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all the points which were validated in equation 2.12. But which one of these points is
the correct point? As we can see in equation 2.10 the response is 0 if n(−→r0) ≥ g and
g − n(−→r0) otherwise, which means that the smaller the USAN area is, the bigger the
response will be. It is easily understood from figure 2.7 that the closer the nucleus is
to the tip of the corner the smaller its USAN area will be and therefore the bigger the
response.

Figure 2.7: Corner USAN area

Because of this, we can state that the corner will be a local maximum in the image.
Therefore, to find corners we have to find local maximums in the response image. To do
so SUSAN uses a non-maximum suppression. Non-maximum suppression is an algorithm
that suppresses all image information that is not part of local maxima, this is done using the
gradient direction and will result in a set of corner points.

2.4.2 Kirsch Edge Detector

The Kirsch algorithm [18] is used to detect edges in an image using eight compass filters.
Each filter is the gradient of the neighboring area of the pixel in a determined direction. For
each direction, 8 in total, we apply the filter to the image and the one which has the highest
response is considered as the pixel’s orientation. We then can use this maximum response to
create a final image that will represent the edges of the contours.

The algorithm uses 3*3 windows for each pixel one for each direction:

+3 +3 +3 +3 +3 +3 -5 +3 +3 -5 -5 -3

+3 0 +3 -5 0 +3 -5 0 +3 +3 0 +3

-5 -5 -5 -5 -5 +3 -5 +3 +3 +3 +3 +3

-5 -5 -5 +3 -5 -5 +3 +3 -5 +3 +3 +3

+3 0 +3 +3 0 -5 +3 0 -5 +3 0 -5

+3 +3 +3 +3 +3 +3 +3 +3 -5 +3 -5 -5
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When allying these filters to an image, if the pixel has a strong response it means that
the pixel is in an edge. Considering grayscale images, we can say that a pixel belongs to
an edge if there is another pixel next to it that has a very different level of color. If we
apply the gradient to an area with the same color, not an edge, the window response will
always be 0, since the sum of multipliers in the window is also 0 (ex: for the first window
3 + 3 + 3 + 3 + 0 + 3− 5− 5− 5 = 0) and 0 ∗ X = 0. In the other hand, if we consider an edge
where there is an area where the pixel’s color is very different, the window response will be
as high as that difference in color. Apart from giving the edges, Kirsch algorithm can also
be used as a descriptor for a pixel. We can say that the descriptor for the pixel is an list of
the 8 responses to the filters. When comparing the same world point in two different images
chances are that pixel will have the same response to the filters.

2.4.3 All together

As mentioned before, in order to extract 3D information from a scene the first step is image
matching, and for that we need points in both images and a way to match them. With SUSAN
corners providing us with points we can use the Kirsch gradient as a way to give each point
a descriptor to compare and match them. When find a match for the point we have to search
all the other image points for the one that has a list of Kirsch values closer to the point.



Chapter 3

3D Reconstruction

3.1 Introduction

In this work, when referring to 3D reconstruction, we mean the process of extracting 3D
information from scene and interpreting it. We do not really reconstruct a scene based on
images since that is not the objective of the work. The objective is to know where, relatively
to us, the object is. As mentioned before the depth of a scene point is not directly accessible
in 2D images. With at least two 2D images, on the other hand, triangulation can be used
to measure the depth of the scene. In order to capture two images from the scene there are
two different approaches in robotics, stereo and motion analysis systems. Stereo systems,
as the name suggest have two different cameras, normally placed side-by-side with different
angles(this way increasing the common viewing area in closer distances). As for motion
analysis systems there is only one camera which means that both images needed for trian-
gulation must be obtained with the camera in different positions. This process is normally
called structure from motion.For this section the most important references are [8] and [11].

3.2 Camera calibration

Cameras are obviously one of the most important parts of computer vision systems and
have a big influence in the system’s performance. In order to, correctly determine the 3D

information of a scene, one must know exactly how an object in 3D space is viewed in the
image. We can say that the camera maps 3D world points to 2D image points and knowing
how the mapping is done is the objective of camera calibration.
Every camera has it’s own parameters therefore, pre-determining and using them with every
camera is not a valid solution. As we will show in this section, we can determine these
parameters with some mathematics and known patterns.

18
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3.2.1 Camera Matrix

Before we introduce the concept of camera matrix let us start by explaining how an object is
viewed by a camera. How 3D points are mapped in the image is determined by the camera
model. The simplest and most commonly used in computer vision, is the pinhole camera
model [9] also known as projective camera. In this model we consider the central projection
of 3D space points onto an image plane. This geometry is represented by figure 3.1(a).

(a) 3D view

(b) 2D view

Figure 3.1: Pinhole geometry. Note that the image plane is in front of the camera

In figure 3.1(a) let us consider A = (X,Y,Z)T as a point in the 3D space. In the pinhole
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camera model, Z = f and the plane that this defines is called the image plane or focal

plane. The line from C perpendicular to the image plane defines the principal axis and it’s
intersection with the image plane defines the principal point p. The intersection between the
line that joins C to A and the image plane is where A is mapped, in this case represented by a.
From figure 3.1(b) we can determine that the point (X,Y,Z)T is mapped to ( f X/Z, f Y/Z, f )T

in the image plane. Considering only the coordinates in the image plane, we have

(X,Y,Z)T → ( f X/Z, f Y/Z)T (3.1)

Equation 3.1 describes the mapping from 3D to 2D coordinates. We can also express this
mapping using matrices:


X

Y

Z

1

→


f X

f Y

Z

 =


f 0

f 0
1 0



X

Y

Z

1

 (3.2)

We can now introduce the concept of camera matrix. The mapping between 3D and 2D

is usually represented by a 3 ∗ 4 matrix called camera matrix or camera projection matrix.
Where x represents the point in the image and X the point in the world.

x = PX (3.3)

From this point on, we will refer to the camera matrix as P, X will be the homogeneous
vector (X,Y,Z, 1)1 that represents a point in the real 3D world and x the representation of the
image point.

Equation 3.1 assumes that the center of the image plane is at the principal point. On the
bad side we cannot assume this in practice and it must be taken into account when defining
P. But, on the good side, this offset between the principal point and image plane is easily
introduced in equation 3.1:

(X,Y,Z)T → ( f X/Z + px, f Y/Z + py)T (3.4)

and, using matrices:


X

Y

Z

1

→


f X + px

f Y + py

Z

 =


f px 0

f py 0
1 0



X

Y

Z

1

 (3.5)
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Considering

K =


f px 0

f py 0
1 0

 (3.6)

we can say that K represents the camera’s intrinsic parameters.
In theory, K, as described in equation 3.6, is sufficient to correctly describe the mapping.
But, once again, in practice we have other factors to take into account. In real cameras there
is the possibility of non-square pixels. We are not talking about cameras that purposely don’t
have square pixels, such as those that use hexagonal pixels. We are talking of errors that
make the pixel’s have a bigger width/height than height/width. If we measure coordinates in
pixels we have different scales in the axes. Considering mx and my as the number of pixels
per unit of distance in image coordinates, αx = f mx and αy = f my represent the focal length
in terms of pixels in the x and y direction. We can then define K like:

K =


αx x0 0

αy y0 0
1 0

 (3.7)

where x0 = mx px and y0 = my py. Even though this rarely happens, we must also introduce
the possibility of non-perpendicular image axis. This is done by adding another variable (γ)
to K that represents the skew of the image. We can finally define K as:

K =


αx γ x0 0

αy y0 0
1 0

 (3.8)

We now have the intrinsic parameters of the camera but, P cannot be defined using only
K, we also need the extrinsic parameters. Extrinsic parameters are the ones that define where
the camera is in the world i.e. its rotation and translation. R is the rotation matrix and defines
the camera’s rotation in each angle R = Rx(Ψ),Ry(φ),Rz(θ) where:

Rx(ψ) =


1 0 0
0 cosψ sinψ

0 −sinψ cosψ

Ry(φ) =


cosφ 0 −sinφ

0 1 0
sinφ 0 cosφ

Rz(θ) =


cosθ sinθ 0
−sinθ cosθ 0

0 0 1

 (3.9)

t = (x, y, z) is the translation vector and represents the offset between the origin of both
coordinate systems. T = originob ject − origincamera.

