7,646 research outputs found

    Computing system reliability modeling, analysis, and optimization

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN

    Optimal Inference in Crowdsourced Classification via Belief Propagation

    Full text link
    Crowdsourcing systems are popular for solving large-scale labelling tasks with low-paid workers. We study the problem of recovering the true labels from the possibly erroneous crowdsourced labels under the popular Dawid-Skene model. To address this inference problem, several algorithms have recently been proposed, but the best known guarantee is still significantly larger than the fundamental limit. We close this gap by introducing a tighter lower bound on the fundamental limit and proving that Belief Propagation (BP) exactly matches this lower bound. The guaranteed optimality of BP is the strongest in the sense that it is information-theoretically impossible for any other algorithm to correctly label a larger fraction of the tasks. Experimental results suggest that BP is close to optimal for all regimes considered and improves upon competing state-of-the-art algorithms.Comment: This article is partially based on preliminary results published in the proceeding of the 33rd International Conference on Machine Learning (ICML 2016

    The safety case and the lessons learned for the reliability and maintainability case

    Get PDF
    This paper examine the safety case and the lessons learned for the reliability and maintainability case
    corecore