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SUMMARY 

 

This thesis investigates some important issues related to reliability modeling and 

analysis of various computing systems. Problems of optimization and resource 

allocation strategies are addressed as well for better utilizing the resources to improve 

computing system reliability.  

In terms of configurations, executing manners and functionality, computing 

systems accomplish computing tasks in various forms, such as weighted voting 

systems, peer-to-peer network systems and etc. This makes quantitatively modeling 

system reliability difficult but even more necessary.  

Traditional reliability models of weighted voting systems in literature assume 

binary or discrete state input. However, in practice, the phenomenon under test by 

weighted voting systems (WVS) is likely to be continuous, e.g. temperature, pressure, 

and etc. Research of reliability modeling and analysis on WVS are initially proposed 

by incorporating continuous state input. In this model, the concept of reliability is 

redefined to differentiate it from traditional models. Analytical as well as Monte Carlo 

Simulation methods are proposed to estimate the system reliability. As different types 

of voting units are assumed to have different accuracies and costs, the different 

allocations of these voting units make the reliability of the entire voting system 

different. A reliability optimization problem with cost constraints is then formulated 

and solved by genetic algorithm. The best solution improves the system reliability 

efficiently. Further analysis on the reliability model of WVS is also presented by 

considering system biased output and dependent accuracy of the units to the input. 



 

x 
 

Results show that the reliability of the biased voting system is lower than the unbiased 

voting system, given the same accuracy of the system.  

Peer-to-peer media streaming system is widely used today. Its reliability is 

affected not only by software/hardware but also by unsteady network communication. 

This thesis constructs original general models for p2p media streaming system and 

introduces new analytical method to estimate service reliability it provides. 

In order to apply the models to predict the reliability of the system, the 

parameters of the models need to be known or estimated. Parameter uncertainty arises 

when the input parameters are unknown. Moreover, the reliability computed from the 

models which are functions of these parameters is not sufficiently precise when the 

parameters are uncertain. This dissertation studies the uncertainty problems in 

reliability modeling first at component-level then further extends the uncertainty 

analysis to more complicated systems that contain numerous components, each with its 

own respective distributions and uncertain parameters. This method is also applied to 

weighted voting system to explore its uncertainty in reliability calculation and 

parameters estimation from scarce data. 

For complex engineering systems, the components or subsystem are likely 

vulnerable to the mis-operations or intentional attacks. Preventive investment in the 

components is necessary to guarantee the safety critical systems to work properly and 

in high performance. Under resource budget, it is important but difficult to find out the 

resource allocation strategy to improve system reliability optimally. This dissertation 

presents a new preventive resource allocation strategy by introducing an important 

phenomenon of apical dominance in plant growth process. 
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CHAPTER 1 INTRODUCTION 

This dissertation focuses on reliability modeling, analysis and optimization of some 

practical systems. The key issues include system reliability, software reliability, 

network reliability, weighted voting system, peer-to-peer system, uncertainty analysis, 

parameter estimation, optimization, and resource allocation strategy.  

This chapter briefly introduces the background and some basic concepts of 

reliability theory, presents some important methodologies used in reliability modeling, 

analyzing, and optimization, and figures out the scope of this dissertation. 
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1.1 Background 

 

Reliability is an important time-based measure of quality; which has received much 

attention in recent decades. Reliability is defined by Musa (1998) as the probability 

that a system will perform a required task during a period of time without any failure 

under the stated conditions.  

Along with the explosive development of information technology in the recent 

decades, the concept of computing systems has been widely accepted to many practical 

areas. It is a kind of system of one or more computers/processors and associated 

software with common storage, which process data in a meaningful way. The size and 

complexity of the computing systems has increased exponentially in terms of the 

structure, number of components, computing tasks and etc, which makes assessment 

and modeling the performance of computing systems hard or costly. Under this 

background, reliability of computing system is a necessary metric to measure the 

system performance, which is generally defined as the probability that the output it 

produces is correct in given period of time under specified computing environment. 

Most computing systems contain both software programs and hardware to 

achieve the various computing tasks and complete various services. The faults in 

software programs or hardware devices can result in the failure of the entire computing 

system in getting satisfactory services.  
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The computing tasks are executed on the support of hardware configurations, 

such as computers, processors, memories and so on. And these hardware devices 

generally work together in some meaningful organized structures. For example, in k-

out-of-N voting configuration, the requisite to successfully accomplish computing 

tasks is that at least k hardware components are in operation out of total number of N 

components. A weighted voting system is a type of system in this configuration, of 

which each component (voting unit) is assigned with different weights to vote (Levitin, 

2001). Network configuration is complex and hard to analyze, in which peer-to-peer 

systems and grid systems organize themselves to achieve their goals. Other 

fundamental and common configurations include series, parallel, bridge, and etc. 

Besides the hardware, software is another important component in completing 

the computing tasks successfully. Software system has different properties from 

hardware, it does not wear-out and can be easily reproduced, software testing will be 

incomplete because of the complexity of software, and software requires different 

fault-tolerance techniques than hardware ( Xie et al. 2004 and Pukite & Pukite, 1998). 

Software reliability can be improved over time accounting for faults detection and 

correction (Xie, 1991). So the way of modeling and analyzing software reliability is 

much different from hardware systems. Among all the software reliability models, 

Markov models are the most famous and fundamental, first proposed by Jelinski & 

Moranda (1972). Following that, many successful models are proposed, including 

Littlewood model (1979) and GO model (1979). 

 

 

1.2 Methodologies 
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1.2.1 Markov Theory 

Markov Modeling is a widely used technique in reliability analysis; it is flexible and 

effective to be implemented in reliability analysis for various computing systems. Xie 

et al. (2004) classify the Markov models into two major types: standard Markov 

models and non-standard Markov models, in which Markov property are not valid at 

all time. 

According to their time space and state space, Markov model is classified into 

four categories: discrete time Markov chain, continuous time Markov chain, discrete 

time continuous state Markov model, and continuous time continuous state Markov 

model.  

For the first type of Markov model, discrete time Markov chain, the 

mathematical definition is  

{ } { } ijnnnnnn PiXjXiXiXiXjX ======== +−−+ |Pr,...,,|Pr 100111      (1.1) 

where Xn=i denote the process in state i at time n, and Pij is named one step transition 

probability from state i to state j.  

Discrete time Markov chain is a widely used technique in system reliability 

analysis. Wang (2002) use Markov chain to calculate the reliability of distributed 

computing system by introducing two reliability measures, which are Markov chain 

distributed program reliability (MDPR) and Markov chain distributed system 

reliability (MDSR).  

Continuous-time Markov chain (CTMC) {X(t)}, having values on the discrete 

state space Ω , is defined as the stochastic process satisfies following property: 
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( ) ( ) ( ){ } ( ) ( ){ }isXjstXsuuXisXjstX ==+=≤≤==+ |Pr0,,|Pr         (1.2) 

where 0≥s , t>0 and each Ω∈ji, . A CTMC’s future state depends only on the present 

state and is independent of past, given the present state. For CTMC models, we have 

the Chapman-Kolmogorov equation (Ross, 2000) as: 

( ) ( ) ( )∑ <<≤=
k

kjikij tusotupusptsp ,,,,                        (1.3) 

Many researchers apply continuous time Markov chain to formulate the hardware 

system, software system and distributed computing system to evaluate and analyze the 

system reliability (service reliability). Dai et al. (2003a) incorporate GO model into 

continuous time Markov chain model to evaluate the service availability. Gokhale et al. 

(2004) use a non-homogeneous continuous time Markov chain to analyze the effect of 

various kinds fault removal policies on the residual number of faults at the end of the 

testing process and extend the model to include imperfections in the fault removal 

process.  

Markov models with continuous state are classified into two groups according to 

the time space: discrete time and continuous time. However, little research has been 

done on these two types of models, because the complexity and immense computation, 

so the continuous state Markov process will not be discussed in this proposal. 

Non-standard Markov models include semi-Markov process and Markov 

regenerative process. The semi-Markov process was introduced in 1954 by Levy to 

provide a more general model for probabilistic systems. In a semi-Markov process, 

time between transitions is a random variable that depends on the transition. The 

discrete and the continuous-time Markov processes are special cases of the semi-

Markov process. Becker (2000) uses a non-homogeneous semi-Markovian process to 
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model reliability characteristics of components or small systems with complex test resp. 

maintenance strategies, in which the transition rates depend on two types of time in 

general: on process time and on sojourn time in one state. 

 

1.2.1 Universal Generating Function 

Universal Generating Function (UGF) is a well-known and effective technique for the 

reliability analysis and optimization of various multi-state systems. Much research has 

been done on incorporating UGF into reliability analysis of various series-parallel 

systems, bridge systems, weighted voting systems, acyclic transmission networks, 

linear multi-state sliding-window system, linear consecutively connected systems, and 

acyclic consecutively connected networks. Lisnianski & Levitin (2003) briefly 

describe the application of UGF in many systems; Levitin (2005) provides a 

generalized view of the method and its application to analysis and optimization of 

various types of binary and multi-state system.  

Levitin et al. (1998) generalize a redundancy optimization problem to multi-state 

series-parallel systems, and use UGF to represent the availability of the multi-state 

system.  Levitin & Lisnianski (1999a) formulates the joint redundancy and 

replacement schedule optimization problem, where the reliability is evaluated by UGF. 

Levitin & Lisnianski (1999b) provide an effective importance analysis tool for 

complex series–parallel multi-state systems based on UGF and extend this method to 

sensitivity analysis of important output performance measures. Levitin & Lisnianski 

(2001a) consider series-parallel systems with two failure modes; the reliability of the 

multi-state system is evaluated by UGF and optimized by Genetic Algorithm. Levitin 
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& Lisnianski (2001b) and Levitin (2002c) apply UGF as the evaluating method of the 

series-parallel multi-state systems.  

UGF is also an effective evaluation tool to the multi-state system in bridge 

topologies. Levitin and Lisnianski (2000) evaluate the reliability of bridge system 

consisting of elements with different reliability and performance by UGF. Other 

application of UGF to the reliability analysis of bridge system can be found in Levitin 

(2003a), and Lisnianski et al. (2000). 

Weighted voting system is another important multi-state system; UGF is widely 

applied to reliability analysis of weighted voting system. Levitin and Lisnianski (2001) 

provide a method to evaluate the reliability of weighted voting system based on UGF. 

Other similar method to evaluate reliability of weighted voting system can be found in 

Levitin (2002a) and Levitin (2002b). 

Other applications of UGF to the reliability analysis of various multi-state 

systems are described in Levitin (2005) in detail. 

 

1.2.2 Bayesian Theory 

The Bayesian approach combines the prior knowledge/information of the unknown 

parameter with current data/observations to deduce the posterior probability 

distribution of the parameter. Moreover, this approach can also handle the correlation 

among those parameters by using the joint distributions. 

To estimate the parameters },...,,{ 21 maaaa =v , observation data 

},...,,{ 21 nssss =v are collected by repeated experiments. Then, given the prior 



Chapter 1 Introduction  

8 
 

distribution )(ap v and observations },...,,{ 21 nssss =v , the posterior distribution can be 

obtained by 

 )|()()|( aspapsap vvvvv ⋅∝     (1.4) 

where      

)|( asp vv = ∏
=

⋅−
n

i
in asasm

1

)|()}|(exp{ vv λ                    (1.5) 

The above standard Bayesian approach is well known and straightforward. 

However, applying this to software reliability modeling poses several challenges 

specific to software testing and reliability. It is an important characteristic that the 

number of failure data is usually scarce in a single test. The lack of failure data in a 

project has challenged the modeling of software reliability, which makes estimating 

proper posterior distributions more difficult.  

 

1.2.3 NHPP 

NHPP is a special class of counting process {N(t),t ≥ 0} to cumulate the number of 

events in a time interval [0,t)  with rate parameter λ(t) such that the rate parameter of 

the process is a function of time. It can be classified as a very special case of the Non-

Homogeneous Continuous Time Markov Chain models, see e.g. Gokhale et al. (1997). 

An classic example of an NHPP would be the arrival rate of faults or failures to a 

software system over the specified period. The faults would be detected in a higher rate 

at the beginning stage. The first application of NHPP in software reliability modeling 

can be found in classi G-O model (Goel and Okumoto, 1979). 
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1.3  Motivation 

The computing system reliability models have been successfully applied in practice, 

and until now there are currently a number of practical papers summarizing their 

application experience (Xie et al., 2004). However, with the development of 

information technology and exponentially growing of complexity of the computing 

systems, the research on computing system reliability is necessary and everlasting. 

Therefore, research on some new developed computing systems, such as weighed 

voting systems, p2p computing system, grid computing systems, and etc, analysis on 

current reliability models, and strategies of optimal resource allocation have been 

underway. Based on this, research within the context of this thesis is conducted 

through the following specific topics. 

 

1.3.1 Reliability of Weighed Voting Systems 

Weighted Voting Systems (WVS) have attracted a lot of attention recently (see, e.g., 

Levitin, 2003, 2004, 2005a, Xie and Pham, 2005) as such systems are widely used in 

pattern recognition, human organization systems and technical decision making 

systems. They are a generalization of traditional k-out-of-n systems, with the following 

properties: each voting unit makes individual independent decision; each voting unit 

has its weight; and the decision of the system is based on the information from the 

individual voting units of the system. The entire weighted voting system reliability is 

defined as the probability that the system can successfully vote a correct output, which 

depends on the unit weights and the system threshold (Levitin and and Lisnianski 

2001). 



Chapter 1 Introduction  

10 
 

However, the limitation of the current models is that the inputs of the WVS have 

very small state spaces. Moreover, with increased input states, the number of different 

combinations of output increases significantly, increasing considerably computational 

complexity of the systems reliability. Furthermore, in many practical cases, the state of 

the input of the voting systems is continuous or approximately continuous and not 

discrete.  

 

1.3.2 Reliability of Peer-to-peer Systems 

Peer-to-peer (P2P) systems have recently received increasing attention from both 

research (see e.g. Leuf, 2002, Gong, 2002, Foster & Iamnitchi 2003, etc.) and industry. 

P2P system is a large-scale distributed system where there is no central server that 

stores all data. All data are distributed among nodes/peers which have the ability to 

self-organize. In P2P systems, peers cooperate to achieve a desired service, such as: 

distributed computing (Anderson et al., 2002), file sharing (Saroiu et al., 2001), 

distributed storage (Rowstron and Druschel, 2001), communication (see e.g. Jabber), 

and real time media streaming (Hefeeda et al., 2003).  

From the perspective of the users of P2P media streaming systems, the most 

significant concern of the users is the performance of the software when downloading 

the huge volume of media data from a highly dynamic and unstable internet 

environment. The demanding users might have high requirement on the quality of 

media service provided by the P2P media streaming software. The P2P live media 

steaming software product with desirable features of running smoothly, recovering 

promptly from a sudden failure, high quality of the live media and etc will be attractive 

the users and outperform other similar competing P2P live media streaming products 
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in the market. Hence, it would be very important to evaluate the service quality 

accurately and quickly to better develop the product further and compete to other 

products. However, to the best of our knowledge, no research has been done on 

measuring and modeling the performance of P2P media streaming network systems 

from the users’ perspective. 

 

1.3.3 Uncertainty Analysis of Reliability Models 

Reliability modeling has gained considerable interest and acceptance by applying 

probabilistic methods to the real-world situation. A software usually contains one or 

more basic modules or components that are functioning together to achieve some tasks. 

These modules can be of various types resulting in a wide range of software and 

system reliability models proposed, e.g. Pham (2000), and Xie et al. (2004), Myrtveit 

et al. (2005). 

In order to apply the models to predict the reliability of the component, the 

parameters of the models need to be known or estimated. Parameter uncertainty arises 

when the input parameters are unknown. Moreover, the reliability computed from the 

models which are functions of these parameters is not sufficiently precise when the 

parameters are uncertain. Hence, it is necessary to determine the uncertainty in the 

parameters for the modeling work.  

However, one special characteristic of software reliability modeling or testing is 

insufficient failure data, see e.g. Miller et al. (1992). Failure data are usually scarce and 

limited to a single test. Insufficient failure data makes software reliability modeling 

difficult, and makes its uncertainty analysis much more challenging. Though some 
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previous research (e.g. Jewell, 1985, Yin & Trivedi, 1999) note this problem and 

suggest using the Bayesian approach to incorporate historical data into prior 

distributions, however they do not propose a systematic and practical approach on how 

to incorporate experts’ suggestions with historical data for uncertainty analysis. For 

instance, Yin & Trivedi (1999) simply assumed the prior distribution is known, using 

for example a uniform distribution as a prior. They do not introduce how to 

comprehensively derive it from experts’ suggestions and historical data.  

 

1.3.4 Preventive Resource Allocation Strategy 

For complex engineering systems, their components or subsystem are vulnerable to 

mis-operations or intentional attacks. Preventive investment in the components is 

necessary to guarantee the safety critical systems to work properly and in high 

performance. Under resource budget constraints, it is important to find the resource 

allocation strategies to improve system reliability optimally. However, it is very 

difficult to obtain such optimal strategies because the engineering systems are quite 

complex. For example, the systems may be in different configurations that some 

components are selectively important. The efficiency of resources in improving the 

different components might differ as well. Addtionally, the components and 

subsystems are potentially exposed to different levels of intentional attacks. Mixture of 

these all makes the whole problem difficult. Moreover, most existing research has just 

focused on engineering systems in comparatively simple configurations, such as series, 

and/or parallel configurations. 
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1.4  Research Objective and Scope 

The purpose of this thesis is to develop more comprehensive and practical models to 

measure reliability of different distributed systems, to conduct detailed quantitative 

analysis on the reliability models to estimate the uncertainties and parameters, and to 

optimize the system reliability by finding resource allocation strategies in different 

ways.  

The remainder of the thesis is organized as follows. Chapter 2 provides 

comprehensive review of the existing research on system reliability models and some 

related system analysis topics.  

Chapter 3 to chapter 5 study two different distributed systems that are widely 

used in practice. Chapter 3 studies the reliability of Weighed Voting Systems with 

continuous state input. A new analytical model for the reliability of WVS system is 

formulated and the reliability optimization problem for WVS under cost constraints is 

analyzed. Chapter 4 considers the bias properties of the system output for WVS and 

looks into three cases where the system has different bias and accuracies. Chapter 5 

formulates a new reliability model to estimate the service reliability of Peer-to-Peer 

media steaming network systems, with service quality considerations.  

Chapter 6 and chapter 7 study the problems of uncertainty analysis and parameter 

estimation for software reliability models and WVS reliability models. Chapter 6 

quantifies the uncertainties in the software reliability modeling of a single component 

with correlated parameters and in a large system with numerous components and 

solves the challenge of lacking failure data by Bayesian method. With the similar 
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technique, chapter 7 studies the uncertainty problem in reliability modeling of 

distributed detection systems where the parameter is estimated from historical 

experiment data. 

After studying reliability models for different systems, chapter 8 discusses 

possible preventive resource allocation strategies, which is enlightened from a famous 

phenomenon in botany-apical dominance to improve the system reliability efficiently. 

Chapter 9 summarizes the thesis and suggests some possible further extensions 

related to the thesis. 
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CHAPTER 2 LITERATURE REVIEW 

Computing systems contain both hardware systems and software systems. Hardware, 

such as computer, CPU, processor, storage, memory etc., provides the fundamental 

configurations to support software system accomplish computing tasks successfully. 

Reliability modeling and analysis of hardware systems and software systems are 

actually equivalently critical to the entire computing system. Much important research 

has been done on reliability analysis and modeling.  