Now that we have both the intrinsic and extrinsic parameters we can define P.
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P = K[R|t] (3.10)

which means that

x = K[R|t]X (3.11)

3.2.2 Methods

Now that we understand what a camera matrix is, we will talk about methods for estimation
P therefore, calibrating the camera. There are several algorithms to do this and they do it by
corresponding 3Dspace and image points. The idea is that, given enough correspondences
X → x, P may be determined. The usually used method to calibrate a camera, it’s to obtain
several images of a known structure in different positions and rotations. A common struc-
ture used in camera calibration is the chessboard plan. Basically we move and rotate the
chessboard while the camera is taking images. Some other methods use 3D objects (usu-
ally covered in markers) with the same purpose without the need to move the object. These
methods tend to be harder to work on. Considering the chessboard as the calibration object,
from observing a 2D image of it, and knowing that all squares have the same size, we can
determine it’s rotation and relative position. This means that we can match x and X and, up
to a certain level, know the third coordinate Z in X.

Since we know both x and X, from equation 3.3, x = PX we can determine P. A
rotation matrix can be defined by three angles 3.9 and the translation vector has another three
variables giving us six unknown variables. As seen in 3.6, there are four other variables in
the intrinsic parameters therefore, making a total of ten values that we have to find so we can
define P. At least two images are needed to calibrate a camera, usually, the more you use the
better results you get. There are several methods available to find this unknown values. We
will analyze the method used in openCV based on Zhang [29, 30] and Borwn[4]. In order to
facilitate the comprehension we will, once again, organize the algorithm in steps.

1. Acquire images

2. Chessboard Corners

3. Homography

4. Constraints

5. Closed-form Solution

6. Getting the values
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7. Distortion

The first obvious step of the algorithm is to acquire images to work. These images must
be of a chessboard pattern printed in a planar structure and we need at least two. Between
frames, we can either move the pattern or the camera. This movement does not need to be
known. From each image of the pattern we then extract the chessboard corners.

The following steps will be explained individually in the following sections.

Homography

Figure 3.2: Planar Homography

In computer vision the term homography refers to mapping between points on two image
planes. When we haev points in a plane surface and we map them to the image plane we
have a homography, hence the need to use a planar surface for the pattern. Again using the
notation of X and x, we can express the action of homography as:

x = sHX (3.12)

The importance of using H is that it not only includes the physical transformation but
the projection, which includes the camera intrinsic matrix, as well. We can express this by
splitting H.

Let us define

W = [R t] and M =


fx 0 cx

0 fy cy

0 0 1

 (3.13)

allowing us to express equation 3.12 as:
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x = sMWX (3.14)

To simplify H we will define Z = 0 therefore allowing us to ignore one column of
R = [r1, r2, r3]. We can now describe the homography by:

H = sM[r1 r2 t] (3.15)

To find H, OpenCv uses multiple images of the same planar pattern. From the previous
section we know that for each view there are six unknowns (three angles for rotation and
three values for translation). Since we get eight equations from detecting the chessboard we
have eight new equations and six unknowns for each view which will allow us to compute H

(both intrinsic and extrinsic parameters).

Constraints

From the previous step we collect a homography H for each view. If we write H as column
vectors, H = [h1, h2, h3] we can rewrite equation 3.15 as:

H = [h1 h2 h3] = sM[r1 r2 t] (3.16)

And, considering λ = 1/s:

h1 = sMr1 or r1 = λM−1h1

h2 = sMr2 or r2 = λM−1h2

h3 = sMt or t = λM−1h3

(3.17)

Knowing that r1 and r2 are orthonormal, therefore rT
1 r2 = 0, we get to our first constraint:

hT
1 M−T M−1h2 = 0 (3.18)

We also know that the rotation vectors have equal magnitude ‖r1‖ = ‖r2‖ or rT
1 r1 = rT

2 r2,
yielding our second constraint:

hT
1 M−T M−1h1 = hT

2 M−T M−1h2 (3.19)

We now have two constraints on the intrinsic parameters.

Closed-form solution

In order to make things easier to read and understand we will define B as B = M−T M−1

meaning:
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B = M−T M−1 =


B11 B12 B13

B12 B22 B23

B13 B23 B33

 (3.20)

Considering the closed-form solution of B we get:

B =


1
f 2
x

−
γ

f 2
x fy

cyγ−cx fy
f 2
x fy

−
γ

f 2
x fy

γ2

f 2
x f 2

y
+ 1

f 2
y

−
γ(cyγ−cx fy)

f 2
x f 2

y
−

cy

f 2
y

cyγ−cx fy
f 2
x fy

−
γ(cyγ−cx fy)

f 2
x f 2

y
−

cy

f 2
y

(cyγ−cx fy)2

f 2
x f 2

y
+

c2
y

f 2
y

+ 1

 (3.21)

As mentioned before γ, the skew of the image is almost always equal to 0. Therefore, if
we add this new constraint to equation 3.21 we can simplify it’s writing and get:

B =


1
f 2
x

0 −cx
f 2
x

0 1
f 2
y

−
cy

f 2
y

−cx
f 2
x
−

cy

f 2
y

c2
x

f 2
x

+
c2

y

f 2
y

+ 1

 (3.22)

From equations 3.20 we can see that B is symmetric, which means we can define it as a
6D vector b = [B11, B12, B22, B13, B23, B33]T . Going back to H, let us define the ith column of
H as hi = [hi1, hi2, hi3] and with this we have:

hT
i Bh j = vT

i jb (3.23)

Using this definition for vT
i j, the two constraints previously defined (equation 3.18 and

3.19) can be rewritten as:  vT
12

(v11 − v22)T

 b = 0 (3.24)

For n images we collect n of these equation which can be stacked in a 2n ∗ 6 matrix V

getting Vb = 0.

Getting the values

Once we have V , from the previous step, we can solve the equation (Vb = 0) for b. Remem-
bering now that b = [B11, B12, B22, B13, B23, B33]T the camera intrinsic parameters are directly
calculated from the closed-form solution of B.

fx =
√
λ/B11 (3.25)

fy =

√
λB11/(B11B22 − B2

12) (3.26)
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cx = −B13 f 2
x /λ (3.27)

cy = (B12B13 − B11B23)/(B11B22 − B2
12) (3.28)

γ = −B12 f 2
x fy/λ (3.29)

λ = B33 − (B2
13 + cy(B12B13 − B11B23))/B11 (3.30)

As for the extrinsic values, we compute them from the equation that we read off from the
homography condition.

r1 = λM−1h1r2 = λM−1h2r3 = r1 × r2t = λM−1h3 (3.31)

To get an exact rotation matrix, we can not simply join together the r-vectors to form
R = [r1 r2 r3]. If we do this, when using real data, the condition RtR = RRT = 1 will not
hold. To solve this problem we use the SVD of R instead of the original R.

Distortion

We now have all the intrinsic and extrinsic parameters, but no work concerning distortion
has yet been done. Cameras have distortion, in more correct words, camera’s lens cause
distortion in the image. Distortion makes us "perceive" points on the image in the wrong
place. If we consider (xp, yp), the coordinates of a point, where ’p’ stands for perfect as if
the camera had no distortion, we can also consider (xd, yd) as the point’s distorted location.
With this we can state that: xp

yp

 =

 fxXW/ZW + cx

fyXW/ZW + cy

 (3.32)

Using the results of the calibration without distortion:xp

yp

 = (1 + k1r2 + k2r4 + k3r6)

xd

yd

 +  2p1xdyd + p2(r2 + 2x2
d)

p1(r2 + 2y2
d) + 2 + p2xdyd

 (3.33)

To get the distortion parameters a large list of these equations are collected and solved.
Once we get the distortion parameters the extrinsic parameters must be re-estimated.

3.2.3 Stereo Cameras

As mentioned before, one way of extracting 3D information from a scene is using stereo
cameras. Along with the information about the camera’s intrinsic and extrinsic parameters,
we also need to know how to relate the two (more cameras can be used) cameras in the
system. Stereo Calibration figure 3.3 is the process of finding a rotation and translation
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matrix that defines the geometrical relationship between the two cameras. In this section
we will also talk about Stereo Rectification figure 3.4, which is the process of "making" the
cameras optical axes appear parallel. With this, images appear as if they had been taken by
cameras with aligned image planes. For these processes the same method of "showing" a
calibration is used. Each camera takes, at the same time, an image of the chessboard.

Stereo Calibration

Figure 3.3: Stereo Calibration

So, the objective of stereo calibration is to geometrically relate the cameras but, how can
we do this? We need two matrices, R, the rotation and T the translation. Let us denote TlRl

and TrRr as the rotation and translation matrices, obtained using single-camera calibration,
of the left an right camera respectively. Being P a point in space, in camera coordinates we
get Pl = RlP + Tl and Pr = RrP + Tr. Keeping in mind the meaning of R and T in stereo
calibration:

Pl = RT (Pr − T ) (3.34)

If we solve this for R and T :

R = Rr(Rl)T T = Tr − RTl (3.35)

For stereo calibration we use the method described in section 3.2 to get the translation
and rotation values of the chessboard and use them in the previous equation. This is done for
every view and at each one: errors are introduced due to noise and rounding. To get minimum
error values, a Levenberg-Marquardt [19, 25, 21] (LMA) algorithm is used. Starting with a
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median of the values of R and F as an initial approximation, the algorithm then finds the
minimum of the reprojection error, returning the solution for R and T .

Bouguet’s Algorithm for Stereo Rectification

Figure 3.4: Stereo Rectification

As we will see in the development part of the report, it is easier to work with rectified
images. In image 3.4 we can see the objective of image rectification. In OpenCv, two
algorithms are used for image rectification. Hartley’s [12] and Bouguet’s algorithm 1. For
Hartley’s algorithm we simply need to observe points in an image but there is no sense of
image scale, furthermore it tends to produce more distorted images. For these reasons and
because we can use calibration patterns, we will choose Bouguet’s algorithm.
Bouguet’s algorithm works by attempting to minimize of image retro-projection distortion
while, at the same time, maximizes common viewing area between the two images. Part
of Stereo Rectification is aligning the optical axes. Knowing that we have R that relates
both cameras, if in each camera we apply half a rotation (rrrl for the right and left camera
respectively) we achieve coplanar alignment. To achieve row alignment we need to define
Rrect, we start by defining three vectors:

e1 =
T
||T ||

e2 =
[−TyTx0]T√

T 2
x + T 2

y

e3 = e1 × e2 (3.36)

1Jean-Yves Bouguet never published this algorithm. The algorithm is based in the method presented by
Tsai [27] and Zhang[29] [30]
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Where e2 is orthogonal to e1 and e3 is orthogonal to both e1 and e2. Rrect can now be
defined:

Rrect =


(e1)T

(e2)T

(e3)T

 (3.37)

Rrect will make the epipolar lines horizontal and locates the epipoles at infinity. The
concept of epipolar lines and epipoles will be explained in section 3.3.1. To achieve row
alignment, for each camera we have:

Rl = RrectrlRr = Rrectrr (3.38)

Figure 3.5: Rectified Image

Stereo rectification allows us to find the rectification maps which, when applied to im-
ages, aligns them. When we say that the images are aligned we mean that the rows of pixels
between the two cameras are aligned as we can see in figure 3.5. It is easily understood the
advantages that this brings. Having to find the same point in two images we can restrict the
search to a row of pixels instead of searching in the entire image. With this we can increase
efficiency and, by restricting the points that are possible matches, we also increase reliability.

3.3 Reconstruction

3.3.1 Epipolar Geometry

When a scene is viewed from two different cameras every point of the scene will have dif-
ferent projections in each image plane. In fig3.6 we have two cameras with their respective
focal points OL and OR, observing a point X. The projection of X onto each of the image
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Figure 3.6: Epipolar geometry

planes is denoted xL and xR. The line connecting both focal points is called baseline and
its intersection with the images planes creates eL and eR which are the epipoles. The plane
defined by the baseline and point X is called the epipolar plane. The line that contains a
projection and an epipolar point on the same image is called an epipolar line. The epipolar
geometry of a scene can be defined by a matrix called Fundamental Matrix (F). This matrix
depends only on the relative position of the cameras.

x′T Fx = 0 (3.39)

Eq3.39 defines the relation between the two cameras and the projected points. If the equation
is confirmed, the point xL belongs to the left view epipolar line that corresponds to projection
point xR. Note that a null result is not enough to say that xL and xR are projections from the
same point in the scene. As we can see from Fig3.6 three example points (X1,X2 and X3)
will all have a null result in Eq3.39 even though they are different points in the scene.

3.3.2 Fundamental matrix

The fundamental matrix [24] [11] is a 3 × 3 matrix with rank 2 and 7 degrees of freedom.
Even though there are 9 elements, scaling is not significant and DetF = 0 removing one
degree of freedom. There are two different ways of finding the Fundamental Matrix, we can
either find it from known camera matrices or compute it from point correspondences. In
single camera systems we will be using only one camera which can be calibrated. However,
even if we calibrate the camera we can only use the intrinsic parameters. A camera matrix is
composed of intrinsic and extrinsic parameters, using a moving camera makes the use of the
same extrinsic parameters throughout the process impossible. For this reason we will rely on
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extracting the camera matrices from the fundamental matrix, which in turn will be extracted
from point correspondences. To extract the fundamental matrix from camera matrices we
use the following:

F = [e′]xP′P+ (3.40)

Equation Eq3.40 will give the fundamental matrix from two known camera matrices where
e′ is the epipole of camera P′, [e′]x is the skew-simetric correspondence of e′ and P+ is the
pseudoinverse of P.
If camera matrices are not known we can compute F from point correspondences between the
images. If there is only one camera this is the most effective way to extract 3D information
from a scene. We can also predict where the camera is after a certain movement and define
it as the second camera. Predicting where the camera will be after a certain movement is not
accurate for various reasons such as unpredicted variations on the floor. The procedure of
estimating the intrinsic parameters of two unknown cameras from point correspondence is
known as structure from motion [11, ?]. Starting with eq 3.39 for any pair of corresponding
points xi and X′i in the two images we get:

x′x f11 + x′y f12 + x′ f13 + y′x f21 + y′y f22 + y′ f23 + x f31 + y f32 + f33 = 0 (3.41)

For n pairs of points we have:

A f =


x′1x1 x′1y1 x′1 y′1x1 y′1 x1 y1 1
...

...
...

...
...

...
...

...

x′nxn x′nyn x′n y′1xn y′n xn yn 1

 f = 0 (3.42)

Because F has only 7 degrees of freedom only 7 pairs of points are needed to find a
solution however 8 pairs are usually used. Solving the equation system A f = 0 we can get
F. Most of the times more than 8 points are used and each extra point originates an extra
line in matrix A. If we have more points than variables in an equation system, the system is
said to be over-determined. In most of the cases there is no single solution and for that we
must find the one which minimizes the error. The most commonly used methods of solving
such equation systems are the RANSAC algorithm [7] and the SVD method [28].

The Ransac (RANdom SAmple Consensus) algorithm is a method to estimate parame-
ters of a mathematical model designed to cope with a large proportion of outliers in the input
data, which normally happens when extracting 3D information from a scene. RANSAC is
an iterative method choosing in each iteration a random minimum number of points required
to solve the model. After solving the model with the chosen points it will determine how
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many of the remaining points are consistent with the model. If the number of consistent
points is enough (determined with a given tolerance) the model will be re-estimated using all
consistent points and terminates. If the number isn’t enough a new sample of points will be
randomly chosen and following steps repeated.

The SVD (Singular Value Decomposition) method is a commonly used method for solv-
ing matrix equations of the type Ax = 0. The method starts by separating the original matrix
A in three matrices A = UDVT . D is a diagonal matrix containing the singular values of A.
U and V are orthogonal matrices where V contains the singular vectors of the correspondent
to the singular values of D. When the method is applied to A, the last column of resulting V

will correspond to a minimizing solution of f . With f the matrix F can then be built.

3.3.3 Reconstruction

Triangulation, sometimes also referred as reconstruction, is the method of finding a point in
a 3D space given at least two projections of the same point in images. The work-flow of 3D
reconstruction is the following:

1. Find points

2. Match points

3. Fundamental matrix F

4. From F compute PA and PB

5. Compute X in the world for each x and x′ matching pair.

Up to this point, steps 1, 2 and 3 were already explained and, in the previous section we,
explained that the camera matrices can be either extracted from the fundamental matrix or
built from known camera parameters. Now we will show how to extract camera matrices
from the F as well as how to triangulate a point.