This chapter reviews and summarizes some important related work. The 

remainder of this chapter is organized as follows. Section 2.1 discusses the existing 

literatures on reliability models of weighted voting systems, and section 2.2 briefly 

introduce two recently developed network systems, grid systems and P2P systems, and 

reviews some related research on these two systems. Section 2.3 focuses on the 
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literatures on reliability models of software systems and, lastly, section 2.4 summarizes 

the research work in the area of optimization technique. 

 

 

2.1 Reliability Models of Weighted Voting Systems 

Xie et al. (2004) and Pukite and Pukite (1998) classify hardware system into single 

component system, parallel configurations, load-sharing configurations, and standby 

configurations. Among the above configurations, parallel system is one of the most 

frequently used redundancy configurations in computing systems. In parallel system, 

the failure of the entire system can only occur in case that all the parallel components 

fail, this property ensures high reliability of the system. 

Two kinds of parallel systems are studied abundantly and widely used in industry: 

k-out-of-n systems and voting systems. k-out-of-n system is well covered in Kuo & 

Zuo (2002), it is categorized into non-repairable k-out-of-n system, repairable k-out-of-

n system and weighted k-out-of-n system. Optimal design and other topics are also 

provided in their book. Levitin (2005) introduces universal generating function in 

reliability evaluate of k-out-of-n systems. 

Weighted voting systems (WVS) has attracted a lot of attention recently (see, e.g., 

Levitin, 2003b, 2004, Xie and Pham, 2005) as such systems are widely used in pattern 

recognition, human organization systems and technical decision making systems. They 

are a generation of traditional k-out-of-n systems, with the following properties: 

1. Each voting unit makes individual independent decision 

2. Each voting unit has its weight  
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3. The decision of the system is based on the information from the system 

units. 

Such a model is a dynamic threshold weighted voting system subject to two 

failure modes. System units and their outputs are subject to different errors. For the 

weighted voting systems, the unit errors are defined into three types. The systems 

incorporate all the unit decisions into one unanimous system output D, with the 

following rules: 
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where di(I) is output of unit i, x represents the state that units abstain from voting, τ is 

the preset threshold value and wj is the weight assigned to jth unit. 

The system fails if D(I) is not equal to 1. The entire weighted voting system 

reliability is defined as the probability of D(I)=1. This depends on the unit weights and 

the system threshold. Nordmann and Pham (1998) first proposed the formula for 

calculating reliability of WVS as 
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where x is state of abstinence, Sx represents set of indices for units that are stuck-at-x, 

( ) ( )i
x

i
x qq −=1  in which ( )i

xq represents the probability unit i fails stuck-at-x and R(Sx) is pr

ovided in that paper. 
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However, the computational complexity of eq. (2.2) increases exponentially in 

the number of units. This makes the method impractical in reality. To simplify this, 

Nordmann and Pham (1998) made the following two assumptions: 

1. Weights are scaled to integers 

2. The threshold is described by a rational number 

These two assumptions simplify Eq. (2.2) through a recursive approach. 

Although the computational complexity of the reliability is reduced considerably, it 

remains a serious problem. Xie and Pham (2005) proposes a simpler method to 

calculate the WVS reliability similarly through a recursive approach as 

( ) )0Pr(0~)1Pr()0( =⋅+=⋅= PQPQR nn                              (2.3) 

where ( )0nQ is the probability system output S =1 given the input P=1, and ( )0~
nQ  is 

the probability system output S =0 given the input P=0. 

To improve this further, Xie and Pham (2005) applies saddle point approximation 

techniques to approximate this reliability function with an accurate large sample 

approximation formula.  

In a series of papers Levitin (2001-2005) evaluates the reliability function based 

on the universal z-transform (or universal moment generating function, UMGF) 

technique, which is proven to be a very effective method for numerical implementation. 

In the application of UMGF in reliability evaluation, each voting unit state k can be 

characterized by two indices: state probability sk and the scores this unit contributes to 

the whole WVS when it votes at state k, kkk AHG τ+=  (Hk is total weight of units 

supporting state k and Ak is total weight of abstaining units). After defining these two 

indices, the output of unit j is represented by a polynomial 
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Weighted voting classifier (WVC) makes a classification decision to choose one 

ultimate winner among the multiple classes of input by tallying the weighted votes for 

each decision. The difference between WVC and WVS is that the inputs of WVC have 

multiple classes while the inputs of WVS have two states (0 and 1). This makes the 

output of these two systems different.  For WVC, the input of each unit belongs to a set 

θ  of K classes, θ ={1…,K} . Each unit identifies an object from class k to generate its 

individual classification decision dj(k). The unit can also abstain from voting by setting 

dj(k)=0. The output of each voting unit is incorporated into the system classification 

decision by its weight in the entire system. This difference between WVS and WVC 

requires different methods to formulate the reliability problem and to calculate the 

systems reliability. 

Levitin (2002a) suggests a method to calculate the WVC reliability for plurality 

voting with small object space. The entire WVC output D(k) is calculated as follows: 
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where )(XWk
Λ  is total weight of units supporting state X. 

The reliability of the WVC is defined as: 
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where pk is the probability that input is in state k.  

As each unit has K+1 outputs (K input and 1 state representing abstention), the 

entire WVC consisting of N independent voting units has at most (K+1)N different 
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states corresponding to different combinations of unit outputs. As some different 

combinations of unit outputs can result in the same voting weight distribution (VWD), 

these different outputs are undistinguishable and can be treated as the same.  

To take advantage of the above property, Levitin (2002a) develops an H-

polynomial to calculate the WVS reliability based on the universal moment generating 

function technique. This H-polynomial relates the probabilities of subsystem λ  states 

to VWDs corresponding to these states as 

∑
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where { }j
kmv sum of weights of units belonging to subsetλ that respond to input k with 

output i at state m and }{ j
kmq represents its probability. 

By sequentially applying operator Ω  under certain rules to incorporate all the 

individual H-polynomials, the H-polynomial of the entire WVC is obtained. It is 

shown in Parhami (1994) that threshold voting is considerably simpler than plurality 

voting. Levitin (2003b) takes threshold voting as its voting strategy, where the final 

system output is the one which has total support weight exceeding a certain threshold.  

 

 

2.2 Reliability Models of Grid/P2P Systems 

2.2.1 Grid Systems 
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Grid computing is a recently developed technique for complex system with large-scale 

resource sharing, wide-area program communicating, and multi-institutional 

organization collaborating etc (Xie et al., 2004). Foster & Kesselman (1998) present 

the concept of grid and propose a grid development tool addressing issues of security, 

information discovery, resource management etc. Foster et al. (2002) develop grid 

technologies toward an Open Grid Services Architecture (OGSA) which enables the 

integration of services and resources across distributed, heterogeneous, dynamic virtual 

organizations. Huang et al. (2004) present an approach to the deployment and re-

deployment of grid services based on software architecture models.  

The research on grid reliability is also an attractive topic recently. Xie et al. 

(2004) study grid reliability by classifying the research into two areas: reliability of the 

resource management systems and reliability of the network for communicating or 

processing, because of their different impacts to the entire grid system in different 

stage. Dai et al. (2002b) propose algorithms to evaluate grid computing reliability by 

calculating grid system reliability and grid program reliability separately. Limaye et al. 

(2005) propose a solution dealing with fault tolerance at the service level 

complementing the task-based solutions, and discuss various service availability issues 

related to the grid, and preliminary results obtained while implementing the smart 

failover and transparent job-queue replication mechanism and the automated grid 

installation package. Plank et al. (2003) provide a tool Logistical Runtime System 

(LoRS) that aggregates primitive storage allocations to optimize performance and 

reliability in grid computing systems. Taufer et al. (2005) show that it is possible to 

classify global computing hosts based on simple metrics such as availability and 

reliability, and it is efficient to assign tasks to such hosts accordingly. Li et al. (2005) 

apply the signaling game theory to the research on grid resource reliability, and 
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propose a grid resource reliability model based on promise. Levitin & Dai (2005) study 

the service reliability and performance in grid system with star topology and present a 

method of universal generating function to evaluate the reliability. Dai and Wang 

(2005) maximize the grid service reliability by optimally allocating services on grid. 

 

2.2.2 P2P Computing Systems 

Peer-to-peer (P2P) systems have recently received immense attentions from both 

research and industry (see e.g. Leuf, 2002, Foster & Iamnitchi 2003, Steinmetz and 

Wehrle, 2005, Tian et al, 2006, and etc). P2P system is a large-scale distributed system 

where there is no central server that stores all data. The data are distributed among 

peers which have the ability to self-organize. P2P systems take advantage of the 

resources and storages located in the large-scale peers into a large shared-by-all pool of 

resources. In P2P system, peers cooperate to achieve a desired service, such as: 

distributed computing (Anderson et al., 2002), file sharing (Saroiu et al., 2002), 

distributed storage (Rowstron and Druschel, 2001), communication (see e.g. Jabber), 

and real time media streaming (Hefeeda et al., 2003, Liu et al. 2006, and Tu et al. 

2005). P2P systems are divided into two categories: structured and unstructured, based 

on the flexibility of placing files at peers. In structured P2P systems, a file is placed at 

a specific peer, while in unstructured P2P systems a file could be placed at any peer.  

Structured P2P systems support hash table lookup/insert techniques, which are 

usually referred to as distributed hash tables (DHTs). DHTs make the services 

provided by P2P systems more efficiently: the file lookup/insert and peer join/leave 

operations take Olog(N) steps, where N is the number of peers (Hefeeda, 2004). Chord, 

Pastry, Tapestry and CAN are the examples of DHTs.  
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By using the consistent hashing technique, Chord builds an efficient distributed 

hash table. The query services of Chord are conducted by locating keys onto nodes, 

which is a process running on a host. Dabek et al. (2001) outline the implementation of 

a peer-to-peer file sharing system based on Chord, in which, the peer-to-peer systems 

are able to decide where to compromise and offer better performance, reliability and 

authenticity. Rieche et al. (2004) present a new approach for replication of data in a 

structured peer-to-peer system to store data persistent using multiple numbers of nodes 

per interval in a DHT.  

CAN (Content-Address Network) is a structured P2P systems which uses a large 

scale distributed hash table (Hefeeda 2004). Each peer in CAN is responsible for a 

zone that is dynamically partitioned by CAN from the entire space all the peers 

compose. Each peer stores the part a part of the distributed hash table that belongs to 

its region in the space. Ratnasamy et al. (2001) address two key problems in the design 

of CAN: scalable routing and indexing.  

Unstructured P2P system locates its files and resources to any independent peer 

under loose control. The advantages of unstructured P2P systems are the system is 

more reliable and the queries are more flexible. However, expensive searching process 

for the desired files among the large-scale distributed peers is the mainly disadvantage 

of unstructured P2P systems. Yang and Garcia-Molina (2002) propose three efficient 

search algorithms for unstructured P2P systems. Lin et al. (2004) propose a hybrid 

search algorithm that decides the number of running walkers dynamically with respect 

to peers’ topological information and search time state. 

Among many applications of P2P systems, the research on media streaming by 

P2P has been receiving increasing attention. This system provides the services that 
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users/peers can download simultaneously distributing media sources, which may be 

truly living or a playback of a recording, and users playback the media while it is being 

downloading. Xu et al. (2002) study two problems in P2P media streaming systems: 

the assignment of media data to multiple supplying peers and fast capacity 

amplification of the enter P2P system. Hefeeda & Bhargava (2003) propose a P2P 

media streaming model that can serve many clients in a cost effective manner and 

present a P2P streaming protocol used by a participating peer to request a media file 

from the system. Hefeeda et al. (2003) a novel P2P media streaming system PROMISE, 

encompassing the key functions of peer lookup, peer-based aggregated streaming, and 

dynamic adaptations to network and peer conditions. In PROMISE, one receiver 

collecting media stream data from multiple senders. The above literature mainly 

focuses on the structure of peer-to-peer media streaming systems. Some of the research 

studies how performance of the entire peer-to-peer system is influenced.  

 

 

2.3 Software Reliability Models 

Software is an important element in computing systems. And more than half of all 

system failures attribute to faulty software design (Xie et al., 2004); software is not as 

reliable as hardware, so it is important to evaluate the software reliability in the entire 

system.  

Pukite & Pukite (1998) define software reliability as the probability of failure 

free operation of a computer program for a specified time in a specified environment.  
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The definition of software reliability is similar to the definition of hardware 

reliability, they are both associated with the distribution of time to failure. The research 

on hardware reliability has strongly influenced software reliability modeling. However, 

there are many differences between software and hardware systems. Software systems 

do not wear out with respect to time factor. Another difference is that software will 

never fail because of the faults that have been removed from the software systems.  

Many models for software reliability have been proposed in recent decades. 

Among them, Markov models and NHPP models are widely used in software 

reliability analysis. Xie (1991) summarize many well known models of software 

reliability published from the sixties to 1991.  

The following subsection will describe some famous software reliability models 

in history and introduce some recent research on this topic. 

 

2.3.1 Markov Models 

JM model, which is developed by Jelinski and Moranda (1972), is the most known 

software reliability model which is a Markov process model. This model is based on 

such following assumptions: at the initial stage, the software is with an unknown but 

fixed constant number of faults, which is removed immediately without introducing 

new faults after it being detected, there are no different effects to the failure from the 

remaining faults in the software, and the intervals between failures are independent, 

exponentially distributed random variables. The failure rate in JM model is the product 

of a constant φ and the number of remaining faults in the software. This implies that 

the failure rate is constant between the detection of two consecutive failures, that is, 
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JM model assumes a discrete change of the failure rate at the time of the removal of a 

fault. This model assumes that all the software faults are of the same size, Xie (1987) 

presents a general shock model for software failures by assuming that large faults are 

likely detected early. In literature, many other generalizations of the JM model are 

proposed (Xie, 1991).  

Recently, many other software reliability models based on Markov models have 

been proposed with different assumptions. Goseva-Popstojanova & Trivedi (2000) 

consider the phenomena of failure correlation to study its effects on the software 

reliability measures, and by extending their results, Dai et al. (2005) develop a 

software reliability model based on Markov renewal process for the modeling of the 

dependence among successive software runs, where more than one type of failure is 

allowed in general formulation. Rajgopal & Mazumdar (2002) present a method to 

assess the reliability of a software system by decomposing it into a finite number of 

modules. From the above literature, Markov models in software reliability modeling 

have been developed to more and more complex. Software system is more and more 

considered as a complex system composed of multiple components, each of which has 

corresponding parameters to estimate and influence the entire software system in 

different ways. 

 

2.3.2 NHPP Models 

Non-homogeneous Poisson Process (NHPP) model, which strongly influences the 

development of software reliability modeling, is originally presented by Goel and 

Okumoto (1979), this is a simple model assuming that the cumulative failure process is 

NHPP with a simple mean value function ( ) ( )bteatm −−= 1  (a>0, b>0). a can be 
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explained as the expected number of faults which are eventually detected. b is 

interpreted as the  failure occurrence rate per fault. The failure rate function can be 

obtained by ( ) ( ) btabetm
dt
dt −==λ . Xie et al. (2004) summarize various kind NHPP 

models for software reliability analysis by extending G-O models with different 

assumptions. These models include S-shaped NHPP models by Yamada et al. (1984), 

Duane model, Log-power model by Xie & Zhao (1993), and Musa-Okumoto model by 

Musa and Okumoto (1984). 

Recently, many other NHPP models have been studied. Kuo et al. (2001) 

propose a new scheme, which provides an efficient parametric decomposition method 

for software reliability modeling by considering both testing efforts and fault detection 

rates, for constructing software reliability growth models. Zhang & Pham (2002) 

provide methods to predict software failure rates from a user perspective, based on 

NHPP models. Pham & Zhang (2003) present a model incorporating testing coverage 

information and compare this model with other existing models. Huang et al. (2003) 

compare several existing software reliability growth models based on NHPP, and 

propose a more general NHPP model from the quasi arithmetic viewpoint. From the 

literature above, we can see that the research focus has been moved to reliability 

prediction and reliability improvement given that NHPP is proposed for estimating 

software system reliability. The active research problems are parameter estimation, 

reliability prediction and test coverage. 

 

 

2.4 Optimization Techniques 
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Abundant research work has been done on solving system reliability optimization 

problems since 1970. Kuo and Prasad (2000) categorize the solution methods for the 

nonlinear programming problems involving integer variables into 3 classes: 

1). Exact methods based on dynamic programming, implicit enumeration, and 

branch-and-bound, 

2). Approximate methods based on linear and nonlinear programming techniques, 

3). Heuristic methods which yield reasonably good solutions with little 

computation. 

Table 2.1Reference Classification by Optimization Methods 

Exact 

Algorithm 

Charles et al. (2003), Li et al. (2005),Isada et al. (2005), Ramirez-

Marquez et al. (2004), Yalaoui et al. (2004), Romera et al. (2004), 

Prasad and Kuo (2000) Cui et al. (2004),Agarwal and Renaud (2004), 

Azaiez and Bier (2007), Bier et al. (2005) 

Genetic 

Algorithm 

Levitin (2001), Levitin and Lisnianski (2001), Zhao and Liu (2003), 

Ramirez-Marquez and Coit (2004), Yun and Kim (2004), You and Chen 

(2005), Marseguerra et al. (2004), Levitin (2000), Hsieh  (2003), 

Marseguerra and Zio (2005), Hsieh and Hsieh (2003), Long et al. (2007) 

Ant 

Algorithm 

Liang and Smith (2004), Zhao et al. (2007), Nahas and Nourelfath 

(2005), Dorigo (2001), Maniezzo and Carbonaro (2001), Liang and 

Smith (1999) 

SA and TS Wattanapongsakorn and Levitan (2004), Ryoo (2005) 

Others Nourelfath and Dutuit (2004), Ravi et al. (2000). 
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The literatures are categorized in Table 2.1. The review in following part only 

focuses on genetic algorithm developed after year 2000. 

Genetic Algorithm was successfully used in 1990s to solve reliability 

optimization problems, especially effective for complex combinatorial problems. Gen 

and Cheng (2000) present detailed applications of GA in system reliability 

optimization. 

Yun and Kim (2004) propose a genetic algorithm to optimize the system 

reliability of a series system in which redundancy is available at all levels subject to 

cost, volume and weight constraints. Modular redundancy with identical spare parts is 

more effective than component redundancy after comparison. Marseguerra and Zio 

(2005) illustrate the basic concept of genetic algorithm as an optimization tool in 

RAMS application, highlighting the strength of the approach as well as its limitation. 

Much recent research work combines Genetic Algorithm with other methods, 

such as universal generating function, local search, steepest decent method, and neural 

network, to improve the solution. Levitin (2000, 2001) and Levitin and Lisnianski 

(2001) consider redundancy optimization problems for multi-state system, which the 

total investment-cost is minimized under the required reliability level constraints. To 

solve the problem, genetic algorithms are used as optimization tools; the universal 

generating function is used for evaluating the availability of multi-state series-parallel 

systems. Ramirez-Marquez and Coit (2004) are the first to analyze the MSPS problem 

with using genetic algorithm. The methodology in that paper is flexible in sense that 

the practitioner is not limited to a single solution. Zhao and Liu (2003) formulate a 

stochastic model for redundancy optimization problems of both parallel redundant 

systems and standby redundant system whose components are connected with each 
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other in a logic configuration. Stochastic simulation, neural network and genetic 

algorithm are integrated for solving this model.  