Camera matrices

The fundamental matrix encodes information of both the intrinsic and extrinsic parameters
of the cameras. Let us start by defining PA and PB as the camera’s projection matrices and
remembering the basic form of a camera matrix:

P = K[R|t] (3.43)
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Now let us consider that PA is in the origin of the world coordinates, meaning that t =

[0, 0, 0]T , and that PA’s focal length = 1. With this we can write 3.43 for PA as:

P = [I|0] (3.44)

Then, because:
x′T Fx = XT PPFPAX (3.45)

and:
PT

BFPA = [S F|e′]T F[I|0] (3.46)

Where e′ is the epipole and S a skew-symmetric matrix, we can say that:

PB = [S F|e′] (3.47)

A good choice for S is S = [e′], which means that we can once again rewrite PB as

PB = [[e′]F|e′] (3.48)

All we need now is to find the epipoles from F. Two of the properties of F is that Fe1 = 0
and eT

2 F = 0. Using SVD we can easily calculate the epipoles.

Triangulation

In image fig3.6 we can see that point X is the intersection of the lines that start in OL and
OR and pass through XL and XR respectively. These lines are called projection lines. This
intersection along with both focal points creates a triangle which is the base for triangulation.
In theory these lines should always intersect however for various reasons such as camera dis-
tortion this intersection can never happen. If the lines did intersect, finding an intersection in
space between two lines is a trivial procedure.However an intersection, in most cases, won’t
be found. Different triangulation methods deal with this problem differently [13].
The common method to deal with the problem of non-intersecting lines is the Mid-Point
method [3], which as the name suggests will choose the middle point of the smallest line
connecting both projection lines. This method will not give the best results since a lot of
approximations are made. Other methods [13, 15] are based in moving the corresponding
pixels of the point’s projection point so that the projection lines intersect. Such methods are
called optimal correction methods. The main goal of these methods is to minimize 3.39.
For an optimal solution the movement of the pixels must be the minimum needed i.e. min-
imizing the error given by the squared sum of the movements. While in [13] the error is
minimized by solving a grade 6 polynomial, [16] chooses a different approach that can be
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found in [15, 17]. [16] has proven that [15] method is more efficient for its faster results
and numeric results similar to [13]. With these methods an intersection is guaranteed and a
simple triangulation can be made.
Must of the work is now done and the only step remaining is to find the point’s world coordi-
nates. Let us go back to section 3.2.1 where the meaning of a camera matrix was explained:

x = PX (3.49)

Considering that there are two cameras "looking" at the same object we have:

x = PAX, x′ = PBX (3.50)

The strategy to find X is combining 3.50 into a form AX = 0.

x = PX ↔ x(PX) = 0 (3.51)

PX =


PT

1

PT
2

PT
3

 X =


PT

1 X

PT
2 X

PT
3 X

 (3.52)

AX =


xPT

A3 −PT
A1

yPT
A3 −PT

A2

x′PT
A3 −PT

B1

y′PT
A3 −PT

B2

 X = 0 (3.53)

Solving A with SVD, the last column of V will be X. Note that the solution for X is not
homogeneous, X = (x, y, z,w). In order to get the 3D coordinates of the point, one has to
convert them to homogeneous. This is done by dividing all the three coordinates by w

(x, y, z,w)n→ (x′, y′, z′)where
x′ = x/w

y′ = y/w

z′ = z/w

(3.54)

For each of the points used to compute F we solve equation 3.53 and then convert the
point into homogeneous.
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Development process

4.1 Introduction

Now that we have all the concepts explained, we reached the development stage. We can
divide the work into two main parts: point extraction and 3D reconstruction. For the point
extraction we will describe the implementation and results of each of the algorithms used
(SIFT SURF and SUSAN as described in section 2). We will start by explaining the com-
mon work to the three algorithms and then analyze each in detail, first the finding of the
points and then the matching.
For the 3D reconstruction part we will first analyze the implementation and results of a sin-
gle camera approach followed by the stereo camera approach.
In all of the work we used the programming library OpenCV (Open Source Computer Vi-
sion). OpenCV provides several, already implemented, concepts of 3D reconstruction as
well as basic computer vision functions. All shown tests were performed in a "Compaq
6720s" laptop with "Intel Pentium Dual CPU T2390 1,86GHz" with 4Gb memory running
"Windows 7 32bits".
In early stages of the development we used Webots as a simulation platform. With Webots
we have a controlled world which gives some advantages such as:

• Knowledge
We now the exact position of every point in the world.

• Perfect Cameras
Cameras do not have distortion or noise. In stereo systems we also know the geometric
relation between both cameras.

• Control
If only one camera is used we can have a repetitive controlled motion in one camera
and take frames in pre-defined locations.

35
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(a) Single camera (b) Stereo camera

Figure 4.1: Simulated robots in Webots.The grey blocks represent the cameras

The results in WebBots will be presented later.

4.2 Common work

Before we can implement the concepts described in section 2, there is some common work
to implement.
The first step is to calibrate the cameras. For one or two cameras we start by taking images of
a known-sized chessboard and find the chessboard corners in the image with cvFindChess-

boardCorners. We do this a predetermined number of times (must be more than 2 we used
15) . To increase accuracy and refine corners location one can use cvFindCornerSubPix.
By defining the size of the board in terms of boardsize = boardwidth × boardheight we know
how many corners we must have in each view, therefore we consider the view a success
if corners f ound = boardsize. All points belonging to a successful view are stored for later
use. After we have enough successful views we can finally use cvCalibrateCamera2, which
returns the camera’s parameters. If we are using a stereo system there is more work to be
done. First at each view we must store two images (one for each camera, taken at the same
time) and two sets of points. Instead of using cvCalibrateCamera2 we use cvStereoCalibrate

which takes the information from both cameras and returns each camera’s intrinsic matrix
along with their geometrical relation. Using cvStereoRectify we get each camera’s projection
matrix along we other matrices that are used in cvInitUndistortRectifyMap in order to get the
rectification maps. Now we have the P’s (camera matrix, section 3.2) and some other useful
data such as the rectification maps. The process of camera or stereo calibration is done only
once during the process and data obtained can be reused as long as the cameras do not change.

For 3D reconstruction we need two images, those images can be from the same camera,
after it moves, or from a stereo system. Either way two images will be used and for that
reason we start by creating two IplImages with a size of 320 × 240. We choose this size
merely for reasons of speed. Since the first objective is to extract points from an image we
need some structure to store them. Every algorithm uses their own structures inside, but,
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to facilitate switching between algorithms, they all return a list of CvPoint for each image.
At the matching stage this list is created by the algorithms in a way that the matches are in
order, meaning that CvPointle f t[i] is the match for CvPointright[i]. We then converted the lists
to CvMat. Each image, at each frame, as a matrix with size correctmacthes × 2.
Now that we have the cameras calibrated and the data structures we need to define, we can
implement all algorithms and concepts previously explained.

4.3 Point extraction

In this section we will show the development process to extract points from images. Three
algorithms were explained and we will now show how they are used. Each algorithm has its
own structure that defines a feature point with different components but they follow a general
rule. A point has:

• Location

• Descriptor

Both components have clear meanings and they will be used to match, compare and locate
points.
Every algorithm starts by extracting points and when both images are analyzed they search
for the points from image1 in the points from image2. Both stages in feature extraction are
important in terms of speed and reliability.

For tests we used a set of pictures 4.3 and ran them in each algorithm. For each image
in 4.3 there is another image taken at the same time from a different position. These images
were taken by a stereo camera. The speed is easily calculated and we present the results in
each algorithm in form of a table. This table presents the number of points found in each
image as well as the number of successful matches. It also presents information about time
such as, how long it took to find the points, to match them, and how long in total the algorithm
took.In order to eliminate the possibility of a background process influencing the time results,
tests were repeated 20 times and we present the average of the results obtained. Testing for
stability is not as linear as speed: if an algorithm is stable the same points should be found in
the same image in every test. Running the algorithm in real-time ( i.e at each frame we find
and compare points) if we see a lot of inconstant points, it means that the algorithm is not
stable. Robustness can be measure by the amount of false positives the algorithm returns.
For each algorithm we will present the time of execution, number of features found and a
comment about it’s robustness and stability.
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(a) Pair A 640 × 480 (b) Pair B 640 × 480

(c) Pair C 320 × 240 (d) Pair D 320 × 240

Figure 4.2: Test images

4.3.1 SIFT Algorithm

Methods

In SIFT a feature is represented by a structure that has several components. From that struc-
ture those components with greatest importance are:

• Location. X coordinate.

• Location. Y coordinate.

• Descriptor. A lists of double that describes the point.

The algorithm uses a list of these structures to store and manage the points. To find points
in an image we use the following algorithm:

For i m a g e _ l e f t and i m a g e _ r i g h t :
1 − B u i l d Gauss Pyramid

1 . 1 − For each wanted l e v e l Smooth p r e v i o u s Leve l
2 − B u i l d Dog Pyramid from p r e v i o u s pyramid

2 . 1 − For each l e v e l i n t h e pyramid :
C r e a t e l e v e l i n DoG pyramid u s i n g cvSub

3 − S c a l e Space Extrema
3 . 1 − For a l l l e v e l s i n t h e DoG pyramid :
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S ea rc h f o r l o c a l maxima or minima
4 − Compute d e s c r i p t o r s
5 − S o r t F e a t u r e s

The first step is to build a Gaussian pyramid for each image. A pyramid is basically
a list of IplImage, for the Gaussian we start with the original image, convert it to 8-bit
grayscale and Gaussian-smooth it. To smooth an image we use cvSmooth with smoothtype =

CV_GAUS S IAN. To get a new level in a pyramid we re-smooth the previous level. A dif-
ference of Gaussians pyramid is built by subtracting adjacent intervals of the Gaussian pyra-
mid. The DoG pyramid is created using cvSub DoGi = cvS ub(GaussPi+1,GaussPi). With
the DoG pyramid built we search the pyramid for points that are either local maximum or
minimum discarding those with low contrast. Up to this moment, for each point, we have
a location and the scale in which it was found. We now compute a histogram of gradient
orientation around the point and convert it to an array. We now have a descriptor.
Finding the points is the first part, now we need to match them in both images.

2 − B u i l d a kd−Tree wi th f e a t u r e s from i m a g e _ r i g h t
3 − For each f e a t u r e i n i m a g e _ l e f t

3 . 1 − Find i t s n e a r e s t n e i g h b o r s i n t h e b u i l t t r e e u s i n g Bes t F in F i r s t .
3 . 2 − Square d i s t a n c e between p o i n t ’ s and r e s u l t ’ s d e s c r i p t o r .
3 . 3 − I f d i s t a n c e i s l e s s t h a n a t h r e s h o l d

P o i n t s a r e a match

As we can see, a KD-Tree is built only with the points of the right image. Having an or-
ganized structure of points, from imageright, for each point from imagele f t we are going to
search the tree for its match.

Results

After running the algorithm in the image set we have come to the results found in image
4.3.1 and table 4.3.1.

Left Points Time(ms) Right Points Time(ms) Matches Time(ms) Total Time(ms)
Pair A 895 1016.66 779 944.116 327 128.831 2091.41
Pair B 1154 1181.35 988 1058.89 321 170.939 2413
Pair C 721 632.845 630 550.311 246 130.458 1320
Pair D 83 180.269 75 187.602 25 5.12 376.819

Table 4.1: SIFT results

From table 4.3.1 we can easily obtain information about the speed of the algorithm. As
expected, in higher resolution images, the algorithm takes longer. A big difference in time
between Pair C and D, which have the same size, is visible. This is due to the fact that C has
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(a) Pair A 640 × 480 (b) Pair B 640 × 480

(c) Pair C 320 × 240 (d) Pair D 320 × 240

Figure 4.3: SIFT Image Results

a more complex texture. Complex textures tend to have more features, therefore more points
are found and in consequence more descriptors need to be calculated. Looking at the time it
took to find the points in the left and right image, we can see that the more points you find
the longer it takes. This does happen in pair D where it took longer to find lesser points, such
a small difference in time is considered as not significant and it is probably due to an outlier
in the average results. In the image results in 4.3.1, lines connect matches and as we can
see they all tend to follow one direction disregarding inclination. This is a good sign. If we
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consider the objective of the work we either have a moving camera or a stereo system with
this, we can say that both systems’ images are related by a movement in the camera. If the
match lines tend to have the same direction it means that all pixels were "moved" the same
way between the images. Different directions in the lines means that some pixels "moved" to
the right, while others "moved" to the left. Being this impossible for us1, different direction
lines show us matching errors.
Running the algorithm in real time we can see that most line keep a constant direction but
there are some blinking points. The algorithm appears to have a good stability.

4.3.2 SURF Algorithm

Methods

OpenCV already has an implementation of SURF. Nevertheless we will explain how this was
done. As for SIFT, there is a structure for SURF points. In OpenCV we have: CvSURFPoint

• CvPoint2D32f representing it’s location

• The sign of the Laplacian (section 2.3.2).

• Size of the feature

• Orientation of the feature

• Value of the Hessian

When looking at the components of a CvSURFPoint, one might ask where is the de-
scriptor for this point? In OpenCV the descriptor is not a part of the point’s structure, when
finding features we get a list of points and a list of descriptors.

The first step is to define CvSURFParams which establishes the Hessian threshold and
the size of the descriptors (64 or 128). A common choice for a threshold is 500 and we use
128 descriptors, since bigger descriptors mean better matching. Even though the matching
stage is slower when using 128 sized vectors, as we will see later on SURF is still much
faster than SIFT.
To extract features from an image we call:

vo id cvExtractSURF ( c o n s t CvArr∗ image , c o n s t CvArr∗ mask ,
CvSeq∗∗ k e y p o i n t s , CvSeq∗∗ d e s c r i p t o r s ,

1Different line directions are not impossible to happen. If we consider high rotation in an image (ex: turn the
camera upside down) different line directions are expected, but, since we do not expect that such cases should
occur with our system we consider different direction an error in the matching. Furthermore the direction of
the lines is not tested when using a single camera.
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CvMemStorage∗ s t o r a g e , CvSURFParams params )

In cvExtractSURF we have an image, an optional mask (can be used to define an area
where to search for features), the keypoints represented by a sequence of CvSURFPoint,the
descriptors where each descriptor is a list of 128 f loats, the memory storage and the param-
eters. Therefore the algorithm has the following workflow:

For i m a g e _ l e f t and i m a g e _ r i g h t :
C a l l CvExtractSURF

1 − C v I n t e g r a l
H e s s i a n D e t e c t o r
2 − For e v e r y o c t a v e i n image s c a l e s p a c e

2 . 1 − For e v e r y l a y e r i n t h e pyramid
2 . 1 . 1 − C a l c u l a t e and s t o r e H e s s i a n M at r i x D e t e r m i n a n t .
2 . 1 . 2 − C a l c u l a t e and s t o r e t r a c e o f t h e H e s s i a n m a t r i x .

2 . 2 − Find I n t e r e s t p o i n t s . For e v e r y p o i n t i n e v e r y l a y e r :
2 . 2 . 1 − H e s s i a n t h r e s h o l d
2 . 2 . 2 − Non−maxima s u p p r e s s i o n
2 . 2 . 3 − C a l c u l a t e w a v e l e t c e n t e r c o o r d i n a t e s
2 . 2 . 4 − I n t e r p o l a t e maxima l o c a t i o n

The first step, as described in section 2.3, is to create an integral image where we can work.
This is done calling CvIntegral, and for the steps described above we only use the integral
image. The determinants and traces are stored using lists of CvMat where we have an entry
in the list for every layer. Each matrix on the list represents the determinants of the pixels
on that layer. When the determinants are calculated, those that have a value less than the
threshold are ignored. Then tests are made to see if the point is a local maxima, this is done
by comparing the point to it’s 26 neighbors. After calculating the center of the wavelet and
interpolate it we have the interests points.

Now we have to assign descriptors to the points. The generalization of the algorithm for
this is:

For a l l p o i n t s p r e v i o u s l y found :
3 − O r i e n t a t i o n Ass ignment

3 . 1 − For a l l p o i n t s i n s i d e w a v e l e t c a l c u l a t e d i r e c t i o n
3 . 2 − For a l l p o s s i b l e d i r e c t i o n s

3 . 2 . 1 − A l l p r e v i o u s d i r e c t i o n s grouped
3 . 3 − Choose d i r e c t i o n wi th h i g h e s t r e s p o n s e
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Assigning a direction to the point is the first step. For that we start by defining a round
area around the point. For all pixels inside the area we calculate their directions in X and
Y . Assuming that there are 360 possible directions, we have to test all of them to choose
which one will be assigned to the point. In this step we can choose the size angle we are
testing. Starting angle = 0 at each step we can increase the angle WindowS ize degrees,
angle+ = WindowS ize, let us call this angle of search, search area. For all search areas we
sum all directions (found in step 3.1) that fall inside it and, if the result is higher than the
previous search area, we choose it as the assigning direction. In the end we will have the
direction with the highest response vector.

4 − D e s c r i p t o r
4 . 1 − D ef in e a s q u a r e a r e a o f p i x e l s a round t h e p o i n t
4 . 2 − For a l l p i x e l s c a l c u l a t e g r a d i e n t s i n x and y wi th w a v e l e t s
4 . 3 − C o n s t r u c t t h e d e s c r i p t o r . For each sub− r e g i o n :

4 . 3 . 1 − S t o r e t h e 8 v a l u e s

With step 3 we have defined an orientation for the pixel and, in step 4, we create the de-
scriptor. In step 4.2 we use two lists of f loat, one for each direction, to store the wavelet
responses, then in step 4.3 we use these values to define each sub-region’s values. Basically
for each sub-region we have a vector with size 8 and each element of the vector is a value
from the stored wavelet responses. If we are using 64 descriptors instead of 128 we use a
vector with size 4.