Genetic Algorithms are also used, combined with local search and steepest 

decent method, to solve the optimal task allocation and hardware redundancy policies 

problem for distributed computing system.  Hsieh and Hsieh (2003) consider cycle-

free distributed computing systems with hardware redundancy. It first obtain the 

relationship between system cost and the hardware redundancy level for a given task 

assignment, a hybrid heuristic combining genetic algorithms and the steepest decent 

method is developed to minimize the system cost. Hsieh (2003) also presents a hybrid 

genetic algorithm integrated with a local search procedure to solve the optimal task 

allocation and hardware redundancy policies problems. The local search procedure 

searches for the locally optimal hardware redundancy levels for a given task allocation, 

and the Hybrid Genetic Algorithm performs genetic search over the subspace of task 

allocations. 

Compared to other heuristic algorithms, genetic algorithm is more general and 

easier to handle. By choosing appropriate parameters, genetic algorithm can converge 

into a good solution in a limited number of simulations. And genetic algorithm can be 

used by incorporating other methods, such as stochastic simulation, neural networks 

and etc. The various combinations make genetic algorithm even powerful and 

attractive. Genetic algorithm is also the most robust heuristic algorithm so far.  
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CHAPTER 3 WEIGHTED VOTING SYSTEM 

RELIABILITY 

Reliability estimation of the weighted voting systems is a complex problem, which has 

attracted the attention of many researchers. Nordmann and Pham (1998) first proposed 

the formula for calculating the reliability of a WVS which is simplified by two given 

restrictions. However, the computational complexity increases exponentially in the 

number of units. Xie and Pham (2005) propose a simpler method to calculate the WVS 

reliability and saddle point approximation techniques are applied to simplify the 

calculation. In a series of papers Levitin (2001-2005a) evaluates the reliability function 

based on the universal z-transform (or universal moment generating function, UMGF) 

technique, which is proven to be a very effective method for numerical implementation 
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of obtaining the reliability of the multi-state weighted voting system (Levitin, 2005b 

and Levitin et al, 2007).  

The limitation of the above models is that the inputs of the WVS have very small 

state spaces. Although in weighted voting classifier (WVC) systems, the input state 

space is enlarged from {0, 1} in WVS to {1, …, K}, the K states still cannot represent 

all the states in a real situation. Moreover, with increased input states, the number of 

different combinations of output increases significantly, increasing considerably 

computational complexity of the systems reliability. Furthermore, in many practical 

cases, the state of the input of the voting systems is continuous or approximately 

continuous and not discrete. For example, to maintain the engines of a plane at a safe 

level, we need to update the status continuously by measuring the heat and vibration of 

the working engines to decide whether we need to maintain the engines or not to 

prevent the possible occurrence of accidents. A monitoring system is installed 

consisting of a group of parallel sensors to measure the heat and vibration of the 

engines, which is not directly observable. In this case, a discrete WVS model built for 

this monitoring system is inappropriate because the heat and vibration states of the 

engines cannot be accurately simulated by using discrete states. 

The rest of this chapter is organized as follows. In section 3.1, we formulate a 

new model of weighted voting systems that considers continuous inputs. To illustrate 

this model, some numerical examples are shown. Based on the model formulated, the 

reliability of the entire voting system is calculated using an analytical method and a 

Monte Carlo Simulation method. Section 3.2 presents a reliability optimization model 

under cost constraints and proposes a genetic algorithm to solve this reliability 

optimization problem. Section 3.3 presents a numerical example to illustrate the 



Chapter 3 Weighted Voting System Reliability  

33 
 

reliability optimization problem. Finally, the last section summarizes the work in this 

chapter. 

 

 

3.1 Prosposed New Model for Continuous Inputs 

The notations for developing the new model of WVS are introduced as follows. 

Acronyms 

WVS weighted voting system 

WVC weighted voting classifier 

GA genetic algorithms 

MC Monte Carlo 

AM analytical method 

UMGF universal moment generating function 

 

Notations 

N number of units belonging to WVS 

wi weight of unit i 

X continuous input of the entire system 

Yi output of individual voting unit i 

Y output of entire voting system 

)(yg x  probability density function of system output Y given the input X=x 

)( i
i
x yg  probability density function of output Yi given the input X=x 

p(x) probability that the decision of entire system is correct given X=x 
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R reliability of entire system given any input 

f(x) probability density function of input X 

a threshold of the entire system for judging if the output is correct 

M number of different types of voting units 

Vim structure of the voting system, Vim=1 if unit of type m allocated  

  in position i of the voting system 

Jm number of voting units of type m 

Cm cost of voting units of type m 

ci cost of voting unit at position i in the entire system 

C cost limit for entire system 

R
mσ  standard deviation of the distribution of the output of voting units  

 of type m in resource R  

S
iσ  standard deviation of the distribution of the output of voting unit 

at position i in the entire voting system 

 

3.1.1 General Case 

In the following, we discuss the reliability analysis of the weighted voting system with 

N independent weighted voting units wi and a unanimous input X. The structure of 

WVS is shown in Figure 3.1. The input of this voting system has continuous states, so 

it can be assumed as a continuous random variable with probability density function f(x) 

in the range ],[ HL xx . Based on the definition of probability density function, the 

integration of f(x) from Lx  to Hx  is equal to 1, i.e., ∫ =H

L

x

x
dxxf 1)( .  
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Figure 3.1 Structure of WVS 

 

Given the input X=x, the output of the independent voting unit i is Yi, whose 

probability density function is denoted as ( )i
x ig y . The following table describes the 

configuration of a weighted voting system consisting of N independent voting units 

with continuous states input. 

Table 3.1 Configuration of WVS with N Voting Units 
 Unit 1 Unit 2 … Unit N 

Weight 1w  2w  … Nw  

Output 1Y  2Y  … NY  

Density 1
1( ) xg y  2

2( )xg y  … ( )N
x Ng y  

The system output comprises of the outputs of individual voting units, weighted 

by their individual weights. As the output of each voting unit has continuous states, the 

majority voting algorithm to generate the system output cannot be applied. In order to 

obtain the output of the entire voting unit system, the weighted average of all the N 

outputs is calculated by 
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N

NN

www
YwYwYw

Y
+++

⋅++⋅+⋅
=

...
...

21

2211                                    (3.1) 

where Y satisfies the distribution of  

( )NiN
N
xi

i
xxx wwwygygygfyg ,...,,...,),(),...,(),...,()( 11

1=              (3.2) 

The reliability of the entire system is a function of the weight and accuracy of 

each individual voting unit. As the standard deviation of the output distribution is a 

good measure of the accuracy of the individual voting units (a unit with high accuracy 

will have a small standard deviation), in this chapter, we adopt the standard deviation 

of the output of each voting unit as a measure of accuracy of that unit. The reliability 

of the entire system is then determined by the weights and standard deviations of the 

individual voting units. 

The reliability of a discrete state input voting system is defined as the probability 

that the output is exactly equal to the input, i.e. D(I)=I. However, this definition is not 

suitable for the continuous state input case as the probability that the output calculated 

by incorporating outputs and weights of individual voting units is exactly the same 

with the unanimous input X, is always 0. Hence the reliability for a continuous model 

needs to be defined separately. Firstly, the definition of ‘correct output’ is modified to 

the following: 

If the system output Y satisfies ( )axaxY +−∈ , , we say that this output is correct given 

the input X=x (where a is a constant threshold). 

With this definition of ‘correct output’, the probability that the output of the 

entire voting system is correct given a certain input X=x is  

{ } ∫
+

−

==+−∈=
ax

ax
x dyygxXaxaxYxp )(|),(Pr)(                (3.3) 
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The reliability of the voting system can then be defined as the probability that the 

system makes a correct output for any given input: 

dydxygxfdxxfxpR
ax

ax
x

X

X

X

X

H

L

H

L

∫∫∫
+

−

=⋅= )()()()(                    (3.4) 

 

3.1.2 Solution Algorithm 

When the distribution of each individual voting unit is complex, it is difficult to obtain 

the joint probability function of the output of the system with N independent voting 

units analytically. One feasible method is to obtain the distribution of the entire system 

output by Monte Carlo simulation. The following algorithm provides a generic Monte 

Carlo Simulation method to calculate the reliability of the voting system with multiple 

voting units. 

Begin 

For j=1 to J do  //J is the total number of the iterations 

For m=1 to M 

Simulate )(~ xFX      // Generate a sample X from the distribution of 

F(x) 

For n=1 to N do          //Generate the output of all N voting units 

        Generate Yi(x)  

End 

),,,,( 21 NYYYfY ←  //Obtain the output of the entire system from the 

outputs of all the N independent voting units, given 

input X; 

Check correctness of the output  
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// if ( )axaxY +−∈ , , the output is correct 

       End                      // a simulation on X following the distribution of F(x) 

End   //Now, J sample points of the system reliability are saved in R .  

)(RSummarize     // the reliability is the number of 

‘correct outputs’ out of total trial number. 

End 

With the above algorithm, we can compute the reliability of the entire voting 

system accurately and efficiently.  

 

3.1.3 Special Cases  

In this section, we describe a special case where the probability distribution of entire 

system output can be derived analytically. We first assume that given the system input 

X=x, the outputs of each individual voting unit i are independent identically normally 

distributed normal random variables with mean x and standard deviation iσ , i.e., 

Yi~N(x, 2
iσ ). This assumption is reasonable in practice, as firstly the output of each 

voting unit i is usually symmetrically distributed around the system input x and 

secondly the voting unit is typically accurate enough that the output is close to the real 

input with higher probability. This assumption can reduce the computing complexity in 

obtaining the distribution of the output of entire voting system. The physical meaning 

of variance ( )x2σ  of the normal distribution is the overall distance of all data to its input 

value. This can be used to represent the accuracy of a voting unit. For remainder of this 

chapter, we use standard deviation of the distribution as a measure of its accuracy. 
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To simplify the computation further, the random input X can be assumed to have 

a uniform distribution or some simple continuous distribution. These two assumptions 

reduce the computational complexity in evaluating the reliability of the entire voting 

system. 

Since the output of the entire system is ∑∑= i ii ii wYwY / , Y is normally 

distributed with mean x and variance 2σ , where ∑∑ ⋅= ii ii ww 2222 )/(σσ . Given the 

input X=x, the probability that output is correct is 

{ } ∫
+

−
==+−∈=

ax

ax x dyygxXaxaxYxp )(|),(Pr)( . 

The reliability of entire voting system is then given as ∫ ⋅= H

L

X

X
dxxfxpR )()( . 

In this special case, the distribution of output of the entire system given the input 

X=x is normal with mean value x and standard deviationσ . We can transform this 

distribution into the standard normal distribution N(0,1) by substituting σ/)( xyz −=  

for y. Then 

∫
−

− −⎟
⎠
⎞

⎜
⎝
⎛Φ==

σ

σ σπ

/

/

2/ 12
2
1)(

2
a

a

z adzexp                             (3.5) 

With this transformation, the probability of correct decision is constant given the 

threshold a and the accuracy of the voting system, making this voting system 

insensitive to the input.  

 

3.1.4 Illustrative Example 
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Here we present a simple example to illustrate the analysis on the reliability of a 

weighted voting system with continuous state input. 

3.1.4.1 Model Description 

A temperature detecting system, which is used to measure the temperature of an object, 

comprises of six independent temperature detecting sensors with different accuracies 

and weights. The input temperature for all the sensors is the same. It is uniformly 

distributed between 1 and 2 degrees centigrade. After collecting the input data, the 

sensors generate their own outputs independently and send them to the processing 

component in the detecting system to calculate the weighted average of the outputs. 

For simplicity, we assume that all data transmissions in this system are perfect. 

The structure of the temperature detecting system is given in Figure 3.1. 

This example involves a voting system consisting of six independent voting units 

with different weights: w1=1, w2=1, w3=2, w4=2, w5=3 and w6=4. The weighted voting 

units have different accuracies in measuring the input.  

Table 3.2 Weights and Standard Deviation of Individual Voting Units 
 Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 

Weight (wi) 1 1 2 2 3 4 

Accuracy( iσ ) 05.01 =σ  02.02 =σ 02.03 =σ 01.04 =σ 04.05 =σ  01.06 =σ

We assume that the input temperature X satisfies the uniform distribution in the range 

[1, 2], 

⎩
⎨
⎧ ≤≤

=
otherwise

xif
xf

   ,0
21      ,1

)(  

3.1.4.2 Reliability Analysis of One Voting Unit 
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First we calculate the probability that the first voting unit generates a correct output. 

Here we set the threshold a=0.02 degree centigrade, which implies that the output is 

considered ‘correct’ if the output Y1 is between (x-0.02, x+0.02). 

Given the input X=x, the output Y1 is normal with mean x and standard deviation 

σ =0.05 degree centigrade, 

( ) 2

2
1

2

2
1

05.02
)(

2
)(

1
1

05.02
1

2
1 ⋅

−
−

−
−

⋅
==

xyxy

x eeyg
πσπ

σ . 

Then the probability of the voting unit 1 generating a correct output given the 

input X=x is  

{ }

∫ ∫
+

−

+

− ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⋅

−
−

⋅
==

=+−∈=
ax

ax

x

x
x dyxydyyg

xXaxaxYxp
02.0

02.0
12

2
11

1

1

05.02
)(exp

05.02
1)(

|),(Pr)(

π

. 

In this model, input X follows a uniform distribution, so from eq. (3.4), the 

probability that the output of the first voting unit is correct given any input X is 

∫ ∫∫
+

−

=⋅
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⋅

−
−

⋅
=⋅=

2

1

02.

02.0
12

2
1 3108.0)(

05.02
)(exp

05.02
1)()(

x

x

X

X

dxdyxfxydxxfxpR
H

L
π

 

3.1.4.3 Reliability Analysis of Entire Voting System 

The output of unit i, Yi, given the system input X=x is assumed to follow a normal 

distribution with mean x and standard deviation iσ , i.e. Yi~N(x, iσ ). Since the output of 

the entire system is given as 

13
4322 654321 YYYYYY

w

Yw
Y

i
i

i
ii +++++
=

⋅
=
∑
∑

, 

so Y ~N(x, )2σ , where 
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Given the input X=x, the probability that output is correct is given as 

{ }

∫ ∫
+

−

+

− ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⋅
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x

x
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Hence the reliability of the entire voting system is 

∫ ∫∫
+

−

=⋅
⋅

−
−

⋅
=⋅=

2

1

02.

02.0
12

2
1 9281.0)(

0111.02
)(

0111.02
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x

x

X

X

dxdyxfxyedxxfxpR
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3.1.4.4 General Monte Carlo Simulation method 

For the special normal case, the probability function of the output of the entire system 

can be obtained analytically. However, for general distributions and more complex 

voting systems, closed analytical forms may not be obtained. In these cases, the Monte 

Carlo Simulation method is an efficient and effective alternative to evaluate the 

reliability of the complex system. 

To evaluate the effectiveness and accuracy of this method, we compare it with 

the analytical method proposed in the previous section. Considering the system in 

Figure 3.1, all the parameters are kept unchanged, and if the output of the entire system 

is between (x-a, x+a) (a=0.02), the output is considered to be correct.  

As we know, the accuracy of Monte Carlo Simulation method is greatly 

influenced by the sizes of samples we use to simulate. To analyze the accuracy of 

Monte Carlo Simulation method with the analytical method, the simulations based on 

five samples of different sizes are taken to obtain the reliability of the WVS presented 
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in Figure 3.1. Reliability here is calculated as the proportion of correct outputs out of 

the total number of outputs. The program runtime (in seconds) is recorded and the 

error of the Monte Carlo Simulation method is compared to the result from analytical 

method in the following table. The error is defined as: 

%100||
×

−
=

AMbyestimatedyreliabilit
AMbyestimatedyreliabilitMCbyestimatedyreliabiliterror     (3.6) 

Table 3.3 Comparison of reliability estimates for different sample sizes 
Sample size 10 100 1000 10000 100000 

Reliability 0.9000 0.9100 0.9210 0.9303 0.9283 

Error 3.03% 1.95% 0.77% 0.24% 0.0216% 

Runtime (s) 0.0160 0.0470 0.2660 2.3590 23.3280 

From this table, the simulation with 1000 random samples is sufficient to 

estimate accurately (error<1%) the reliability of the WVS by the Monte Carlo 

Simulation method. Correspondingly, the program runtime is 0.2660s, indicating high 

efficiency of the Monte Carlo Simulation method. 

3.1.4.5 Voting System with Different Numbers of Voting Units 

To further study the effect of the number of voting units on the reliability of the entire 

system, the number of independent voting units is varied and the reliability is 

recalculated. Table 3.4 shows some numerical results of the reliability which increase 

in the number of voting units.  

Table 3.4 Voting systems with different numbers of voting units 
 1 unit 2 units 6 units 

Threshold 0.02 0.02 0.02 

Reliability 0.3108 0.7372 0.9281 
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3.2 Reliability Optimization with Cost Constraints 

3.2.1 Optimization Model Formulation 

Different strategies of allocating independent voting units to the voting system can 

result in different reliabilities of the entire voting system. To increase the reliability of 

the entire system, we have two alternatives. One is to increase the system reliability by 

choosing the voting components with high accuracy. The second is to enhance the 

reliability of entire system by optimizing the structure of the system.  

However, when given the limitation of redundancy and accuracy of individual 

voting units available, the system reliability can only be enhanced by optimizing the 

structure of the system. Consider a weighted voting system consisting of N 

independent voting units chosen from M types of voting units with distinctive 

accuracies and costs. For each type m the maximum number of the units that can be 

used is Jm. These Jm units have the unique costs and accuracies, denoted as Cm and R
mσ  

respectively. Thus, the total number of voting units that can be chosen is ∑M

m mJ .  The 

reliability function of the entire system is only determined by the weights wi and 

standard deviation S
mσ  of the individual voting unit i:  

( )S
N

SS
Nsys wwwfR σσσ ,...,,;,...,, 2121=                              (3.7) 

To reduce the computational complexity of estimating the reliability of the WVS 

in the optimization problem in this section, the normality assumption on the output 

distribution of voting units is applied, that is, we assume that the output distribution of 

voting unit i follows normal distribution Yi~N(x, iσ ), where x is given as the input 

value and iσ  is the accuracy of the voting unit i. 
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We define a variable Vim to represent the structure of the entire system:  

⎩
⎨
⎧

=
mtypeofnotisiunitvotingif

mtypeofisiunitvotingif
Vim 0

,1
. 

After obtaining Vim of the entire system, the total cost can be calculated by 

∑∑
= =

⋅=
N

i

M

m
mimtot CVC

1 1
                                               (3.8) 

The optimal voting unit allocation problem can then be formulated as below: 
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Transforming the original problem into a cost minimizing problem under a given 

system reliability requirement, the problem can be reformulated as 

( )
mforJV

RwwwfRtoSubject

CVCMin

N

i
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rqm
S
N

SS
Nsys
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,...,,;,...,,:
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σσσ            (3.10) 

Following figure depict the optimization problem for weighted voting system. 

 

Figure 3.2 Resource allocation problem for weighted voting system 



Chapter 3 Weighted Voting System Reliability  

46 
 

3.2.2 Optimization Technique 

To solve the above optimization problem for the optimal structure of the voting system, 

we propose to use a Genetic Algorithm (GA). The Genetic Algorithm was first 

published by John Holland (1975), and has since been widely used to solve 

optimizations problems in industrial engineering. Gen and Cheng (2000) summarize 

the applications of the GA in engineering optimization. Painton and Campbell (1995) 

use genetic algorithm as the optimization method to maximize the performance of 

personal computer system subject to cost constraints. Coit and Smith (1996) present a 

penalty guided genetic algorithm to identify a feasible best solution by searching over 

feasible and infeasible region effectively and efficiently. Lisnianski and Levitin (2003) 

optimize the reliability of the multi-state system (MSS) by the GA. 