We now have a list of CvSURFPoint but there is still work to be done. We still need
to match these points. OpenCv does not match points automatically and therefore we need
to implement a way of doing it. For that we used FLANN (Fast Library for Approximate
Nearest Neighbors) which is an already implemented library with algorithms optimized for
fast nearest neighbor search in large datasets and for high dimensional features. In the end
we get a vector of indexes where i is a match for i + 1.

Results

After running the algorithm in the image set we have come to the results found in image
4.3.2 and table 4.3.2.

When comparing these results with the ones obtained with SIFT, one immediate conclu-
sion is that SURF is faster than SIFT. With SURF we have less than half computation time
in all tested images. Analyzing the algorithm in terms of robustness and stability, the results
showed that SURF has an equivalent performance to SIFT. By considering only these two
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(a) Pair A 640 × 480 (b) Pair B 640 × 480

(c) Pair C 320 × 240 (d) Pair D 320 × 240

Figure 4.4: SURF Image Results

Left Points Time(ms) Right Points Time(ms) Matches Time(ms) Total Time(ms)
Pair A 687 400.15 657 399.924 320 59.6798 864.348
Pair B 845 466.553 795 432.178 355 72.98 976.343
Pair C 423 138.305 312 121.467 123 35.653 299.547
Pair D 74 61.433 94 67.80 31 7.74 141.592

Table 4.2: SURF results
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algorithms we can say that SURF is the obvious choice.

4.3.3 SUSAN Algorithm

Methods

For SUSAN corners there is no default implementation in OpenCV therefore structures had
to be implemented as well as the main algorithms. The first step is to be able to represent a
point, for that, the structure CORNER was created and it is formed by:

• x location

• y location

• Descriptor Vector

• info

• Brightness

• First order derivatives

The first three components have obvious meanings. Info component in its turn is used as
an auxiliary variable used to, for example, mark the end of a list or mark the point for dele-
tion. The following components are, the brightness of the pixel, and first order derivatives.
These components are used along with the descriptor in the matching stage. For SUSAN
corners a basic list of CORNER will be used to represent the image features. Having a struc-
ture to represent a point we can implement the algorithm.

For each image :
1 − Se tup b r i g h t n e s s

The first step for extracting SUSAN corners is to implement the brightness of the image
as a LUT (Look-Up-Table),the LUT and is defined uchar ∗ bp. This step allocates enough
memory for bp∗ and repositions the pointer to the center of the allocated space. The reason
why a LUT is used is speed of computation. Using memory pointers alongside with bp

we can facilitate some computation. Remembering the USAN area, as described in section
2.4.1:

c(−→r ,−→r0) = e−( I(c(−→r )−I(c(−→r0))
t )6

(4.1)

n(−→r0) =
∑
−→r

c(−→r ,−→r0) (4.2)
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Where n is the area of the USAN.From equation 4.1 we can see that a lot exponential
calculations have to be done in SUSAN. For all possible image brightness differences we
calculate e−x6

, convert the result to a uchar in the range of 0-100 and store it in the LUT.
Therefore bp[26] is the result for 26 levels of brightness difference. But how can we use this
LUT in the algorithm? Let us consider:

P = Img ∗ +(y − 3) ∗ imgwidth+x−1 (4.3)

CP = bp + Img[y ∗ imgwidth + x] (4.4)

Where P is an image pointer and CP is a LUT pointer. In this case P points to the first
pixel in the circular mask surrounding point (x, y) and CP points to a position in the LUT
corresponding to the brightness of the center pixel(x, y). If we want to find n, the area of the
USAN, we just have to, for every pixel inside the mask:

n+ = ∗(CP − ∗P + +) (4.5)

By moving CP an amount equal to the value of the pixel pointed by P, we subtract the two
brightness values and perform the exponential function.
Up to this point no work has yet been done in the image, we only prepared the LUT as a
helpful tool in following steps. Continuing on the algorithm:

2 − Smooth image u s i n g 3x3 window
3 − For a l l p i x e l s Compute USAN a r e a

3 . 1 − I f USAN a r e a t o b i g i g n o r e p o i n t
4 − For a l l p i x e l s f i n d l o c a l maximas

Use 7x7 s e a r c h mask
5 − For a l l l o c a l maximas

5 . 1 − S t o r e p o i n t
5 . 2 − Compute b r i g h t n e s s
5 . 3 − F i r s t o r d e r d e r i v a t i v e s

6 − For a l l c o r n e r s compute d e s c r i p t o r

The process of finding the corners starts by calculating the USAN area for all pixels in
the image. This is done using the concept represented by equation 4.5. If the USAN area
passes a certain size, the point is no longer considered a corner and therefore is ignored.
Using a 7 × 7 window we search all image for local maxima, this is done by comparing the
point to all it’s neighbors and, if it is bigger, it is considered a local maximum. Different
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sized windows can also be used as long as they have odd size (ex: 5 × 5). If it is consider
a local maxima it is also consider a corner and therefore an image feature. The final step of
finding a point is assigning it a descriptor. For this, using the concept of Kirsch described in
section 2.4.2, for each point we assign a int[8] vector as a descriptor. Each member of the
vector is a direction of the Kirsch detector.
Now that we have the points, there is still the step of matching the points between the images.
Both in SFIT and SURF a single approach was used to match the points; however in SUSAN
two different approaches were used. The first approach was the straight-forward method of
comparing points one-by-one. Since result were not as good as expected, a different method
was then used. Since the second method is to be used only with stereo systems it will be
explained later on section 4.4.2.
As we already said the first implemented method has a straight-forward workflow:

7 − For a l l p o i n t s i n image 1
7 . 1 − Find t h e b e s t match i n p o i n t s from image 2

Considering that we have a vector and three variables that describe a point, for every
point in the first image we search all points in the second image for the one that has the
lowest squared distance between the values.

Results

After running the algorithm in the image set we have come to the results found in image
4.3.3 and table 4.3.3.

Left Points Time(ms) Right Points Time(ms) Matches Time(ms) Total Time(ms)
Pair A 291 110.15 277 113.57 204 6.12 317.33
Pair B 447 111.65 430 115.5 340 10.2 368.49
Pair C 528 30.93 437 34.96 252 10.08 77.1
Pair D 112 28.56 110 30.8 51 4.59 69.23

Table 4.3: SUSAN results

Looking only at the table results, we can say that SUSAN has a far superior performance
than SURF or SIFT. But, when looking at the image results, we can see that this speed as a
consequence. While the match lines appear to be correct both in SURF and SIFT, in SUSAN
there appears to be no order. This shows us that although there is a fast computation time the
results are reliable. In real time there is also no stability, and with a closer look at the image,
matches appear to be incorrect. When using stereo systems an improvement will be done to
the matching step.
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(a) Pair A 640 × 480 (b) Pair B 640 × 480

(c) Pair C 320 × 240 (d) Pair D 320 × 240

Figure 4.5: SUSAN Image Results

4.4 3D Reconstruction

In the previous section we showed how points were extracted from an image, now we will
focus on how to use those points for 3D reconstruction. As it has been mentioned several
times in this work, we need at least two images to extract 3D information from a scene. In
this work two approaches were taken to obtain those images: Single camera and Stereo sys-
tems. Even though, both will produce two images, the differences between the systems are
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obvious. One of those differences and probably the most important for us is that we know
that when there is a movement both cameras move. This might not seem like a big deal but
let us consider the following: In a single camera system, the difference in the images after a
movement is as the movement itself, unpredictable. With a stereo system, in the other hand,
no matter what movement the stereo camera does, we know the difference in the images.
The advantage that this brings us is that a found point in the left image will always be more
to the left on the right image: furthermore the vertical difference can also be threshold. We
will explore this advantage when we are implementing the stereo camera approach.
Starting with the single camera approach, we will explain how the found points were used
to extract 3D information and present the results obtained. Then, we will do the same for
the stereo camera approach. In both approaches we will receive two CvMats, one for each
image, representing the found points. The organization of the points in both matrices al-
lows to say that the first point in one matrix is the match for the first point in the other, the
second is a match for the second and so forth. The first step of both approaches is to have
both cameras calibrated. Using uncalibrated cameras is possible, in single camera systems,
but results are better when cameras are previously calibrated. In the case of stereo cameras,
stereo calibration must be done.

4.4.1 Single Camera Approach

Methods

When using a single camera approach we still need two images. Let us start by defining two
IplImages imageA and imageB and, for the points, two CvMats pointsA and pointsB. The
general workflow is the following:

1 − C a p t u r e imageA
2 − Find p o i n t s A
3 − While program i s r u n n i n g :

3 . 1 − C a p t u r e imageB
3 . 2 − Find p o i n t s B
3 . 3 − Match p o i n t s
3 . 4 − 3D r e c o n s t r u c t i o n
3 . 6 − p o i n t s A = p o i n t s B
3 . 7 − Move camera

As we can see, in fact, we do not use two images in each iteration; instead, we only
use the extracted points of both images. This is all the information we need from an image
making it unnecessary to recalculate the points in both images. Regarding step 3.7, this is an
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important step and it must always be done. If one does not move the camera between itera-
tions in step 3.2 the points extracted will be equal to the points extracted in the last iteration.
Having equal points means that we have equal images which is almost the same as trying to
extract 3Dinformation from only onw image. For this reason results of the 3D reconstruction
will not be correct if step 3.7 is not done.
With the process of obtaining two "images" in a single camera system, the process can be
divided in 4 implementation steps:

1 − Find f u n d a m e n t a l m a t r i x cvFindFundamenta lMat
2 − C o r r e c t P o i n t s c v C o r r e c t M a t c h e s

2 . 1 − For a l l c o r r e s p o n d e n c e s
Compute C o r r e c t e d c o r r e s p o n d e n c e

3 − P r o j e c t i o n m a t r i c e s
4 − T r i a n g u l a t e p o i n t s c v T r i a n g u l a t e P o i n t s

4 . 1 − For each p o i n t s o l v e AX=0 u s i n g SVD
5 − Conver t p o i n t s cvConver tPo in t sHomogeneous

From the steps above we can see that OpenCV has a method for all the needed main
steps. We start with:

i n t cvFindFundamenta lMat ( CvMat∗ poin t sA ,
CvMat∗ po in t sB ,
CvMat∗ fundMatr ,
i n t method ,
do ub l e param1 ,
do ub l e param2 ,
CvMat∗ s t a t u s = 0 ) ;

Apart from the obvious first three parameters, when using cvFindFundamentalMat we
must also define a method. We chose method = CV_FM_RANSAC which means that the
algorithm will use RANSAC. The following two parameters are used as maximum epipolar
distance and confidence level thresholds respectively. The last parameter is a matrix created
by the algorithm. If the point was rejected the matrix element is set to 0 and 1 otherwise.
Rejected points are outliers that usually represent errors and are ignored through the rest of
the process. The result will be the fundamental matrix represented by CvMat* fundMatr. If
no fundamental matrix is found the method will return 0.
After the fundamental matrix is found we need to correct the points according to it. For that
we use:

vo id c v C o r r e c t M a t c h e s ( CvMat ∗F ,
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CvMat poin t sA ,
CvMat ∗ po in t sB ,
CvMat ∗ new_poin t s1 ,
CvMat ∗ new_po in t s2 )

This method uses the fundamental matrix F to correct all correspondences pointsA[i]↔
pointsB[i] according to Hartley’s method "The Optimal Triangulation Method" proposed
in ??. The objective of the method is to compute a new correspondence new_pointsA[i] ↔
new_pointsB[i] that satisfies the epipolar condition new_pointsA[i]∗F∗new_pointsB[i] = 0.
The chosen solution is the one that minimizes the geometric distance between the new and
old points.
Next step is getting the cameras matrices. At this step there are two possibilities: we are
either using calibrated or uncalibrated cameras. Note that even though we are using only
one camera we consider that there are two projection matrices. Since images were taken
from different locations and a projection matrix is composed from intrinsic and extrinsic
parameters, after a movement the "camera" will be different. When referring to "cameras"
we mean the same camera before and after the movement. Using calibrated cameras means
that we know the intrinsic parameters (which do not change between movements) of the
cameras. Using the method described in section 3.3.3 we first use SVD to calculate the
epipoles and then compute the camera projection matrices.
The fundamental matrix was found, the points corrected and we have the projection matrices.
Next step is to triangulate the points. Recurring once again to OpenCV we use:

c v T r i a n g u l a t e P o i n t s ( CvMat∗ pro jMa t r1 ,
CvMat∗ pro jMa t r2 ,
CvMat∗ p r o j P o i n t s 1 ,
CvMat∗ p r o j P o i n t s 2 ,
CvMat∗ p o i n t s 4 D )

Which for each point solves the AX = 0 type system using SVD and returns a vector with
4D points.
The final step in 3D reconstruction is to convert the point homogeneous. This is easily done
with:

vo id cvConver tPo in t sHomogeneous ( CvMat∗ s r c ,
CvMat∗ d s t )

Which converts points from 4D to 3D. This list, with 3D coordinates, is the main ob-
jective of the work. With it we can plot the points to a simulated 3D world, create a depth
map.
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Results

For this section we used the SURF as the point extraction algorithm. We chose SURF for
its speed and higher stability and robustness. Extracting 3D information from a scene with
only one camera, implies that the camera must be moving. This means that no information
is known about the camera after the movement. Looking again at the list of steps:

1 − C a p t u r e imageA
2 − Find p o i n t s A
3 − While program i s r u n n i n g :

3 . 1 − C a p t u r e imageB
3 . 2 − Find p o i n t s B
3 . 3 − Match p o i n t s
3 . 4 − 3D r e c o n s t r u c t i o n
3 . 6 − p o i n t s A = p o i n t s B
3 . 7 − Move camera

We can see that there is a cycle in the process that is always running. However, in early
stages of the development we started by simulating only one step. For that we only needed
two images, of the same scene, taken by the same camera, at different positions. This was
done merely as a test, using stable images allows to test the concepts of 3D reconstruction.
The first tested images were from Webots2 and then real world images. The two sample
images taken from Webots are shown in figure 4.4.1.

(a) Left camera image (b) Right camera image

Figure 4.6: Webots images

The points obtained were plotted in a simulated world (figure 4.4.1). As we can see,
although there are errors, the structure of the real world is recognizable. We can easily see
which points are closer to us.As a visual help, the closer the point is to the origin, the whiter

2All the positions in Webots are known, which allows us to have a precise "real measure" of the points that
we can compare to the results obtained.
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it is.

Figure 4.7: 3D results from Webots images

Real images were then used:

(a) Left camera image (b) Right camera image

Figure 4.8: Real images

Figure 4.9: 3D results from Real images

Again, even though there are errors, the structure is still visible.
The next step was to try the concept using two equal cameras. The cameras were part of

a stereo system but, again, no information about the geometric relation between the cameras
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was given. Images were taken alternately from left and right cameras simulating a repetitive
movement of a camera.

(a) Left camera image (b) Right camera image

Figure 4.10: Stereo camera images

Figure 4.11: 3D results from Stereo cameras images

Figure 4.4.1 shows a sample of the results obtained. The point’s location is not stable
throughout the running time. At each frame they are plotted at different positions without
showing a specific structure. Results showed that, when using real time images, the 3D

reconstruction performance decays. After a carefully analysis of the process, we have noticed
that finding the fundamental matrix from point matches is very sensitive. Errors caused by
image noise,mismatches or lack of stability in the SURF algorithm, tend to greatly influence
the fundamental matrix which in turn, influences the 3D triangulation.
The final stage of the development consisted in using a moving camera. This time the cycle
was running completely and without stopping. The results obtained are very similar to the
ones using the stereo camera, again there is no stability in the plotting and no structures are
defined.
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4.4.2 Stereo Cameras Approach

Methods

When showing the results of the SUSAN algorithm, we said that different matching method
was used with stereo systems. The method is based on the fact that we know the geometric
relation between the two images. They are both vertically aligned and on the same plane.
This arrangement of the cameras allows to say that a point viewed in the left image will
always be more to the right on the right image. Also the point will have approximately the
same y coordinates in both images, due to distortion errors one cannot say that yl = yr, hence
the need for image rectification. Therefore the first step is stereo calibration.

The result of running stereo calibration is each camera’s projection matrix alongside with
four rectification maps. These rectification maps are obtained using:

vo id c v I n i t U n d i s t o r t R e c t i f y M a p ( CvMat∗ cameraMat r ix ,
CvMat∗ d i s t C o e f f s ,
CvMat∗ R ,
CvMat∗ newCameraMatrix ,
CvMat∗ mapx ,
CvMat∗ mapy )

For each camera we have the camera matrix, the distortion coefficients, and the rectifi-
cation transformation which can be obtained by using cvStereoRectify or cvStereoRectifyUn-

calibrated. The result of using cvInitUndistortRectifyMap is a pair of rectification maps.
When these maps are applied to a pair of images they will be projected to a common plane.