In general, a GA has four basic components, as summarized by Michalewicz 

(1992). We describe in detail the application of the GA to solve the above voting unit 

allocation problem.  

3.2.2.1 Chromosome Representation 

The representation of the entire system structure is by a 2N-length integer string where 

the value bi in ith position corresponds to the type of voting unit allocated to unit i, and 

the value wi in position (N+i) of the integer string is the weight assigned to unit i. For 

example, the integer string [b1 b2 …bi… bN,, w1, w2,…, wi,…, wN,] corresponds to type 

bi voting unit allocated to position i with weight wi. bi ranges between (1,M). 

3.2.2.2 Initial Population 

The 2N-length integer string composes of two parts; the first part represents the type of 

voting units allocated to the corresponding position and the second part indicates the 

weights assigned to each unit. The two parts have different representations and 
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different ranges, and the way of generating the initial values are different as well. The 

first part is obtained by the following algorithm: 

Step 1: Start from i=1. Let Lm be the number of left-over voting units of type m. 

At the initial stage, the value of Lm is Jm. 

Step 2: Determine if Lm is 0 or positive. If Lm is 0, remove mth type of voting 

units from the selection list. For the ith position at the chromosome, 

randomly select one value from the selection list, say m. Put m into bi. Go 

to Step 3. 

Step 3: Lm is then set as Lm=Jm-1, and i=i+1. 

Step 4: Repeat step 2 until i=N; 

Step 5: Stop the generation program if all the initial population have been 

generated, otherwise repeat step 1. 

The initial weight allocations of the N voting units are generated with random 

integers in the range (1,100). As multiplying all the unit weights by a constant does not 

change the weight allocation in the entire system, the unit weights can be normalized 

so that the total weights of all units is set at a constant W’. After normalization, the 

weight of unit i is given as 

∑
=

⋅
= N

i
i

i
i

w

Www

1

'
'                                                  (3.11) 

With this normalized form, it is easier to compare the weights of the voting units. 

3.2.2.3 Fitness of a Chromosome 

After the solution is decoded, the fitness values are estimated. They are the values of 

the objective function which measures the quality of the solutions obtained. These 

fitness values can be used to compare the different solutions. The fitness values of the 
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chromosomes are determined by two types of variables, the weight wi allocated at the 

ith position of the chromosome, and the standard deviation S
mσ .  

f=f(w1 ,w2,… ,wN ; S
1σ , S

2σ , … S
Nσ )                    (3.12) 

Calculating fitness values of the chromosomes is the most time-consuming part 

in the GA even when the exact allocation strategy of the voting units in resource for 

each position in the WVS is given. In section 3.1, two methods (analytical method and 

Monte Carlo Simulation method) are proposed to estimate accurately the reliability of 

WVS. However, these two methods are inefficient to estimate fitness of the 

chromosome in a genetic algorithm because of the large number of chromosomes to be 

estimated. 

With the normality assumption, the fitness value of a chromosome is only 

determined by the standard deviation of the distribution of the output of the entire 

system, which is a function of the standard deviation and weight of individual voting 

units. Based on this, in our genetic algorithm, we develop an efficient method based on 

a fitness-standard deviation index table to evaluate fitness of the chromosomes 

according to eq. (3.5). After obtaining the standard deviation of the entire system, we 

check this index table to calculate fitness of this chromosome.  

To sum up, the procedure of estimating fitness of a chromosome 

f=f(w1 ,w2,… ,wN ; S
1σ , S

2σ , … S
Nσ ) based on index table is described below: 

Step 1: according to eq. (3.4) and (3.5), calculate an index table where the entry 

at position ind is assigned value ( ) 12 −Φ ind . The interval between two 

continuous indices is defined to be Δ ; 
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Step 2: for each chromosome, given weight and accuracy allocated to each 

voting unit, find the accuracyσ  of the entire WVS, which is the standard 

deviation of the output of the entire system as well; 

Step 3: with the preset threshold a and σ , calculate the fitness index of current 

chromosome: 
Δ⋅

=
σ

aind and find the entry value at this index according to 

Step 1; 

Step 4: according to eq. (3.4), calculate the system reliability by incorporating 

the given input distribution and the entry value obtained in Step 3. 

In the example in Section 3.1.4, the threshold for the voting system is a=0.02 and 

the standard deviation of the output of that entire system is 0.0111σ = , which is easily 

calculated from the corresponding chromosome. The index of search for the fitness 

value of this chromosome is 360 (the integer part of 
Δ⋅

=
Δ⋅ 0111.0

02.0
σ

a , whereΔ  is the 

interval of the index table and Δ  is assumed to be 0.005 in this chapter). Checking the 

360th item in this index table, the fitness value of 0.9281 is obtained according to eq. 

(3.4). We find that the result 0.9281 is exactly the same with the reliability estimated 

by analytical method. This is because the interval Δ  is sufficiently small; the 

estimation error caused by this index table method is negligible. The computational 

complexity of this method is )1(
Δ

O , where Δ  is a preset constant. We conclude that 

the reliability estimate method based index table is more accurate and efficient than 

Monte Carlo Simulation method. 

To account for the voting unit costs constraints, the penalty function is 

incorporated into the fitness function to transform the constrained problem into an 

unconstrained one. This fitness function eq. (3.12) is then given as 
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2121 ,...,,;,...,,             (3.13) 

where mπ is the penalty coefficient of constraint m, and mη is the penalty related 

to the constraint m. The penalty coefficient mπ  is chosen in such a way that the 

smallest value of the fitness function that meets all the constraints is greater than the 

solution with the largest value of fitness function but violating at least one constraint. 

The penalty mη  is proportional to the extent of the constraint violation. cπ is the 

penalty coefficient of the total cost constraint and cη  is the penalty to the fitness 

function when the cost constraint is violated.  

3.2.2.4 Selection 

The selection procedure provides the evolutionary force in the GA. Two important 

issues determine the force of selection: population diversity and selective pressure. 

With strong selective pressure, the genetic search will terminate prematurely and 

converge to a local optimum. With too little selection force, the evolutionary progress 

will be slow. A good selection method is crucial to the quality of solution and the 

speed of the evolutionary process. In the past few years, many selection methods have 

been applied into the optimization problems: Roulette wheel selection, ( )μ λ+ -

selection, Tournament selection, Steady-state reproduction, Ranking and scaling and 

Sharing. 

For the voting unit allocation problem above, we use Roulette wheel selection 

proposed by Holland (1975), which is the best known selection method. The basic idea 

of Roulette wheel selection method is to determine selection probability for each 

chromosome proportional to the fitness value. The chromosome with greater fitness 

value will be selected with higher probability. 
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3.2.2.5 Crossover 

The crossover procedures generate the offspring solution by swapping parts of genes 

from two selected parent chromosomes. The offspring will inherit some useful 

properties from the parent chromosomes. Lisnianski and Levitin (2003) consider three 

crossover procedures for the assignment problems: single point crossover, two-point or 

fragment crossover and uniform crossover. In our problem, we generate the offspring 

by uniform crossover, in which each element is copied from either parent with equal 

probability.  

3.2.2.6 Mutation 

To avoid the premature convergence into a local optimum, the mutation operator is 

introduced to modify slightly some of the string elements of the offspring solution. The 

commonly used mutation procedure changes the value of a randomly selected string 

element by 1.  

3.2.2.7 Parameters in GA 

The GA parameters such as population size, maximum generation, crossover ratio and 

mutation play an important a role, hence choosing good parameters is crucial. As GA 

is a dynamic and adaptive process, some parameters are modified during the run of the 

algorithm. Thierens (2002) shows that varying the mutation ratio is preferable to fixed 

mutation rate. Gen and Cheng (2000) provide three kinds of rules to modify the GA 

parameters: deterministic, adaptive and self-adaptive. In the genetic algorithm 

developed in this chapter, we choose the deterministic rules to adapt some of the 

strategy parameters during the execution time due to its simplicity and effectiveness. 

For example, the mutation ratio is decreased gradually over the 

generations:
G
tpm 03.01.0 −= , where t is the current generation number and G is the 
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maximum generation. However, no significant improvement on the final optimization 

solution has been found in our experiments due to the deterministic adaptation of 

mutation rate. 

 

 

3.3 Numerical example 

3.3.1 Optimization Problem 

In this section we present a numerical example to illustrate the solution of the 

reliability optimization problem for the temperature detection system discussed in 

Section 3.1.4. Four different types of sensors are available to assemble the detecting 

system and the output of each sensor follows a normal distribution with the mean value 

as the input temperature of the system. The configuration of each voting unit resource 

is presented in Table 3.5 

Table 3.5 Parameters of the voting units 

Considering a total cost constraint of 30C ≤ , problem (3.9) is solved to 

determine the allocation strategy of the sensors to optimize the reliability of entire 

system. In this example, the threshold for determining the correct decision is set at 

a=0.02. Other parameters of the GA are: no. of generations is 1000, population size is 

 Type 1 Type 2 Type 3 Type 4 

Total number 4 3 3 2 

Standard deviation 05.0
1
=Rσ  04.0

2
=Rσ  02.0

3
=Rσ  01.0

4
=Rσ  

Cost 2 4 8 12 
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50, penalty coefficient for cost constraint, that is cπ , is 0.05, penalty coefficient for unit 

type constraint mπ =0.1 for m=1,…, M, and the probability of crossover is 0.3. These 

parameters are fixed during the run of our program. The deterministic adaptation is 

only applied to alter the probability of mutation over generations: 
G
tpm 03.01.0 −= . 

The runtime of the GA coded in Matlab is about 30 seconds on a Pentium IV computer.  

 

3.3.1 The Best Solutions from GA 

The best feasible solution obtained by the GA is presented in Table 3.6. The reliability 

of the entire voting system allocated in this strategy is R=0.9602. The overall 

performance of the GA is measured by conducting 30 independent experiments where 

the mean value of the system reliability from these experiments is 9435.0=R , and the 

standard deviation of the results is 0.0543. This result indicates that the Genetic 

Algorithm in this chapter converges to a very good solution based on a sufficient 

number of trials and the result is statistically sound. 

 

Table 3.6 The best voting system configuration obtained by the GA 
 Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 

Type Type 1 Type 3 Type 4 Type 2 Type 1 Type 1 

Weight 0.5512 2.1029 4.8353 1.3176 0.6762 0.5168 

To validate the results obtained by genetic algorithm is a near optimal solution, 

the experiment by changing the weights and type of voting unit in any location of the 

weighted voting system could be applied. In the validation experiment, reliability will 

be measured and compared to the ‘near optimal solution’ suggested in table 3.6. We 
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will find in most cases (in this example, the probability is 99% as 0.9602 is at 99% 

confidence level for the 30 independent experiments if the assumption of normality is 

valid), system performance will be deteriorated that the reliability is less than 0.9602. 

In this way, the reliability model and genetic algorithm can be simultaneously 

validated. 

 

3.3.2 Sensitivity Analysis on the Total Cost Limit 

As the allocation of voting units is constrained by the total cost in this example, 

different total cost constraints will result in different allocation of the voting units. This 

in turn affects the reliability of entire system. Figure 3.3 illustrates how the total cost 

constraints affect the reliability of the best allocation strategy obtained from the GA. It 

can be seen from Figure 3.3 that the reliability increases with increase of the allowed 

total cost. This is expected as the more voting units allocated to the voting system, the 

higher its reliability.  
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Figure 3.3 Reliability function with different cost limit 

 

 

3.4 Summary 

Weighted voting systems and weighted voting classifiers are widely used in human 

organization systems, pattern recognition and other technical fields. One drawback of 

the existing models in the literature is that the inputs in these models are all assumed to 

be discrete. In practice, the input can be continuous. The model proposed in this 

chapter is formulated by taking into account the possibility of continuous inputs. The 

definitions of ‘correct decision’ and ‘reliability of entire system’ are redefined 

correspondingly for the case of continuous inputs. The model is evaluated analytically 

by making some simplifying assumptions. The distribution of the output of each voting 

unit is assumed normal with the mean value coinciding with the input. The output of 

entire system is then a weighted sum of the outputs of the units composing the system. 
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Alternatively, a Monte Carlo Simulation method can be applied if an analytical 

solution to the model is not available.  

A reliability optimization problem with cost constraints is then formulated. As 

different types of voting units can have different accuracies and costs, the different 

allocations of these voting units make the reliability of the entire voting system 

different. In addition, we also provided a detailed description of the GA adapted to 

solve the optimization problem and illustrated its application with a numerical example.   
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CHAPTER 4 FURTHER ANALYSIS ON WVS 

RELIABILITY 

Weighted voting systems and weighted voting classifiers are widely used in human 

organization systems, pattern recognition and other technical fields. One drawback of 

the existing models in the literature is that the inputs in these models are all assumed to 

be discrete. In practice, the input can be continuous.  

In last chapter, we discussed a new reliability model of WVS by taking into 

account continuous inputs, such as measures of temperature and pressure. In that 

model, system output is assumed to follow normal distribution with mean value being 

input and standard deviation as accuracy of the unit. This is a perfect situation that 

system output is unbiased and reflects exactly how system input distributes. However, 



Chapter 4 Further Analysis on WVS Reliability  

58 
 

in practice, this underlying assumption is fraught with problems because practical 

voting systems can never perform in such a perfect and idealistica manner. Practically, 

the mean value of the output of the voting units are biased to the input value, and the 

accuracy (represented by standard deviation of the distribution of the unit output) may 

also depend on the inputs. Hence the reliability of the entire voting system depends not 

only on the accuracy but also on the bias of each unit.  

This chapter extends the models built in chapter 3 by considering the continuous 

state input weighted voting systems with biased output. In this chapter, we will discuss 

three cases by relaxing the assumptions of the weighted voting systems. Each of the 

assumptions represents one specified application background. In the first case, the 

output of each voting unit is unbiased to the unanimous input but the accuracy of this 

voting unit is assumed to be dependent on the input. For the same voting unit, its 

voting accuracy varies considerably due to the difference of input object. In the second 

case, we consider a common used biased voting system, of which the mean value of 

the output is biased to the input due to the irremovable defects in designing the process 

and calibration process. The last case discusses a weighted voting system with time 

dependent accuracy. For better understanding, three corresponding numerical 

examples are presented to illustrate how to calculate the reliability of the weighted 

voting systems under the given assumptions. Both the Monte Carlo Simulation method 

and analytical method are applied to these examples, and a comparison between the 

two methods is made at the end of each example.  

The remainder of this chapter is organized as follows. Section 4.1 discusses an 

unbiased voting system. In section 4.2, a biased voting system is considered and in 

section 4.3 we study the effect of time dependent accuracy. Section 4.4 compares 
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Monte Carlo Simulation method and analytical method in calculating system reliability. 

Finally, section 4.5 summarizes this chapter. 

 

 

4.1 Unbiased Voting System  

4.1.1 The Model 

In this case, the output of each voting unit is unbiased to the unanimous input and the 

accuracy of this voting unit is assumed to be dependent on the input. For the same 

voting unit, its voting accuracy varies considerably due to the difference of input 

object.  

The output of each voting unit follows certain distributions, given the unanimous 

input. Another important assumption is the unbiased property of the assumed 

distribution: the mean value of the output distribution is unbiased to the given input. 

This assumption is mathematically represented by )(xiμ =x, given the system input x. 

Under these two assumptions, the output Y of the entire voting systems is normally 

distributed with mean value x, and variance ( ) ( ) ∑∑ ⋅=
ii ii wxwx 2222 )/(σσ , where 

( )xiσ can be polynomial function which will be discussed in details in later 

subsections. So ( )ii
x yg ~N(x, ( )xi

2σ ) and the distribution of the system 

output ( )ygx ~N(x, ( )x2σ ). In terms of the definition of reliability of weighted voting 

systems, given the unanimous input X=x, the probability that the output of the entire 

voting system is considered as correct is 
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and the reliability of the system is 
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=⋅= )()()()(                           (4.2) 

 

4.1.2 Numerical Example 

Suppose we use a temperature detecting system to measure the temperature of an 

object comprising of 4 independent temperature detecting sensors with different 

accuracies and weights. The input temperature for all the sensors is unanimous, and is 

assumed uniformly distributed between 100 and 200 degrees centigrade. The threshold 

a is preset at 2, so the output which is out of the range (x-2, x+2) is considered as 

wrong output given the input X=x. After collecting the input data, the sensors generate 

their own outputs independently and send them to the processing component in the 

detecting system to calculate the weighted average of the outputs. For simplicity, we 

assume that all data transmissions in this system are perfect. The following table shows 

the parameters assigned in the weighted voting systems. 

Table 4.1 Parameters in the weighed voting systems 
 Unit 1 Unit 2 Unit 3 Unit 4 

Weights 1 3 2 4 

Bias 0 0 0 0 

( )xσ  0.01x 0.01x+1 2410 x− 5-0.02x 
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So, given the input X=x, the probability that the systems generates correct output 

is  

{ }
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As the input is assume as uniformly distributed in [100,200], the reliability of the 

entire voting system can be obtained given any input: 

( ) dx
x

dxxfxpR HX

LX ∫∫ ⎥
⎦

⎤
⎢
⎣

⎡
−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Φ×=⋅=

200

100
122

100
1)()(

σ   

Since the above expression of reliability is hard to calculate, Matlab was used to 

numerically solve it with the threshold a=2, producing a result R=0.8834. 

At the same time, we apply Monte Carlo Simulation method to simulate this 

weighted voting system, and the reliability is calculated as R=0.8933. The difference 

between these two methods is 0.00992, that is 1.11% error in percentage. 

 

 

4.2 Biased Voting Systems 

4.2.1 The Model 
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This subsection considers a biased voting system which is common in practice. For 

some voting systems, the mean value of the output is biased to the input due to the 

irremovable defects in designing the process and calibration process. The bias denoted 

by ( )xiΔ  can be a constant iΔ  for voting unit i. This means that the bias property is an 

inherent property and is independent of system input. The mean value of the output 

distribution of voting unit i is then )(xiμ =x+ ( )xiΔ , with variance ( )xi
2σ . The variance 

could also be described as polynomial function which is illustrated in the following 

example. With the output of the entire voting system given 

as
N

NN

www
YwYwYwY

+++
⋅++⋅+⋅

=
...

...

21

2211 ,  

Y then follows a normal distribution:  
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4.2.2 Numerical Example 

In this example, we consider a weighted voting system with biased output. The 

parameters of this system are shown in Table 4.2. We assume the same input 

distribution as the first example, and the threshold is preset at 2. 

So, 

( )

3.0003.1
10

01.045202.033)01.02(1)(

+=

+
×−×++−++×

=

x

xxxxxμ
 

 



Chapter 4 Further Analysis on WVS Reliability  

63 
 

Table 4.2 Parameters in the weighed voting system 

 Unit 1 Unit 2 Unit 3 Unit 4 

Weights 1 3 2 4 

Bias 2+0.01x -3+0.02x 5 -0.01x 

( )xσ  0.01x 0.01x+1 2410 x−  5-0.02x 

( ) ( ) ( ) ( )
100

40901.030201.07401.04 24
2 +×−×+×

=
xxxxσ  

( )

( )( )
( )

( ) ( ) 1003.06.24.1003.0

2
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2
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The reliability of the entire system is R=0.8195 by analytical method of 

incorporating equation (3.4) and (4.3) and R=0.8290 by the Monte Carlo Simulation 

method. The difference is 1.14%. 

Comparing these results to the reliability in the first example, given the same 

accuracy, we infer that the reliability of this voting system is worse than that in the first 

case. The bias factor influences the performance of the voting systems and should be 

accounted for. 