In theory, with rectified images one can say that a point viewed from both cameras will
have the same height in both images. However there are always errors therefore we can only
say that the point will be around a certain area.
The steps in 3D reconstruction with stereo cameras is the following:

3 − While program i s r u n n i n g :
3 . 1 − C a p t u r e imageB and imageA a t t h e same t ime
3 . 2 − Find p o i n t s A
3 . 3 − Find p o i n t s B
3 . 4 − Match p o i n t s
3 . 5 − 3D r e c o n s t r u c t i o n

Both methods, of using either a single or stereo camera, are very similar. Apart from
having to capture two images at each cycle, there is also a difference in the 3D reconstruction
process. From what we have explained, we know that the matching lines will always point
to the same direction in stereo systems. However the inclination of these lines is not the



56 CHAPTER 4. DEVELOPMENT PROCESS

same for every point. With the inclination of the lines, which is the x difference between the
projections of both point, we can tell which points are closer to us. As a simple experiment
to understand this, if one places an object, like a pencil, in front of the nose and alternatively
blinks each eye the object will appear to "move" a lot. If the pencil moves away from the
face this movement will be reduced and if it moves closer the movement will increase. The
same goes for stereo cameras. We can then say that a point that is closer to the camera will
have a big difference in x and vice-versa. The 3D reconstruction step is therefore simple
measurement obtained from pointRx − pointLx. This measure is not by any way metric and
we can for example threshold it to a certain range of distances. In our tests we used:

d i f f = po in tR_x − p o i n tL _ x
i f ( d i f f <0)

d e l e t e p o i n t
i f ( d i f f ==0)

d i s t = img_width
e l s e

d i s t = img_width / d i f f

An initial test is done to eliminate those point whose matching lines point to the left.
Then we calculate the distance. By dividing ima_width by the difference, we will get values
between 1, for the closest possible to the camera and 320 to the points furthest away. This
method, sometimes called "disparity maps", cannot be used with a single camera since ver-
tical alignment in the images cannot be guaranteed.
With SUSAN we also used a different work flow:

3 − While program i s r u n n i n g :
3 . 1 − C a p t u r e imageB and imageA a t t h e same t ime
3 . 2 − Find p o i n t s A
3 . 4 − Match p o i n t s
3 . 5 − 3D r e c o n s t r u c t i o n

With SUSAN, points are only found in one of the images, more precisely, on the left
image. In the matching step, we use the knowledge we have from stereo cameras to find a
match for the left points. We start by defining a search area represented by a rectangle. This
search area has a top-left corner rectx recty and a size rectw recth. Since the correct match
will always be more to the right we can start by saying that rectx = pointx and we either
limit the disparity, for example rectw = 100 or give no limits, rectw = imgw − pointx. For the
height it would be ideal to say that recty = pointyrecth = 1, but since the points will not be
perfectly aligned we need to give a certain margin. Therefore recty = pointy − margin and
recth = margin × 2. Having a reduced portion of the image to search for the match point we
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can introduce heavier search algorithms. We choose to use OpenCV’s

p u b l i c vo id cvMatchTempla te (
I n t P t r image ,
I n t P t r templ ,
I n t P t r r e s u l t ,
TM_TYPE method )

Where we provide an image where the search will run and, a template, which is a vari-
able sized window around the point. This algorithm slides through the image comparing
overlapped patches with the template and saves the results. The more similar matches are
found by locating either global maximum or minimum using cvMinMaxLoc in the result im-
age. As a form of making the matching process more reliable one can also compute the Kirch
descriptor for both the point and result’s points selecting the one that has the most similar
descriptors.

Results

We start by showing the results of using the new SUSAN matching algorithm (figure 4.4.2 ).
Note that the images are rectified. 4.3.3.

From figure 4.4.2 we can see that there was some improvement in the matching. Al-
though results are still inferior to the other algorithms, specially in more complex and higher
resolution images, in simpler images, such as figure 4.12(b), the results are acceptable. If
speed is the most important aspect of the algorithm or if the system has small computational
power (such as the simplest robots), SUSAN is a valid option. In controlled environments for
basic obstacle detection, results obtained with SUSAN are very similar to results obtained
with SURF or SIFT. We can see an example of such environments in figure 4.4.2.

Now we will present the results obtained with the stereo implementation showed above.
The same test images, used when testing single camera reconstruction, will be used again.
This allows some comparison between both methods. As when using a single camera, tests
started by using Webots. Points were plotted in a 3D world where their coordinates were
simply the images coordinates, for x and y and the disparity between both images for z.

Next with real images:

As we can see from figures 4.4.2 and 4.4.2 results, are very similar between stereo and
single cameras.
Moving to a real time reconstruction, at each test we change the the positions of the objects
in the scene. This time, instead of plotting the point into a simulated world, we will place
the points in the image and change their color according to their distance.
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(a) Pair A 640 × 480 (b) Pair E 320 × 240

(c) Pair C 320 × 240 (d) Pair D 320 × 240

Figure 4.12: SUSAN Image Results with better matching algorithm

In figure 4.4.2 we can see three frames where one of the objects changes position while
the other does not. The matched points are marked in the image as red dots. Depending
on the distance of the point to the camera, it’s color will go from red to white, where white
represents the closest points to the camera. Let us consider the stopped object in the left
Object A and the moving object in the right Object B. At the first frame object B is clearly
further away than A therefore the points in A have a whiter level. At the second frame both
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(a) SIFT 816.585ms (b) SURF 203.532ms

(c) SUSAN 99.66ms

Figure 4.13: Control environment SIFT SURF and SUSAN

objects are at similar distance as we can see in the similar color level in the points. Finally
at the last frame, object B comes closer than A, points in B become white while, points in A

gain a red color.

In figure 4.4.2 we can see another sequence of frames. This time, all objects changed
their position and we used another method of showing the 3D information. We start by find-
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Figure 4.14: Stereo reconstruction with Webots images

Figure 4.15: Stereo reconstruction with real images

(a) Frame 1 (b) Frame 2 (c) Frame 3

Figure 4.16: Distance plotting in moving object.

ing the contours of the image, then, assuming a contour is an object, for each object we see
how many matched points are inside the area of the object. Averaging the disparity of the
found points we get the estimated distance of the object. In all images we can see which
object is closer to the camera (whiter color) and further (darker color).
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(a) Position 1 (b) Position 2 (c) Position 3

Figure 4.17: Distance in detected objects.



Chapter 5

Conclusion

At the beginning of this work three main objectives were proposed and different solutions
to the various problems analyzed. For the first objective of extracting defining points from
an image, three algorithms were analyzed. Then, for each algorithm at least one matching
method was implemented. Finally, with the points extracted and matched, two different ways
of extracting 3D information were also proposed.
For point extraction SIFT, SURF and SUSAN algorithms were tested. For SIFT, Kd-trees
were used for the matching stage and results showed that, considering only the quality of the
matching, SIFT has the best results. Even though SURF has similar results both in stability
and quality of matching, in some cases, SIFT has more stability. With SURF, optimized
algorithms in nearest neighbor searches were used to find the matches. In terms of results,
they were similar to SIFT but much faster. In terms of speed, SURF produces results in less
than half of the time of SIFT. Finally, two different methods for matching the SUSAN points
were tested. While the first method produces un-usable results, the second method, even
though it can only be used in stereo systems, produces better results. Generally, SUSAN has
inferior matching results but, in certain cases we can say that results are as good as SURF or
SIFT. The advantage of SUSAN is its speed. Even with a more complex matching process
SUSAN is still faster than any other tested algorithm. We have also learned that, for all al-
gorithms, the more complex the texture is, the more points we get. This is the reason why
most of the objects used in tests had a complex texture. If only "simple color" objects were
used, the number of found features would be minimum, which is a problem for RANSAC.
Remembering the objective of RANSAC a high number of points is important. To say which
of the algorithm is better depends on where it is used. If, for example, computational power
is not a problem and neither is the speed, we would recommend the use of SIFT. Has an op-
posite, if we have low computational power and real time results are mandatory, SIFT is not
an option. In the same situation, if talking about a controlled environment, SUSAN produces
valid results at far higher speeds than SURF. For generic-situations SURF is recommended.
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For the 3D reconstruction, when using a single camera, valid results were not achieved.
While with still images, the 3D information was understandable, with real time images no
valid information was extracted. We can say that one of the most important steps is the
extraction of the fundamental matrix, which in turn, has proven to be very sensible to er-
rors. Again, there are always matching errors and, even when using RANSAC with a higher
minimum confidence, we can say the fundamental matrix is never correctly extracted. The
matching errors do not always fall on the algorithm, unsteady camera images has been a
problem throughout the project which is due to a provable inferior quality in the camera.
The last part of the project was the implementation of 3D reconstruction with stereo cam-
eras. Using a simple measuring procedure, we are able to extract valid results from an image.
Even though we cannot measure exactly were a point is, we are able to tell which object is
closer to the camera, and an approximated knowledge of how far it is.
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