 

 

4.3 Time Dependent Accuracy 



Chapter 4 Further Analysis on WVS Reliability  

64 
 

4.3.1 The Model 

The above two cases do not consider the time factor in the reliability analysis of 

weighted voting systems. The accuracy of each voting unit is assumed independent of 

time and is considered a constant. However, weighed voting systems which are similar 

to other hardware systems, can wear out and their performance and accuracy will 

decrease over time. This can happen in some extreme situations where maintenance 

service becomes cost-prohibitive or in many cases is simply not feasible. For example, 

in outer space missions, many exploration robots and devices are launched into outer 

space where humans cannot be sent. These robots and devices are often hit by asteroids 

and are exposed to various cosmic rays which in the long run can cause the voting 

systems in the exploration robots to deteriorate and become inaccurate; maintenance of 

these devices which is mainly controlled from the ground cannot solve this kind of 

problems all the time. The accuracy of these voting systems deteriorates as the 

necessary maintenance cannot be conducted in time, making it a function of time. The 

distribution of system output which follows a normal distribution is then dependent on 

time t,  

( )( ) ( ) ( )( )xtxtNyg xt ,,,~ 2
, σμ                                        (4.4) 

The reliability of this voting system is then also a function of time t. 

 

4.3.2 Numerical Example 

In this example, the accuracy and bias of the weighted voting system depend not only 

on the input but also on the time elapsed. Due to the time factor, the performance and 
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reliability of the weighted voting system deteriorates. We assume the same input 

distribution as the first example, and the threshold is preset at 2. Table 4.3 gives the 

information of this system. 

Given the information of the weighted voting system, the reliability function is 

obtained by both Monte Carlo Simulation method and analytical method of 

incorporating equation (3.4) and (4.4), which is shown in the following graph. Figure 

4.2 and Figure 4.3 show the differences of reliability estimation between the two 

methods. From the graph, we observe that the differences are all less than 0.016 for all 

the time points. 

 

Table 4.3 Parameters in the weighed voting system 
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Figure 4.1 Reliability by Monte Carlo and analytical method 

 

 

Figure 4.2 Differences of reliability estimation of the two methods 
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4.4 Comparison between Monte Carlo and Analytical Method 

Both Monte Carlo Simulation method and analytical method are applied to calculate 

the reliability of the weighted voting systems in the three cases above. It shows that the 

reliability estimations by Monte Carlo Simulation method are very close to the results 

obtained by analytical method. This justifies that both methods are applicable for the 

reliability analysis of the weighted voting system with similar quality of approximation. 

However, the two methods have their own advantages, so selecting one of them 

should depend on the corresponding conditions and specific requirements. In general, 

the Monte Carlo simulation is broadly suitable for most tools (such as Markov model, 

Fault tree, Petri Net, Block diagram, Network diagram etc) in evaluating system 

reliability; while the analytic method is only applicable for the model we formulate 

above. And analytic method only applies for certain distributions. On the other hand, 

the analytic method is more effective and less time-consuming than the Monte Carlo 

simulation. It is because usually the simulation method is repeatedly run for many 

times, which is computationally expensive, especially for some complicated systems; 

while the analytic method can directly obtain the results from the formula by one-step 

substitution and computation. 

 

 

4.5  Summary 

In this chapter, we have proposed reliability models for weighted voting systems with 
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continuous state input, in which the output of voting units are considered to be biased 

to the input and the accuracy of the units are assumed to depend on the input. Three 

different cases of the weighted voting systems, accounting for different assumptions 

and application backgrounds, were discussed. To illustrate the three cases, three 

numerical examples were conducted respectively. Reliability of the weighted voting 

system was calculated both by Monte Carlo and by analytical method for each example. 

Comparing the first two cases, we find that the reliability of the biased voting system is 

lower than the unbiased voting system, given the same accuracy of the system. A brief 

comparison of the two methods was conducted and we find that both methods have 

their own advantages and disadvantages. 
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CHAPTER 5 PEER-TO-PEER SYSTEM 

RELIABILITY 

5.1 Introduction 

Peer-to-peer (P2P) systems have recently received increasing attention from both 

research (see e.g. Leuf, 2002, Foster & Iamnitchi 2003, Steinmetz and Wehrle, 2005, 

Tian et al, 2006, and etc)  and industry. P2P system is a large-scale distributed system 

where there is no central server that stores all data. The data is distributed among peers 

which have the ability to self-organize. In a P2P system, peers cooperate to achieve a 

desired service, such as: distributed computing (Anderson et al., 2002), file sharing 

(Saroiu et al., 2002), distributed storage (Rowstron and Druschel, 2001), 



Chapter 5 Peer-to-peer System Reliability  

70 
 

communication (see e.g. Jabber), and real time media streaming (Hefeeda et al., 2003, 

Liu et al. 2006, and Tu et al. 2005 ).   

Currently, there is extensive research and literature in the areas of P2P 

technology and development. However, little research has been done on the reliability 

analysis of P2P network system. Most of the researchers think reliability is not a 

critical issue in P2P network systems as P2P network systems are always considered 

perfectly reliable. This is because even with extensive damages in the P2P network 

system causing many peers to fail, the whole P2P network system can still function in 

excellent condition.  

Among the many applications of P2P systems, the research on media streaming 

by P2P has received increasing attention. This system provides users/peers the services 

to download simultaneously distributing media sources, which may be living or a 

playback of a recording, and enabling the users to playback the media while it is being 

downloaded. Xu et al. (2002) study two problems in P2P media streaming systems: the 

assignment of media data to multiple supplying peers and fast capacity amplification 

of the enter P2P system. Hefeeda & Bhargava (2003) propose a P2P media streaming 

model that can serve many clients in a cost effective manner and present a P2P 

streaming protocol used by a participating peer to request a media file from the system. 

Hefeeda et al. (2003) propose a novel P2P media streaming system PROMISE, 

encompassing the key functions of peer lookup, peer-based aggregated streaming, and 

dynamic adaptations to network and peer conditions. Zhang et al. (2005) present a 

Data-driven Overlay Network (DONet) for live media streaming, of which each node 

periodically exchange data availability information with a set of partners which the 

node shares media streaming data with. An implementation based on DONet, called 
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Coolstreaming is also introduced this chapter.This has rapidly attracted a large number 

of users enjoying the live media streaming from internet all around the world. 

The performance of the service becomes a critical problem in the development of 

P2P media streaming network systems. It is mainly determined by streaming data 

distribution algorithm the network systems apply, the bandwidth of the internet within 

the P2P network systems and the unpredictable departure/failure of peers (Tu et al, 

2005,  and Piotrowski, et al., 2006). Saroiu et al. (2002) report that half of the peers 

connecting to the network will be replaced by new participants within one hour in both 

Napster and Gnutella. Hence, the performance of the systems in the highly unsteady 

environment becomes important. Tu et al. (2005) present a simple model to study the 

effect of peer failures, which are defined as peers leaving the media streaming systems 

permanently, on the capacity growth of the media streaming systems. The distribution 

of the lifespan of the peers is considered to be arbitrary in the model. Zhang et al. 

(2004) present a dynamic passive replication scheme to improve the reliability of 

multicasting systems which comprises of unreliable peers. A reliability analysis is also 

conducted given the replication scheme.  

From the perspective of the users of P2P media streaming systems, the most 

significant concern of the users is the performance of the software when downloading 

the huge volume of media data from a highly dynamic and unstable internet 

environment. The demanding users might have high requirement on the quality of 

media service provided by the P2P media streaming software such as PROMISE and 

Coolstreaming introduced previously. The P2P live media steaming software product 

with desirable features of running smoothly, recovering promptly from a sudden 

failure, high quality of the live media etc. will be attractive to the users and outperform 

other similar competing P2P live media streaming products in the market. Hence, it 
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would be very important to evaluate the service quality accurately and better develop 

the product further to compete with other products. However, to the best of our 

knowledge, no research has been done on measuring and modeling the performance of 

P2P media streaming network systems from the users’ perspective. In this chapter, we 

measure the system performance by calculating the reliability from the users’ 

perspective under data transmission rate requirements of receiving data from other 

peers. A reliability model of P2P media streaming network systems is proposed under 

some necessary assumptions. Further analysis on this simple model is conducted by 

taking into account the time influence on the usage of the internet. The reliability of 

the P2P media streaming network system is then estimated by applying universal 

generating function, a powerful mathematical tool for solving the problems with multi-

state systems (Levitin, 2005).  

The rest of the chapter is organized as follows. Section 5.2 presents the reliability 

model formulated for the media streaming service of peer-to-peer systems. Section 5.3 

introduces the algorithm of universal moment generating function to compute the 

service reliability of the P2P media streaming systems. In section 5.4, an illustrative 

example is introduced to explain how to compute the reliability of the P2P service. 

Section 5.5 conducts the further analysis of the P2P service reliability by taking into 

account the time influence on the usage of internet and in section 5.6 we consider an 

improvement strategy on P2P system reliability, that is, buffer technique and quantify 

the effect. Finally in section 5.7, a summary is given. 

 

 

5.2 Reliability Model of P2P Systems 
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The notations used in this chapter are introduced as follows. 

Acronyms 

P2P peer-to-peer  

UGF universal generating function 

 

Nomenclature 
N number of all the peers composing the whole P2P network 

M state space of index m 

B total data transmission rate to the center peer from all the peers in the 

systems 

bi data transmission rate to the center peer from peer i 

pi probability that peer i is in connecting state 

bik the kth state of data transmission rate of peer i 

pbik probability that the data transmission rate of link i is bik given it is  

connecting state 

Ki state space of the data transmission rate of link i  

Bm mth state of total data transmission rate to the center peer 

Qm probability of  mth state of total data transmission rate 

v the threshold value to determine the service is successful or not 

R(v) reliability of the P2P media streaming service with respect to v 

B(t) total data transmission rate to the center peer at time t 

Bi(t) data transmission rate from peer i at time t 

pi(t) probability that peer i is in connecting state at time t 

Bm(t) mth state of total data transmission rate to the center peer at time t 
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Qm(t) probability of  mth state of total data transmission rate at time t 

R(v,t) reliability of the P2P media streaming service with respect to v at time t 

Rservice(v) reliability of a specific service given threshold value v 

U(z) u-function representing the probability distribution of data transmission 

rate 

U(z,t) u-function representing the probability distribution of data transmission 

rate at time t 

 

In this section, we formulate a new reliability model of P2P media streaming network 

service under certain performance requirement. To reduce the computation complexity, 

some necessary assumptions and simplifications are made.  

Consider a Peer-to-peer media streaming network whose architecture is depicted 

in Figure 5.1 (Hefeeda, 2003). Here, the peers are interconnected through a P2P 

substrate. A peer in this network system can be a computer, PDA or other device. A 

service starts when a peer requests to download data, such as media streaming data, 

from the P2P network, and ends when all the requested data have been transferred to 

this requesting peer. The performance of this P2P network varies all the time during its 

data requesting period as the network performance is unstable and the number of 

online peers varies.   
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Figure 5.1  Architecture of P2Pmedia streaming network systems 

From the perspective of the peer which is requesting data service, the architecture 

of the whole P2P network is simplified as star topology in Figure 5.2. In this topology, 

the center node represents the peer which is requesting media streaming service, and 

the periphery peers represent the peers which can provide the media streaming data to 

the center peer on the internet. Data are transmitted through the links between the 

periphery peers and the center peer at their own data transmission rate in units of 

kilobyte per second (kb/s). 

 

Figure 5.2 Topology of P2P network 
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We first formulate a simple reliability model of the above star topology assuming 

each peer i has a constant probability, pi, of connecting directly to the center peer.  

This model considers the connecting states of all the peers aretime independent. 

Here, we first provide the assumptions made to analyze this model:  

1. all the peers and the links works independently; 

2. peer i connects to the center peer successfully at probability pi; 

3. the center peer always works in perfect status; 

4. the data transmission rate of transmitting data from peer i to center peer has 

multi states (with state space Ki for peer i), each state is assigned to constant 

probability; 

5. the total data transmission rate to center peer is the sum of the data 

transmission rates of all the connecting links; 

6. time to build the communication between peer i and center peer is negligible 

compared with the data transmission time; 

7. the media data is transmitted continuously and not in package; 

8. no replication scheme is applied in the system. 

In the assumptions above, the periphery peer i in Figure 5.2 has only two states: 

‘connecting’ and ‘disconnecting’. We use state S=1 to represent the ‘connecting state’, 

and state S=0 to denote the ‘disconnecting state’. For peer i, we have: Pi(S=1)=pi, 

Pi(S=0)=1-pi, i=1, 2,…, N, where N represents the number of all the peers composing 

the whole network. 
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The data transmission rate bi of the link between periphery peer i and center peer 

has multi values bik (k=1, 2,…, Ki),  the probability that the data transmission rate of 

link i is bik given peer i is in connecting state is bikp .  

When peer i is in ‘disconnecting state’, which is represented by the dash lines in 

Figure 5.2, link i does not really exist in the network system. At this time no data can 

be transmitted through link i between peer i and the center peer, which is requsting 

data, the data transmission rate bi is 0 kb/s. Data can only be transmitted through link i 

when peer i is in ‘connecting state’. 

The above description of the P2P network can be mathematically represented in 

the Bayesian framework by a set of equations: 
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Based on the assumption, the total data transmission rate to center peer is sum of 

data transmission rates of all the links connecting to the center peer: 
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                                                                  (5.2) 

where the set { }1=iS represents the set of the link i which is in the state of 

connecting to the center peer. 

The number of states of links and peers is finite, so the total data transmission 

rate B has finite state space, say M. The probability that the total data transmission rate 

B=Bm is P(B=Bm)= Qm. 
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The media streaming services provided by P2P network systems have a special 

requirement on the data transmission rate. The service is only available in a stable 

internet environment. Once the total data transmission rate of the links from other 

online peer computers is below a certain value v, the online media service will delay or 

stop. This is considered as a failure of the live service. The threshold value v is mainly 

determined by the type of services required/requested and the data encoding techniques 

in this computer which is requesting media service from the internet. Different 

threshold values v set different requirements on the performance of data transmission 

rate, which subsequently determine the reliability of this live media streaming service.  

Hence we use the concept of service reliability to model and quantify users’ 

satisfaction level in this chapter. The service reliability is defined as the probability 

that the data transmission rate is greater than v during the whole service time; the 

definition is represented by the following function of the threshold value v: 

( ) ∑
∈

>⋅=
Mm

mm vBQvR )(1                                                    (5.3) 

where ( )⋅1  is an indicator function which equals to 1 if the condition is satisfied, 0 

otherwise. 

 

 

5.3 Algorithm for Computing the Service Reliability  

5.3.1 Background of Universal Generating Function 
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The universal moment generating function technique (u-function) is used in this 

chapter to evaluate the reliability of P2P media streaming systems. The U-function has 

shown to be effective for reliability evaluation of multi state systems and an 

introduction can be found in Lisnianski and Levitin (2003).  

Universal Generating Function (UGF) is a well-known and effective technique 

for the reliability analysis and optimization of various multi-state systems. Much 

research has been done on incorporating UGF into reliability analysis of various series-

parallel systems, bridge systems, weighted voting systems, acyclic transmission 

networks, linear multi-state sliding-window system, linear consecutively connected 

systems, and acyclic consecutively connected networks (see Levitin, 2005 and Levitin 

& Dai, 2006). Lisnianski & Levitin (2003) briefly describe the application of UGF in 

many of these systems; Levitin (2005) provides a generalized view of the method and 

its application to the analysis and optimization of various types of binary and multi-

state systems.  

 

5.3.2 Universal Generating Function 

The U-function of a discrete random variable Y is defined as following polynomial: 

( ) ∑
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α                                                              (5.4) 

where the variable Y has L possible values and lα is the probability that Y=yl. It is very 

easy to use the u-function to represent the probability mass function of two 

independent random variables ( )ji YY ,ϕ  by introducing composition operators. Simple 
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algebraic operations on the individual u-functions are described in Lisnianski and 

Levitin (2003). All the composition operators take the form: 
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In the case of P2P systems, the u-function can represent the distribution of data 

transmission rate of links. From Equation (5.2), the link i has data transmission rate bik 

with probability ibik pp ⋅ (the probability that data transmission rate is equal to 0 is 1-

pi). Therefore, the u-function takes the form: 
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The total data transmission rate to center peer is the sum of the data transmission 

rates of all periphery peers. Using a composition operator with jiji YYYY +=),(ϕ , 

we get: 
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Hence, the u-function for the distribution of total data transmission rates to center 

peer can be represented as: 
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This can be recursively obtained by:  
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The final u-function calculated recursively by collecting like terms represents the 

distribution of total data transmission rate B, which takes the form of 

( ) ∑
∈

⋅=
Mm

B
mN

mzQzU . With this distribution, we can obtain the reliability with 

respect to different performance requirement value v:  
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5.3.3 Algorithm for Computing Service Reliability 

With the universal generation function introduced above, a simple and efficient 

algorithm is proposed to evaluate the reliability of P2P media streaming network 

service systems:  

Step 1 

1. for  all i∈[1,N] do 

2. collect the values of bikp , pi, bik for each peer i,  

3. define ui(z)  by equation (5.6) 

Step 2 

4. for all  i∈[1,N] do 

5. calculate Ui(z) by using equation (5.9) recursively.  

Step 3 

6. remove the terms whose total data transmission rate is below threshold v

alue v. 
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Step 4 

7. evaluate the service reliability of P2P media streaming service system by 

equation (5.10)  

 

 

5.4 Illustrative Example 

In this section, we illustrate how to formulate the reliability model of media streaming 

service of P2P system and how to estimate the reliability function given the internet 

condition and the information of service users. Consider the P2P media streaming 

system depicted in Figure 5.2. Table 5.1 lists the probability that peer i is in the 

‘connecting state’. The data transmission rate (DTR, in unit of kb/s) and the 

corresponding probability of each peer i are listed in Table 5.2. 

Table 5.1 The probability that peer i is in ‘connecting state’ 
Peer i 1 2 3 4 5 6 

Probability  0.8 0.9 0.7 0.8 0.6 0.9 

The u-function representing the distribution of total data transmission rate to 

center peer is obtained as follows: 
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Table 5.2 Probability distribution of data transmission rate of link i 
Link i     

DTR(kb/s) 10 15 20 1 

Probability 0.1 0.2 0.7 

DTR(kb/s) 10 20  2 

Probability 0.3 0.7  

DTR(kb/s) 15 20  3 

Probability 0.6 0.4  

DTR(kb/s) 15 20  4 

Probability 0.8 0.2  

DTR(kb/s) 20   5 

Probability 1   

DTR(kb/s) 10 20  6 

Probability 0.5 0.5  

 

From this u-function, we can calculate the reliability of this P2P system under the 

requirement of total data transmission rate to center peer. If the service requires the 

data transmission rate to be greater than 100, the reliability can be estimated as follows: 

R(v=100)=0.0569+0.0594+0.0290+0.00427=0.150 

If the requirement is set as 50, the reliability is calculated: 

R(v=50)=0.0370+0.0474+0.0559+0.0847+0.100+0.0889+0.0959+0.120+0.103+

0.0595+0.0569+0.0594+0.0290+0.00427=0.942 
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The service reliability of the P2P system is a function of the system performance 

requirement, which is the total data transmission rate of the links from other computers 

to the center computer in this P2P network system. Higher requirement means a lower 

service reliability of the system. To improve the service reliability of the P2P system, 

we need to improve both the system performance as well as lower the performance 

requirement of the system by applying new encoding techniques. The service 

reliability function with respect to the requirement of the system performance (v) is 

plotted in Figure 5.3: 

 

 

Figure 5.3 Service reliability of the P2P system under performance requirement 

 

 

5.5 Time-dependent Model of the P2P Network System 
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5.5.1 The Modified Model  

In the model formulated above, the assumption that the periphery peer i is in 

‘connecting state’ with constant probability pi was made. In this case, all the peers 

work independently on time which makes the computation much simpler. However, 

what happens more often in the real world is that P2P users (peers) surf the internet 

taking into account the time factor. Some users may prefer to surf the internet in the 

morning, and some other users may prefer night. Different service types also determine 

the different usage of the internet, and hence, the usage time is also influenced by the 

service. In these situations, the probability function of ‘connecting state’ is time 

dependent, and we denote it as pi(t).  

In practice, the data transmission rate of internet connection between the 

computer users is also strongly influenced by the time factor. This means the data 

transmission rate bi for ith connection to the center peer needs to be modified to 

account for time, bi(t). To simplify the computing complexity, here we also assume 

that the data transmission rate bi(t) has only finite number of states at each time point. 

To simplify this reliability model, we make some necessary assumptions here.  

1. all the peers and the links work independently; 

2. peer i connects to the center peer successfully with probability pi(t); 

3. the center peer always work in perfect status; 

4. the data transmission rate of transmitting data from peer i to center peer is 

bi(t ), which is a multi-state value at each time point; 

5. the total data transmission rate to center peer is the sum of the data 

transmission rates of all connecting links; 



Chapter 5 Peer-to-peer System Reliability  

86 
 

6. time to establish communication between peer i and the center peer is 

negligible compared with the data transmission time; 

7. the media streaming data is transmitted continuously and not in packages; 

8. no replication scheme is applied in the system. 

Comparing the assumptions above with those in section 2, items 2 and 4 are 

different as some properties in this system are time dependent. In this model, we 

assume the data transmission rate from peer i to the center peer at time t is bi(t) in this 

section. The total data transmission rate to the center peer B(t) is the sum of data 

transmission rate of all the links that connect to the center peer, which is represented 

by equation (5.12): 
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As the number of states of links and peers is finite, the total data transmission 

rate B(t) has finite state space M, and so, the probability that the total data transmission 

rate B(t)=Bm(t) is P(B(t)=Bm(t))=Qm(t). 

This service can only be carried out successfully in a good internet environment. 

Once the total data transmission rate of the links from other online computers is below 

a certain value v, the media system will stop the media service, and this is considered 

as failure of the media system. The service reliability is therefore a time dependent 

function as the data transmission rate varies according to time: 
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From Equation (5.13), the system reliability function can be plotted with respect 

to time. For a specific service the user starts, the service reliability is defined as the 
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continuous average over the service time. This is the definite integral of the reliability 

function in equation (5.13) from the time service begins ta, to the end of the service tb, 

over the duration of the service (tb-ta): 
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We can extend the reliability analysis and u-function technique in the model in 

section 2 and 3 by replacing pi and bi in above model with pi(t) and bi(t) respectively.  

The universal generating function of peer i is subsequently extended to time area:  
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To estimate the service reliability of P2P network system, we need to collect 

necessary data, including the users’ profile and the data of internet condition over time. 

The users’ profile includes users’ habits, what time the users prefer to use the internet, 

what kind of services the user requests etc. These can be obtained from a questionnaire. 

The data of internet condition can be obtained directly from the public reports released 

from the government or other public organizations.  

After the analysis, we can get the reliability function which satisfies the 

requirements on the data transmission rate. Since the reliability is a function of time, 

we can plot the reliability-time curve to determine when the reliability function reaches 

its peaks in the given period of time. This can help determine when the P2P network 
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provides the greatest reliability, and in turn, provide information to the users on the 

best times to join the network to experience the most stability and reliability.  

 

5.5.2 Numerical Example of the Modified Model 

A simple numerical example is presented here to illustrate the extended model with 

time factor considerations. Suppose we obtain the data of the probability of connecting 

to internet of the users of P2P media streaming systems and the data transmission rate 

of network links from a survey or other sources. The probability that each individual 

peer connects to the center peer is given in Table 5.3 for different time periods of the 

day. For the sake of simplicity, we use the probability of connecting to network in 

simple forms. The data transmission rate of the links is shown in Table 5.4. To further 

simplify computations, we assume that the data transmission rates in a short period are 

constant. 

Table 5.3 Time-dependent connecting probability of each peer 
Peers 12:00-18:00 

1 0.5+0.02*t 

2 0.85 

3 0.4+0.03*t 

4 0.8-0.01*t 

5 0.75 

6 0.7+0.01*t 

From the perspective of users of this P2P media steaming software, the 

requirement level v is set at 60 kb/s which means the service will be considered as 

failure when the total bandwidth rate is lower than the requirement. Given this 
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definition, the service reliability is calculated as the probability that the total bandwidth 

rate is greater than 60 kb/s.  

Table 5.4 The data transmission rate of each network link 
 Time 

rate 

12:00-

13:00 

13:00-

14:00 

14:00-

15:00 

15:00-

16:00 

16:00-

17:00 

17:00-

18:00 

b1(t) 18 15 17 20 19 20 

b2(t) 20 22 23 25 23 20 

b3(t) 18 20 25 28 30 32 

b4(t) 25 23 20 20 20 22 

b5(t) 15 15 18 20 20 25 

b6(t) 20 23 25 23 20 23 

 

 

Figure 5.4 Time-dependent service reliability of P2P media streaming systems 

 

Given this performance requirement, the service reliability of the P2P network 

system is calculated and plotted in Figures 5.4, in which time is in unit of hour. As the 
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probability of connecting the central peer is time dependent for each periphery peer 

and its data transmission rate varies with time, the service reliability of the P2P system 

varies with time as well, as seen from the figures.  

From Figure 5.4, we find that the service reliability is significantly related to both 

connecting probability and the data transmission rate of each peer. Within each period 

when the data transmission rate from periphery peers are assumed to be constant, the 

service reliability increases monotonically over time because the average probability of 

periphery peers connecting to the network increases. Obviously, average service 

reliability in each period is also highly related to the average data transmission rate of 

the corresponding period. The conclusions above actually describe one inherent and 

famous feature of P2P network: the more participants, the better system performs. 

It is easy to calculate service reliability of the network over certain periods of 

time. Suppose a user is watching a live football match on the internet through P2P 

media streaming network from 14:00 to 16:00. Service reliability for viewing this 

football match online can be evaluated by equation (5.14) as: 
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This shows that the service will be provided successfully about 97.94% time of 

the entire match time. It also represents users are satisfied with the performance in 

97.94% time. 
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5.6 Reliability Model with Buffer Technique 

5.6.1 Problem Statement 

In various implements of P2P media streaming systems, buffer techniques are applied 

to ensure the systems are tolerant to a satisfactory level against a sudden interruption 

or temporary transmission failure over the internet for a short period. This improves 

the reliability of the whole system dramatically by avoiding loss of transmitting data. 

In the following subsection, we formulate a new reliability model taking into account 

the significant effect from buffer techniques applied in the P2P systems.  

 

 
 
 
 
 

The figure above describes the structure of buffer for a P2P media streaming 

system. The frame buffer receives new frames from its parent peers and queues the 

coming frames in the buffer in terms of frame sequence for playback. The newest 

frames are stored at the end of the queue while the oldest one, which is placed at the 

beginning unit of the buffer, say buffer(1), is ready to playback for the users. After the 

frames in buffer(1) is pushed to playback, the rest frames in the buffer move forward 

to previous buffer, that is, the frame in buffer(i) moves to buffer(i-1). The frames in 

buffer can also be forwarded to their child peers as researched by Yeh and Pui (2005), 

but this is not the main concern of this section. 

In our model, we assume constant playback rate while data transmission rate 

depends on the unstable internet condition. Video frames are pushed to playback in 

packet size, that is, the size of a buffer. So the time to consume video frames in size of 

New frames 
from internet 

Frames to 
playback 

N1

 …  i    … 

Figure 5.5 Structure of frame-buffer in P2P Systems 
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a buffer is buffer size/playback rate. During this period, frames in buffer grow in data 

transmission rate until all buffers are full. We consider two types of failures in the 

process of data transmission and consumption: overflow and starvation. 

Overflow 

Buffer overflow happens if the streaming data transmission rate from its parent 

peers through internet is higher than playback rate of the video streaming. In our model, 

we adopt the policy of dropping all new frames when the buffers are full. New frames 

are accepted only when one or more buffers are empty as a consequence that the 

frames in the earlier buffers have been consumed by video application. The request for 

new frames from this peer will be resent to its parent peers (periphery peers in the 

previous model) when one or more buffers are ready to receive new frames. The delay 

of starting a new connection to other peers is considered to be negligible in this section.  

Starvation 

As stressed in the previous section, due to dynamically unstable internet, data 

transmission rate often goes well below the required level that P2P software 

applications starve from new frames. Starvation occurs when the P2P software 

applications have used up all the frames in buffer but no new frames are received 

because of unstable internet condition or unexpected events (internet traffic jam, peers 

leaving, etc). In this case, the video player has to be paused until the internet condition 

improves and enough new frames are transmitted to this peer. We consider starvation 

as the only source of failure to P2P media streaming system in our reliability model for 

simplicity. The failure is defined mathematically as an event: buffer(1)=0 & data 

transmission rate<playback rate. The failure will continue for a while until buffer(1) 

becomes 1. 
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Following figure is depicted to illustrate the diagram of processing video frames 

with two failures above. 

 

 

 

Reliability Definition 

To differentiate from the previous models, we re-define reliability of P2P media 

streaming system with taking into account the effect of application of buffer scheme in 

the P2P system.  

The reliability is redefined as the probability that video frames can be processed 

smoothly to the users’ end, that is, mathematically, 

0)=(1)(-1 = bufferpyReliabilit                                     (5.17) 

 

5.6.2 Markov model 

Implementation of buffer scheme can dramatically improve the performance of P2P 

media streaming system. When network bandwidth drops suddenly due to unknown 

events which always happen, the video system is still able to playback the frames 

buffered in advance till the network system recovers itself to a normal or high level. 

Next tΔ  

Next tΔ  

Y N 

N Y 

Starvation

Stop playback Overflow

Receive data Stop transmission 

Playback

Receive data 

Figure 5.6 Diagram of processing video frames
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When network condition becomes better, that means, P2P media streaming system can 

receive video data at high rate. The surplus frames will be put in the buffers for 

playback in future. In this sense, the P2P system, with buffer scheme, prepares frames 

when the network condition is good and consumes the buffered frames when it turns to 

bad condition. In this subsection we discuss the calculation of reliability of P2P system 

with buffer technique and compare this result to the case with no buffer technique 

considered to find out how the buffer technique improves the P2P media streaming 

system. 

From the analysis above, we know the reliability is highly related to the factors 

defined as follows: video playback rate, video volume, buffer size, and network 

condition. For the sake of simplicity, in our thesis we consider the network condition 

as the sole unknown factor whose value varies over time and on which the 

instantaneous performance of P2P media streaming system is dependent, while other 

factors are considered as environment parameters for the model which are constant 

during the playback time by our assumption.  

When the video system is using up the frames, it pushes new frames from the 

buffer. As we stated in our assumption, the playback rate and frames size are 

considered to be constant. The time of consuming a packet of frames is thereafter 

constant, that is 
RatePlayback

SizeFramettt nn =−=Δ +1 . By this means, the number of packets 

in the buffer reduces by 1 every tΔ . At the same time, the buffer receives video data at 

a changing rate from other peers over the internet. So, comparing the Playback rate and 

receiving rate, packets of video data in buffer have 3 possible trends to go: decreasing, 

keeping unchanged, and increasing.  
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Consider a stochastic process { }...2,1,0, =nX n  to represent the buffer status of 

P2P media streaming system and let iX n = denote the state that buffer(i) is full but 

buffer(i+1) is empty at time n. Time interval is set as tΔ in this chapter.  Event 

starvation only occurs at Xn=0. 

As we assumed in section 2, the connecting states of all the peers are not time-

dependent.  By this assumption, the probability that the stochastic process is in state 

Xn=i at time t=n is independent of the network condition given the fact the Xn-1=in-1. 

From this, we conclude the buffer status satisfies Markov property and in the following 

part, we will model P2P media streaming system reliability with this property. 

Due to the change of network condition, buffer state will also change from 

iX n =  to jX n =+1  with probability Pij: 

{ }
{ }iXjXP

iXiXiXiXjXPP

nn

nnnnij

===

======

+

−−+

|

,,...,,|

1

0011111                    (5.18) 

for all states.  

After defining the probability Pij, the next step is to calculate Pij for each i and j 

and then to find P0 which states the unreliability of this P2P media streaming system. 

From eq. (5.11), we describe the unstable network condition at different levels in 

different probabilities. If at time t=n, the buffer is in state Xn=i, then at t=n+1, the 

buffer may transit to state Xn+1 =jn+1 with a different probability which is dependent on 

network condition (the effect of network condition is assumed constant to guarantee its 

Markov property) and current state i simultaneously. 



Chapter 5 Peer-to-peer System Reliability  

96 
 

 

 

As we stated earlier, unreliability of the P2P system is the probability of 

starvation occurring, that is the probability no frames is buffered. As the Markov chain 

above for the P2P buffer system is irreducible ergodic, this probability can be 

calculated by finding its limiting probability 1π . 

So we have  

n
ijnj P

∞→
= limπ                                                          (5.19) 

and the solution is obtained from ( 0≥j ) solving the equations 

∑
∞

=

=
0i

ijij Pππ   

∑
∞

=

=
0

1
i

jπ                                                (5.20) 

Then reliability is represented by 

( )PRDTRPR ≤⋅−= 01 π                                           (5.21) 

 

Pi,i-1 

Pi,i+2 

Pi,i+1 

i  1 … N 

Figure 5.7 Frames states transition
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5.6.3 Numerical Example 

In this subsection, we apply a numerical example to illustrate the process of calculating 

reliability of P2P media streaming system with buffer technique.  

Suppose a P2P system playback the video frames at rate 50 kb/s. The size of a 

frame is 25 kb and the buffer accommodates 4 seconds of frames, that is, 200 kb in all. 

So time interval is st 5.0=Δ . To study the effect of unstable network environment, we 

use the results of estimating total data transmission rate to center peer from eq. (5.11) 

in the earlier section.  

The transition probability matrix is obtained as follows. 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

905.0095.00000000
150.0755.0095.0000000
0150.0755.0095.000000
00150.0755.0095.00000
000150.0755.0095.0000
0000150.0755.0095.000
00000150.0755.0095.00
000000150.0755.0095.0
000000150.0755.0095.0

P  

With the transition matrix, the limiting probabilities for each state are obtained 

by eq. (5.20):   

[ ]0.3764    0.2384    0.1510    0.0956    0.0606    0.0384    0.0243    0.0139    0.0015=π .  

Hence reliability is calculated as 9985.01 0 =−= πR . Compared to the result in 

section 5.2, for the P2P system implemented with buffer technique, service reliability 

is highly improved. 

As the P2P system is a large scale distributed system, quantitative validation of 

the reliability model is quite expensive. Qualitative validation can be done by choosing 
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different number of buffers and comparing the results of different systems. Obviously, 

the systems with more buffers appear to be more robust. This conclusion can also be 

proved by our Markov model: the probability of entering absorb state will be 

increasing if some buffers are removed. 

 

5.7   Summary 

Peer-to-peer systems have recently received increasing and extensive attention both 

from research and industry. However, most of the recent research focuses on the 

structures and algorithms of P2P system and little research has been done on the 

reliability analysis of the systems.  

As performance becomes a critical issue in the highly dynamic environment 

where peers leave or fail unpredictably, the condition of the internet is highly unstable. 

P2P system is a large-scale distributed network system with huge complex topology. It 

is very hard to formulate the reliability model to evaluate the system performance 

quantitatively because of its vast complexity. However, from the users’ perspective, 

the P2P media-streaming network can be simplified as star topology where current 

user is the center peer and other peers are the periphery peers.  From this topology, we 

formulated a simple reliability model to estimate the service reliability as a measure of 

the system performance with service quality considerations. With this reliability model, 

the performance of service provided by the P2P media streaming system can be 

obtained easily with information on the internet conditions and user profiles, which can 

be collected from survey or database of some public agencies. 
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As the condition of internet is highly dynamic over different times of the day, 

further analysis on the reliability modeling of the P2P media streaming system is 

proposed to account for the time effects. The universal generating function (UGF) is 

then used as the method to calculate the reliability.  

Buffer techniques are commonly applied to store a few segments of media data 

ahead to hide transient extra delays in packet arrivals, improving the performance of 

the P2P media streaming systems (Hefeeda and Bhargava, 2003, and Zhang et al., 

2005). In this thesis, we further build a reliability model to take into account the effect 

from buffer technique on P2P system reliability. The real performance of the P2P 

media streaming system are better than what we concluded in the earlier part of this 

chapter because of the application of the replication scheme in the real systems. A 

numerical example is used to illustrate the computations. 

 



Chapter 6 Uncertainty Analysis in Reliability Modeling  

100 
 

CHAPTER 6 UNCERTAINTY ANALYSIS IN 

RELIABILITY MODELING  

 

 

6.1 Introduction 

Reliability modeling has gained considerable interest and acceptance by applying 

probabilistic methods to the real-world situation. A software usually contains one or 

more basic modules or components that are functioning together to achieve some tasks. 

These modules can be of various types resulting in a wide range of software and 



Chapter 6 Uncertainty Analysis in Reliability Modeling  

101 
 

system reliability models proposed, e.g. Pham (2000), and Xie et al. (2004), Myrtveit 

et al. (2005). 

Except for non-parametric models (Xie et al., 1997), most reliability models 

require some estimates of parameters. For example, the exponential model widely used 

for reliability analysis during the operational phase (Yang & Xie, 2000 and Dai et al., 

2003a), has a failure rate parameter (λ ); the JM model (Jelinski & Moranda, 1972) is a 

traditional Markov model for software reliability with two parameters: the initial 

number of faults ( 0K ) and the failure intensity contributed by one fault (φ ); the Goel-

Okumoto model (Goel & Okumoto, 1979) is a classical NHPP model with two 

parameters (a and b) etc.   

In order to apply the models to predict the reliability of the component, the 

parameters of the models need to be known or estimated. Field data or data from 

components with similar functionality are usually available to help estimate these 

parameters, but the estimators are subject to random variation because they are 

functions of random phenomena. Parameter uncertainty arises when the input 

parameters are unknown. Moreover, the reliability computed from the models which 

are functions of these parameters is not sufficiently precise when the parameters are 

uncertain, see e.g. O'Connor (1995) and Wooff et al. (2002).  

Uncertainty analysis aims to quantify uncertainty associated with performance 

output as a result of uncertainties in the parameters.  Hence, it is necessary to 

determine the uncertainty in the parameters for the modeling work. The uncertainty 

can be better described with a probability model than with a single point estimate. 

From the probability model, measures of the uncertainty (such as variance, confidence 

interval) can be obtained. To describe a probability model requires more data than to 
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obtain the point estimate of the parameter. Jewell (1985) analyzed uncertain 

parameters for the JM model by using the Bayesian analysis. Masera (1987) proposed 

a method for computing the uncertainty propagation in fault trees when the lognormal 

distribution is used for failure rates of the components. Haverkort & Meeuwissen 

(1995) dealt with uncertain parameters for the Markov-reward models. Adams (1996) 

presented a mathematical model to calculate the confidence intervals that account for 

any uncertainty concerning the operational profile of the system. Yin & Trivedi (1999) 

studied the uncertain parameters for Goel-Okumoto model and S-shaped models by 

implementing a simplified Bayesian approach.  Then, Yin et al. (2001) addressed the 

parameter uncertainty problem in reliability modeling with Markov models. 

Soundappan et al. (2004) compared the differences and relationships between evidence 

theory and Bayesian theory in uncertainty reliability modeling. To achieve sufficient 

accuracy in the uncertainty analysis, the above approaches need to collect more test 

data, e.g. Yin & Trivedi (1999) used 97 failure times for the uncertainty analysis. 

However, one special characteristic of software reliability modeling or testing is 

insufficient failure data, see e.g. Miller et al. (1992). Failure data are usually scarce 

and limited to a single test. The more reliable the software is, the less failure data the 

testers can collect. Insufficient failure data makes software reliability modeling 

difficult, and makes its uncertainty analysis much more challenging. It is different 

from the uncertainty analysis in other areas with sufficient data, as summarized by 

Kurowicka & Cooke (2006). Though some previous research (e.g. Jewell, 1985, Yin & 

Trivedi, 1999) note this problem and suggest using the Bayesian approach to 

incorporate historical data into prior distributions, however they do not propose a 

systematic and practical approach on how to incorporate experts’ suggestions with 

historical data for uncertainty analysis. For instance, Yin & Trivedi (1999) simply 
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assumed the prior distribution is known, using for example a uniform distribution as a 

prior. They do not introduce how to comprehensively derive it from experts’ 

suggestions and historical data.  

This chapter not only addresses the uncertainty problem, but more importantly 

presents a solution for the challenge of insufficient data during a software test and 

reliability. It is observed that some information such as expert knowledge, historical 

data from similar projects, and developmental environment can contribute to the 

uncertainty analysis. For example, the team for development often has information of 

the development process, debugging method, test plan of the component, etc., and 

experts, managers or consultants may know what type of distributions certain 

parameters should follow and what conditions they are subjected to.  

Thus, this chapter combines the Maximum-Entropy Principle (MEP) with 

Bayesian approach (BA) to solve the above challenges. MEP (Kapur, 1989) is a 

technique that applies the physical principle of Entropy, which states that without 

external interference, this measure of disorder will always tend to the maximum. This 

provides a probability distribution that is consistent with known constraints expressed 

in terms of the expected values of one or more quantities. The capability of the MEP 

can be integrated into the Bayesian approach (BA) to derive the priori distribution 

which can incorporate not only the historical data but also experts’ suggestions, 

constraints, expected values, and other information in developmental process, which 

was introduced by Berger (1985). This chapter is the first to apply the MEP with the 

BA into the uncertainty analysis of software reliability. This is specifically appropriate 

to highly reliable software where only a few failure data is available from a single test 

of the project within a limited time frame.  
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After exploring the uncertainty for a single software component with multiple 

correlated parameters, this chapter further extends the uncertainty analysis to more 

complicated modular-software or systems that contain multiple components/modules, 

each with its own respective distributions and uncertain parameters, e.g. Kim et al. 

(2004). Many tools have been proposed to evaluate the system reliability, such as the 

Markov models (Dai et al., 2003b), Bayes Network, Graph Theory (Dai & Levitin, 

2006), Stochastic Petri Net, Fault Tree Analysis (Masera, 1987), etc.  All these tools 

are functions of the components’ parameters and if the parameters are not known 

precisely, the uncertainty in the entire reliability obtained from these tools will be 

further amplified, see e.g. Haverkort & Meeuwissen (1995) and Yin et al. (2001). This 

chapter further studies the uncertainties in large and complicated systems using a 

Monte Carlo (MC) approach.  

The rest of the chapter is organized as follows: Section 6.2 introduces the 

reliability modeling and then discusses the uncertainty problems; Section 6.3 presents 

the MEP with BA for the uncertain analysis on a software component, and introduces 

the MC approach for the uncertainty of modular-software and complicated systems; 

and in Section 6.4, some examples belonging to different modeling categories (NHPP, 

Markov, Graph) are illustrated, where a new model improving Dai & Levitin (2006)’s 

model is also exhibited. Section 6.5 summarizes this chapter. 

 

 

6.2 Overview of Reliability Modeling and Uncertainty Problems 
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Software reliability is an important index for software systems. A software system may 

contain multiple components or modules. The parameters of each component have to 

be known before the whole software/system reliability is evaluated. Point estimation 

methods such as the maximum likelihood or the method of least squares are usually 

used to obtain estimates of these parameters. We will briefly introduce the general 

steps of reliability modeling for the individual components, and then review the whole 

system reliability and the uncertainty problems.   

 

6.2.1 Reliability Model of a Single Component 

A software system may contain one or more components which are basic units of the 

system. Different components may have their own reliability models with respective 

parameters. To study the software/system reliability, the parameters of those 

components should be known. 

 The parameters in the model of a component are usually obtained by the 

methods of MLE (Maximum Likelihood Estimate). The general MLE steps are given 

below  

Test the component and record the failure times: Let kt  ),...,2,1( nk =  denote the 

observed time between stk )1( −  and thk  failure. Let ks  denote the time to failure k. 

Then ks  is given by ∑
=

=
k

i
ik ts

1

. 

Compute the joint density or likelihood function: Given nsss ,...,, 21 , the likelihood 

function can be written by (Trivedi, 1982) 
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∏
=

⋅−=
n

i
innS ssmsssf

1
21 )()}(exp{),...,,( λ                      (6.1) 

where )(tm  is the mean value function and 
dt

tdmt )()( =λ  is the failure intensity 

function. Different mean value functions )(tm  may contain different parameters, see 

e.g. Xie & Dai (2004: pp. 101-109).  

Get the parameters that maximize the likelihood function: Take the derivative with 

respect to each parameter, and then let it be 0. By solving these equations, the 

parameters are obtained. Usually, these equations are numerically tractable.   

 

6.2.2 System Reliability Model with Multiple Components 

After obtaining the models and parameters of those components, the system reliability 

can be evaluated according to the architecture and relationship of the components. The 

Markov model, SPN (Stochastic Petri Net), fault tree analysis, and reliability block 

diagram, are some popular tools to evaluate the system reliability given the parameters 

of its contained components.  

 For example, a Markov chain is characterized by its state space together with 

the transition probabilities over time between these states. Usually, there are four steps 

to construct and solve the Markov chain models: 1) Setting up the Markov chain model; 

2) List the Chapman-Kolmogorov equations; 3) Solve those equations to obtain state 

probabilities; 4) Obtain the reliability by summing up the probabilities of those reliable 

states. The detailed steps are shown by Xie & Dai (2004: pp. 19-36), and other tools of 

Bayesian network, fault tree analysis, reliability block diagram, and graph theory are 

introduced by Xie et al. (2004). 
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Regardless of the tools used to evaluate the system reliability, they have a 

common characteristic, i.e. the system reliability is a function combining the 

parameters of its individual components. Thus, the uncertainty in the parameters will 

affect the accuracy of the system reliability, which will be discussed in the next 

subsection. 

 

6.2.3 Uncertainty Problems of the Parameters 

In the reliability modeling described above, the parameters are estimated from the 

observed data using methods like the maximum likelihood.  These estimators are 

subject to random variation as they are functions of random observations. The 

randomness arises from various causes. The faults in a component are initially 

unknown and their appearance (to cause failures) depends on the test procedures and 

strategies, such as random test or cluster test etc. Therefore, the data of failure times 

are uncertain. After collecting the test data, the reliability models to fit the data are 

selected subjectively, depending on the modeler’s experience, knowledge, preference 

etc. Hence, the selection of reliability models is also uncertain.  

In highly reliable and safety-critical systems (like those in nuclear power plants) 

where failures are extremely expensive, often failure data is scarce.  With very small 

sample sizes, the uncertainty or error of the estimated parameters is large.  

Thus, system reliability computed from the function of the uncertain parameters 

is also uncertain.  For large complex systems with many components, the uncertainty 

of each individual parameter amplifies the uncertainty of the system reliability.  

Ignoring the parameter uncertainty can result in grossly underestimating the 
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uncertainty in the total system reliability, which in turn leads to an overly optimistic 

expectation of the system reliability and an underestimation of the risk involved when 

using the system reliability measure for decision making.   

Therefore, uncertainty analysis is necessary for the reliability modeling of both 

the individual components and the whole system. For a single component, the 

parameter uncertainty analysis focuses on the parameter estimation of the individual 

reliability model.  For the entire system, uncertainty analysis focuses on the effect of 

the uncertain parameters of different components on the final system reliability.  The 

measures of variance, confidence interval, percentiles, bounds etc can better represent 

the uncertainty of the reliability, and provide a more credible and more detailed result 

for the system reliability than only a point-estimated value. 

 

 

6.3 Uncertainty Analysis by MEP and Bayesian Approach 

6.3.1 Bayesian Analysis for Probability Distributions 

We apply the Bayesian approach here to quantify the uncertainty in the component 

parameters. This approach combines the prior knowledge/information of the unknown 

parameter with current data/observations to deduce the posterior probability 

distribution of the parameter. We apply this approach here to quantify the uncertainty 

about the component parameters. Moreover, this approach can also handle the 

correlation among those parameters by using the joint distributions. 

Assumptions: 
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1) The parameters modeling a component are denoted by },...,,{ 21 maaaa =v . The 

mean value function of the model is denoted by )|( atm v  and the failure intensity 

function by )|( at vλ .  

2) The prior joint distribution of the parameters is denoted by )(ap v  which is 

unknown.  

3) The component is tested and a total of n failures have been observed. Let ks  denote 

the time to the k-th failure k (k=1,2,…,n), and },...,,{ 21 nssss =v  the vector of failure 

times which are conditionally independent. 

Then, given the prior distribution and observations, the posterior distribution can be 

obtained by 

 )|()()|( aspapsap vvvvv ⋅∝     (6.2) 

where      

)|( asp vv = ∏
=

⋅−
n

i
in asasm

1

)|()}|(exp{ vv λ    (6.3) 

The above standard Bayesian approach is well known and straightforward. 

However, applying this to software reliability modeling poses several challenges 

specific to software testing and reliability. It is an important characteristic that the 

number of failure data is usually scarce in a single test. The lack of failure data in a 

project has challenged the modeling of software reliability, which makes estimating 

proper posterior distributions more difficult.  

Fortunately, prior information such as expert knowledge, historical data from 

similar experiments are typically available. Therefore, we propose to theoretically 

incorporate the experts’ suggestions and historical data from previous projects into the 
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prior distribution in Eq. (6.2), i.e. )(ap v . The following shows how to transform expert 

knowledge and historical data by integrating the Maximum-Entropy Principle (Kapur, 

1989) into the Bayesian approach.  

 

6.3.2 Maximum-Entropy Principle (MEP) 

Though the single test in the current project lacks sufficient failure data for modeling, 

yet historical data, previous experiences, expert suggestions and other environmental 

information are useful. For example, a development team should have the knowledge 

of developmental process, debugging method, test procedures and so on.  The related 

information can be transformed into a prior distribution through the Maximum-

Entropy Principle (MEP) method. 

 MEP (Kapur, 1989) is a technique that applies the physical principle of Entropy 

which states that without external interference, the Entropy which measures the 

disorder always tends to the maximum. Entropy has a direct relationship to information 

theory, and in a sense measures the amount of uncertainty in the probability 

distribution. This measure provides a probability distribution that is consistent with 

known constraints expressed in terms of one or more quantities. Let Y be a random 

variable with pdf f, defined on R⊂yD  (the real number). The uncertainty concerning 

Y measured by the Entropy Function is given as  

∫ ⋅−≡
yD

dyyfyffH )](ln[)()( .    (6.4) 

)( fH  also measures the quantity of information after the observation of a realization 

0y  of Y.  
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 Suppose rg  (r=1,2,…,m) are a group of known functions. If we have prior 

information concerning Y, e.g., we know that: 

rD r gdyygyf
y

=⋅∫ )()( ,    (6.5)  

then, the MEP states that (Kapur, 1989), considering prior knowledge about Y, the 

most likely distribution of Y is a distribution that maximizes )( fH  subject to Eq. (6.5) 

and Eq. (6.6 ). 

1)( =∫
yD

dyyf       (6.6) 

For example, suppose the prior mean is specified, and among prior distributions with 

this mean, in the MEP, the distribution which maximizes )( fH  is sought.  

 The MEP under the case where there is no other partial information leads to the 

distribution of “most uncertainty”, which for certain discrete cases results in the non-

informative prior. With partial prior information available, we then consider this 

information in the form of restrictions on the prior, hence helping us shape the prior. 

This partial information can come in the form of both subjective and objective 

information, e.g., subjective information (such as expert’s prior opinion that the 

lifetime is exponentially distributed), and objective information (such as historical data 

enabling some calculation of the moments). More details and examples will be given 

in the following subsections 3.3 and 3.4. 

 

6.3.3 Extract Data from MEP 
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To combine the MEP with the BA for the uncertainty analysis in software reliability, it 

is important to extract data from the experts and history using the MEP and then input 

them into the prior distributions of the BA. The goal of MEP is to incorporate all 

available information, outside of which it is desired to assume nothing about what is 

unknown (Berger et al, 1996). In MEP, the probability distribution represents 

information, not just frequencies. Below we describe several ways to extract data for 

the MEP for both discrete and continuous distribution.  

6.3.3.1 Discrete distribution 

Consider the case when an expert gives some information about a simple constraint, 

e.g. 3.021 =+ pp  for a discrete distribution. Then the distribution (pmf) with ME is 

that  

15.021 == pp  and the rest 
2
3.01

−
−

=
n

pi  ( ),...4,3 ni =             (6.7) 

Alternatively, if provided information on the mean values Fk of certain function 

fk(x) of data, then this information can be expressed as m constraints: 

  ( ) ( ) mkFxfIx kik

n

i
i ,...,1|Pr

1

==∑
=

                               (6.8) 

where ( )Ixi |Pr  denotes the probability for each possible state i given the information I. 

The entropy is ∑
=

−=
m

i
ii ppH

1

ln  which is proposed by Shannon (1948). As per MEP, 

we obtain:  

( ) ( ) ( ) ( )[ ]immi
m

i xfxf
Z

Ix λλ
λλ

++= ...exp
,...,
1|Pr 11

1

                         (6.9) 
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where ( ) ( ) ( )[ ]immi

n

i
m xfxfZ λλλλ ++= ∑

=

...exp,..., 11
1

1 , and kλ parameters are Lagrange 

multipliers whose values are determined by ( )m
k

k ZF λλ
λ

,...,1∂
∂

−= . Further details of 

the procedure of MEP can be found in Jaynes (1963). 

6.3.3.2 Continuous Distribution 

For continuous distributions, the entropy is measured by ( ) ( )dxxpxpH c ln∫−= , as 

proposed in Jaynes (1963). If we have some prior information, we can incorporate the 

information into the following constraints: ( ) ( )∫ = kk Fdxxfxp . The MEP is presented 

as follows: 

Maximize:  ( ) ( )dxxpxpH c ln∫−=  

Subject to:   ( ) 1=∫ dxxp  

( ) ( )∫ = kk Fdxxfxp  

The solution to this MEP problem is 

 ( ) ( ) ( ) ( )[ ]xfxf
Z

xp mmλλ
λλλ

++= ...exp
,...,,

1
11

m21

                  (6.10) 

where ( ) ( ) ( )[ ]∫ ++= dxxfxfZ mmm λλλλ ...exp,..., 111 is used as normalization constant, 

and the value of kλ is determined by the constraints according to 

( )m
k

k ZF λλ
λ

,...,1∂
∂

−=   (Jaynes, 1963). 
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For example, suppose the expert’s prior opinion about the lifetime is positive 

( 0≥x ) and the mean value of the lifetime is a constant c. Then given this information, 

we have f(x)=x and Fk(x)=c. Solving Eq. (6.10) for the maximum entropy gives 

( ) ( ) ( )[ ]xf
Z

xp λ
λ

exp1
= . As Fk(x)=c, ( )λZ  is an exponential function of c which is 

substituted into p(x). Then by considering the first constraint, we get that p(x) is an 

exponential distribution with an intensity 
c
1

=λ . Incidentally, exponential 

distributions are mostly used in software reliability models (Xie et al., 2004). 

6.3.3.3 Some Examples 

We illustrate the use of the data extraction method for the MEP described above with 

some examples in software reliability where expert suggestions and historical data are 

available.  

 Suppose the mean μ  and variance 2σ  of a random variable X are known. By 

definition, ( ) ( )∫
+∞

∞−

=− 22 | σμ Ixpx . Comparing this with Eq. (6.8), we obtain: f(x)=(x-

μ )2, and Fk= 2σ , so the probability distribution with the maximum entropy is given as 

( ) [ ] ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−=−++−=

2

2
2

10 2
exp

2
1)(1exp

σ
μ

σπ
μλλ xxxp ,   

 (6.11) 

For more details about the derivation of Eq. (6.11), please refer to Kapur (1989). 

MEP can further model the correlation among variables and construct joint 

distributions using lower order assessments (Abbas, 2006). If more information on the 

pairwise assessment among variables is known, the maximum entropy joint 
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distribution can be extended. For example, the maximum entropy joint distribution of 

four variables is: ( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑

lkji
lkjilkji

p
lkji ppp

lkji ,,,
,,,,,,

*
,,, lnmaxarg

,,,

. The joint probability 

distribution is then determined by the information of two-way joint assessments and 

three-way joint assessments (Abbas, 2006). 

 Sometimes, prior knowledge is likely to be given as inequality constraints such 

as  iii bpa ≤≤ . It is often easier for the system managers to give a range on the 

probability than to predict a specific point-value. For example, they may only know 

the probable ranges of some parameters according to knowledge of previous similar 

products, from which they can easily set upper bound and lower bound as the 

maximum and minimum values in history. 

This problem can then be solved from the MEP as: 

Maximize:  i

n

i
i pp∑

=

−
1

ln  

Subject to:  0,1
1

≥=∑
=

i

n

i
i pp  

( ) mkFxfp kik

n

i
i ,...,1

1

==∑
=

 

1,0, ≤≥≤≤ iiiii babpa                                        (6.12) 

Kapur (1989) presented some algorithms to solve the above MEP. 

 

6.3.4 Non-informative priori 

Nevertheless, it is also possible that in some cases, no prior information exists. For 

example, it may be the first time a new group develops/tests a component so no 
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historical data is available, and the component and group members are new so no past 

information or experience is applicable. However, the lack of useful prior knowledge 

will not affect the generality of the proposed Bayesian approach. The simplest way 

without useful information is to use a non-informative prior distribution (Bernardo and 

Smith, 1994).  

Jeffrey’s non-informative prior (Robert, 1994) is one of the well known 

distributions. The Jeffrey prior was designed to solve the invariance under parameter 

transformations problem. According to the Jeffrey principle the following equation 

should hold:  

 )()( θθ Ip ∝       (6.13) 

where )(θI  is the Fisher information for the parameter θ  (Bernardo and Smith, 1994).  

For example, the joint priori-distribution of the two parameters of the normal 

distribution, according to the Jeffrey’s principle, is 

  2

1),(
σ

σμ ∝p                      (6.14) 

The main idea here is to have a prior which contains no information on av . 

Then, we can get the posterior distribution as Eq. (6.2).  

 

6.3.5 Measures for Uncertainty 

After deriving the priori distribution from MEP, and observing failure times sv , the 

posterior distribution can be obtained by Eq. (6.2). Then, the marginal density function 

with respect to each parameter can be obtained by 
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)()()()()|()|( 111 miiii adadadadsapsap LL
vv

L
v

+−

+∞

∞−

+∞

∞−

+∞

∞−

⋅= ∫ ∫ ∫ ,      (i=1,2,…,m)      (6.15) 

and the mean value of the corresponding parameter can be obtained by 

∫
+∞

∞−

⋅⋅== )()|()(ˆ iiiiii adsapaaEa v . (i=1,2,…,m)              (6.16) 

The mean value can serve as a point estimate for the unknown parameter.  

Alternative Bayesian estimators are the maximum a posterior (MAP) of the parameters 

(Bernardo & Smith, 1994). 

The uncertainty of the estimated parameters can be described by the variances 

and confidence intervals.  The variance of the estimated parameter iâ  is computed by 

 ∫
+∞

∞−

⋅⋅−= )()|()ˆ()( 22
iiiiii adsapaaa vσ    (6.17) 

 To compute the confidence interval for the parameter iâ , suppose the 

confidence probability is iβ  and the lower bound and upper bound of the interval are 

( ), ii uplow . Here we adopt the Highest Posterior Density (HPD) credible set based on 

the posterior distribution (DeGroot & Schervish, 2002)) to derive the narrowest 

confidence interval as 

 Minimize )( ii lowup −  Subject to i

up

low
iii

i

i

adsap β=⋅∫ )()|( v   (6.18) 

Eq. (6.18) is numerically solvable in principle. Then, we state with iβ  

confidence, the exact value of the parameter ia  is located within the interval. Similarly, 

from the posterior joint distribution of Eq. (6.2), we can derive the credible set of the 
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parameters using the HPD given the credible-level β . Denote βC  as a range of the n 

dimensions for av . The HPD derives  

*
βC  that maximizes the integral of ∫

βC

adsap vvv )|(  equal to β                (6.19) 

There are several other ways to obtain the confidence intervals such as the 

symmetric intervals suggested by Yin & Trivedi (1999), where the upper bound and 

lower bound are symmetric to the mean. Though this symmetric interval method is 

simple and straightforward, it cannot guarantee the narrowest interval unless the 

distribution is symmetric as well. In contrast, the HPD provides the narrowest 

confidence interval.  

 

6.3.6 Monte Carlo Approach for System Uncertainty 

In the previous subsections, we have analyzed the parameter uncertainty of reliability 

model for one component based on the MEP and BA. A complicated system (software) 

may contain multiple components (modules). As introduced in the subsection 6.2.2, 

many tools can be implemented to evaluate the system reliability given the parameters 

of its contained components, such as the Markov models, Bayesian Network, Graph 

Theory, Fault-Tree Analysis etc. Regardless of the tools used, the system reliability is 

a function combining the parameters of its components. As a result, the uncertainties in 

the parameters affect the whole system reliability. 

 The purpose of this section is to study and quantify the uncertainty in the 

reliability of the complex system due to the uncertainty of the parameters in the 
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numerous components of the system. Some general assumptions of the system-level 

analysis are listed below. 

1) Suppose the system contains a total K components that are statistically-

independent. 

2) Each component has its own reliability model and let iΛ  denote the set of 

parameters for the thi  component’s model, where i=1,2,…,K.  

3) For each component, the probability distribution of its model’s parameters is 

known, which can be derived from the above section 6.3.2. Denote the 

posterior joint distribution for the parameters of the thi  component by )( iip Λ , 

i=1,2,…,K. 

4) Given the failures of different components are s-independent, the system 

reliability can be expressed by the function of components’ parameters, as 

),...,,( 21 Ks fR ΛΛΛ= .  

Based on the above assumptions, a Monte Carlo simulation is presented for 

generally analyzing the uncertain system reliability. It is difficult to use analytic 

methods to combine the distributions of numerous parameters to derive the probability 

density function of the system reliability, especially for complicated systems with 

complex architecture and many components. Hence, the Monte Carlo simulation 

becomes a practical way to make the uncertainty analysis of the complicated system 

tractable. Algorithm 1 provides a general Monte Carlo approach for the uncertainty 

analysis in complicated system.  

Algorithm 1: Monte Carlo approach 
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1. begin 

2. for j=1 to J  //J is the total number of the iteration 

3. for k=1 to K //Generate the parameters for all the K 

//components 

       4.        ←kP ( )spSAMPLE kk
v|)(Λ   

     //The function of ( )spSAMPLE kk
v|)(Λ  is to draw a sample of the 

//parameters from the posterior pdf )|( sp kk
vΛ , and then put the value 

//into the vector kP . 

5. end 

6.   ),...,,(][ 21 Ks PPPfjR ←  //function ),...,( 1 KPPf  computes system 

//reliability 

7. end  //Now, J sample points of the system reliability are saved in sR .  

8. )( sRSummarize     //function )( sRSummarize  calculates some statistics for 

//uncertainty analysis from the sample points of sR , such as average, variance, 

//quantile and so on. 

9. end (*Algorithm 1*) 

 

Using the above algorithm of Monte Carlo (MC) simulation, the uncertainty of 

the system reliability can be analyzed, e.g. the mean and confidence intervals can be 

approximated by the average value and percentiles, respectively. The above approach 

is widely applicable. Some cases will be studied in the next section, where a novel 

model based on the uncertainty approach will be presented for large-scale system 

reliability in subsection 6.4.3. 
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6.3.7 Information Filtering, Adjustment and Validation for MEP 

As we discussed at the end of the above subsection 6.3.3, the MEP can incorporate not 

only objective information but also subjective information into the Bayesian Approach. 

Objective information is more credible (such as the information that failure time 0≥t ) 

than some subjective information (such as the experts’ opinions) that might be wrong 

or deviate too much from the reality. Wrong information can be worse than no 

information. Nevertheless, the correct subjective information is obviously helpful. 

Therefore, this section attempts to complement the MEP approach to reduce the chance 

of incorporating the wrong information.  

 Three stages are proposed in this framework: 1) Information Filtering at the 

beginning; 2) Information Adjustment during the test; 3) Information validation after 

the test. 

6.3.7.1 Information Filtering 

Information filtering means that the collected information needs to be checked before 

it is used to formulate the constraints as the basis of the MEP. Objective information 

(without any subjective influence) can be directly included. However, subjective 

information (such as the suggestions from the experts) should be checked out. We 

propose to prepare a survey form for the experts to fill when their suggestions are 

collected. This form includes not only the suggestions but also confidence levels 

associated with the corresponding suggestions. However, we cannot simply use the 

ranking of confidence levels to filter different experts’ opinions, because some experts 

may be conservative while some others may be aggressive or neutral.  
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 Therefore, the following method is suggested. First, the credible degree is 

defined as the probability for a certain expert’s suggestion to be correct. Thus, we 

should set up a threshold of credible degree, denoted by *c . Then, each expert has 

previous records of their suggestions in the previous projects with the ranking of 

confidence levels. Suppose there are K ranks, then at each rank, the credible degree of 

the i-th expert (i=1,2,…,N) can be calculated as  

iexpert  of projectsprior  all ink rank at  ssuggestion ofnumber  Total
iexpert  of projectsprior  all ink rank at  ssuggestioncorrect  ofNumber 

=k
ic , 

k=1,2,…,K      (6.20) 

Thus, regarding this expert i, those suggestions at the ranks of confidence levels 

where *cck
i <  should be filtered. Different experts have their own records, i.e. k

ic  

( Ni ,...,2,1= ), so according to this criterion of credible degree, the different experts’ 

opinions (no matter whether conservative or aggressive) can be filtered, which is more 

fair and more reasonable than simply using an absolute rank to filter the suggestions. 

The threshold value *c  could be initialized according to the specific requirement of 

the user, such as the minimum credibility the user trusts. The minimum credibility here 

means that the threshold of credible degree can be increased after the adjustment steps 

as follows.  

6.3.7.2 Information Adjustment 

After the above step of filtering the information, the MEP can be used to derive a prior 

distribution. Hereby, we propose the second step to further check and adjust the 

information during the test on the current software. The newly observed data can be 

utilized as per this step.  



Chapter 6 Uncertainty Analysis in Reliability Modeling  

123 
 

 The prior distribution is not only a factor in the Bayesian formula, but also a 

prediction of the current project/software. If the prior distribution is much different 

from the real tendency of the newly observed data, it means the prior distribution 

might be inappropriate for the current project/software. Therefore, adjustment should 

be carried out according to this criterion. The details are elaborated in the following 

steps. 

Step 1: There is a prior distribution )(xp  with respect to a certain parameter, and 

given a set of newly observed data. Also, set up a threshold for adjustment, 

which is a probability α . 

Step 2: With the newly observed data, estimate the parameter (such as using MLE), 

'x . 

Step 3: Derive 2/αx  by solving 
2

)(
2/ αα

=∫
∞−

x

dxxp  and 2/1 α−x  by solving 

2
1)(

2/1 αα

−=∫
−

∞−

x

dxxp .  

Step 4: If 2/' αxx <  or 2/1' α−> xx , the adjustment should be triggered. It means that 

the estimated parameter 'x  is located at the two extreme tails of the prior 

distribution, which is out of the middle interval with the probability α−1 .  

Step 5: Do the adjustment (such as increasing the credibility degree *c  for 

information filtering and then recalculate the prior distribution with the newly 

filtered information via MEP), and then repeat the Step 1.  

The worst case is that *c  finally increases to 1, which means all information has 

to be filtered. Under this condition, the above steps should be terminated, and then 
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switched to the non-informative prior as suggested in the above subsection 6.3.4. The 

value of α  can be set up in accordance with the user’s requirement of credibility 

degree, such as the probability for the estimated parameter not to be at either tails of 

the prior distribution. 

6.3.7.3 Information Validation 

Finally, when the test finishes, the posterior distributions can be derived based on the 

MEP and Bayesian Approach. Then, we can validate the posterior distribution/model 

by using the following method. The mean values of the posterior distributions can be 

used to derive the parameters, as Eq. (6.16). Then, these parameters can be applied to 

predict the time to failures (TTFs) during the test. Compare the predicted TTFs with 

the real observed TTFs, such as calculating the mean square error. If the mean square 

error is too large over a certain preset threshold, it means the model does not fit the 

observed data. Then, the adjustment (such as trying another model or further filtering 

the subjective information) should be applied.   

 Thus, the above three stages can help to reduce the negative influence of the 

wrong subjective information as a complementation to the MEP. However, note that 

we propose a three stage framework (information filtering, information adjustment, 

and information validation), but the specific methods described in each stage can vary. 

Developing other methods for each stage are areas for future research.  

 

 

6.4 Case Study 
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The above uncertainty analysis is applicable not only to one single component with 

correlated parameters, but also to a system with multiple components. The proposed 

approaches are general enough to accommodate different types of models, as 

illustrated here. Subsection 6.4.1 illustrates an NHPP model for software reliability. 

Subsection 6.4.2 illustrates a Markov model that contains three components, and 

finally a new model and more complicated case of large-scale distributed system are 

studied in subsection 6.4.3. Note, the numerical examples in this section are exhibited 

only for the illustrative purpose on the general approach presented in above Section 6.3. 

 

6.4.1 Component Uncertainty of an NHPP Model 

The Software Reliability Growth Model (SRGM) based on Nonhomogeneous Poisson 

Process (NHPP) is commonly used. Here, we illustrate a classical NHPP model 

presented by Goel & Okumoto (1979). In the Goel-Okumoto (GO) model, the mean 

value function is given by 

)]exp(1[)( btatm −−= , 0,0 >> ba     (6.21) 

and the failure intensity function is 

)exp()()( btabtm
dt
dt −==λ      (6.22) 

in which there are two parameters a and b. 

 The observation of failure data set is from a simulation of the GO model where 

the preset parameters 100=a  and 001.0=b . From the simulation, 50 points of Time 
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to Failure (TTF) are collected as shown in the following Table 6.1 in unit of hour. For 

the details of the simulation with the GO model, please refer to Xie et al. (2004). 

Table 6.1 50 Time to Failure (TTF) from a simulation of the GO model 

1-10 7.51157 15.166 20.238 27.601 38.784 51.58 69.674 81.187 83.32 92.128

11-20 97.451 100.02 100.92 114.28 128.55 133.75 134.52 145.51 155.71 167.01

21-30 180.01 192.49 214.99 251.13 286.51 297.55 319.3 326.25 344.28 367.07

31-40 427.43 431.91 444.38 445.48 457.4 471.16 473.83 494.18 510.08 516.7 

41-50 519.66 585.74 592.64 610.16 613.55 626.25 632.67 648.61 671.35 713.41

By using the MLE in the Table 6.1, a and b are estimated as 89.508ˆ =a  and 

0.00115ˆ =b  both of which have more than 10% error from the preset real values. 

Then, we implement the Bayesian Approach with MEP to analyze the same data set. 

6.4.1.1 BA with MEP 

First, suppose there is knowledge of some statistics archived from previous projects or 

other similar projects, the mean of a is aμ =100 and the standard deviation is aσ =10 

while the mean of b is bμ =0.001 and the standard deviation bσ =0.0001.  

 By using the MEP (Kapur, 1989) as Eq. (6.11), we can get the priori 

distribution for a~N(100, 210 ) and b~N(0.001, 20.0001 ), respectively. Thus, the prior 

joint distribution satisfies 

)
2

)(
2

)(
exp(

2
1),( 2

2

2

2

b

b

a

a

ba

ba
bap

σ
μ

σ
μ

σπσ
−

−
−

−∝     (6.23) 

Note that Eq. (6.23) is just used for this example as an illustration, and other prior 

distributions can also be derived from MEP according to their own specific conditions.  
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 Then, according to Eq. (6.2), we get the posterior distribution 
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    (6.24) 

where 81105032.1 ×  is obtained by substituting the values of parameters into Eq. (6.24). 

Then, according to Eq. (6.15), the marginal density functions with respect to a  and b  

can also be obtained as shown by Figure 6.1 and Figure 6.2, respectively. 

 

Figure 6.1 Marginal posterior density function with respect to a 

Then, solving Eq. (6.18), the 90% HPD intervals for a and b can be obtained as 

(85.64,113.64) and (0.00085, 0.00115), depicted in Figure 6.1 and Figure 6.2 as well. 

The mean values for a and b are estimated as 64.99ˆ =a  and .0010ˆ =b  with only 0.4% 

error from the preset parameters. It is better than those from the MLE with 10% error. 

Also, the 90% confidence interval offers more sound ranges than point values from 

MLE. 
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Figure 6.2 Marginal posterior density function with respect to b 

The reliability function of the component with the GO model can be computed by 

)]}()([exp{)|( nnn smstmstR −+−=      (6.25) 

where ns  is the time of the last failure and t is the time measured from the last failure.  

The reliability prediction from the MLE and the posterior mean obtained by Eq. 

(6.16) are compared in Figure 6.3. As we can see, both point estimate methods of MLE 

and posterior mean can predict a close reliability trend, so the new method using the 

posterior mean can be an alternative way for the point estimate of the parameters. 

More importantly, using the posterior probability distribution, we can further analyze 

the uncertainty of the predicted reliability, e.g. the 90% HPD interval of the reliability 

prediction is also shown in Figure 6.3. In addition, the confidence intervals depend on 

both the prior distribution and the new observations. This approach can also help 

evaluate the quality of the estimation, as the wider range of the confidence interval 

indicates a worse estimation while the narrower range indicates a better one. 
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Figure 6.3 Reliability prediction with MLE, Posterior Mean and 90% interval 

6.4.1.2 BA with Jeffreys’ non-informative Priori 

Suppose there is no priori knowledge or expert suggestions, then according to Jeffreys’ 

non-informative Principle given by Eq. (6.15), we have the following 

22

1),(
ba

bap
σσ

∝      (6.26) 

According to Eq. (6.15), the marginal density functions under non-informative 

prior with respect to a and b are plotted by Figure 6.4 and Figure 6.5, respectively. 
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Figure 6.4 Marginal posterior density function regarding a under noninformative prior 

 

Figure 6.5  Marginal posterior density function regarding b under noninformative prior 

The mean value for a and b are estimated as  46.107ˆ =a  and .00110ˆ =b  

according to Eq. (6.16). To derive the 90% confidence intervals for a and b, HPD is 

adopted according to Eq. (6.18). The intervals are (57.06, 167.06) and (0.0004,0.00167) 

for a and b respectively.  

In Figure 6.6, the reliability prediction by MLE and the posterior mean are 

plotted and compared (True value in Figure 6.6 represents the reliability prediction by 

the preset parameters which are a=100 and b=0.001). The 90% confidence interval by 
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Bayesian method, which is obtained according to Eq. (6.19), is also depicted in Figure 

6.6. All the plots are in unit of hour in Figure 6.6. 

Comparing Figs. 4,5,6 with Figs. 1,2,3, it is obvious that the MEP that combines 

the prior knowledge and other information into the BA is more precise in the modeling 

and estimate, as reflected in the narrower confidence interval than the non-informative 

prior. 

 

Figure 6.6 Reliability with True Value, MLE,  Posterior Mean and 90% Interval 

  

6.4.2 Case Study on Markov Models 

An example of modular software is illustrated here to show the Monte Carlo 

Simulation for uncertainty analysis of the software reliability with multiple modules. 

This example is based on a simple Markov model.  
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Suppose the software contains three modules: two parallel modules to fulfill the 

same function and another module to handle the switch between the two parallel 

modules. The two parallel modules are running to finish a same task respectively with 

the failure rate of λ . If a module fails, the switching module will work and transfer the 

workload of the failed module to the other module. A coverage factor c is used to 

denote the probability that the switching action is successful. If not successful, the 

software fails, denoted as the imperfect coverage. Otherwise, the software is still 

running, while the other module failure will make it failed, or the restart of the failed 

module will bring the software back to the original. Also, suppose the time to restart a 

module is exponentially distributed with the parameter μ . Thus, the parameters for the 

two modules are failure rate λ  and restart rate μ , and the parameter for the switching 

module is the switching success probability c.   

 

 

 

 

Figure 6.7 Markov chain for the modular software with three modules 

The software reliability can be derived from a Markov model that easily 

combines all the three modules together. The CTMC is depicted by Figure 6.7 where 

state 1 is down and system is up in state 2 (one module works) and 3 (two modules 

work). The software initially begins at state 3. If either one of the two modules fails 

with the rate λ2 , it leaves State 3 to State 1 with the probability )1( c−  due to the 

switching failure, and to state 2 with the probability of c for successful switching. At 

State 1 

λ
 

)1(2 c−λ

μ

cλ2  

State 2 State 3 
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State 2, it can enter state 1 if the remaining module fails with the failure rate λ , while 

it can return to State 3 with the repair rate μ  to recover the failed module. 

Let )}(),(),({)( 321 tPtPtPtP =  denote the state probability. The Chapman-

Kolmogrov equations, see e.g. Xie & Dai (2004), can be obtained from Figure 6.7: 

)(2)()()(' 322 tcPtPtP λμλ ++−=  

)(2)()(' 323 tPtPtP λμ −=  

with the initial condition: 1)0(,0)0( 32 == PP . Then, the software reliability can be 

obtained by 

 )()()( 32 tPtPtRs +=      (6.27) 

 In this example, we assume these parameters (λ , μ  and c) are independent. 

Suppose that the distributions of the three parameters have been derived from the BA 

plus MEP given in the above section 6.4.1 for respective components, and they are 

assumed as: 1) 
λ
1  follows a normal distribution with mean 5000 and standard 

deviation 500; 2) 
μ
1  follows a normal distribution with mean 20 and standard 

deviation 2;  3) c follows a normal distribution with mean 0.8 and standard deviation 

0.05.  

We apply the Monte Carlo approach given by the Algorithm 1 to simulate 1000 

sample points of system reliability at each of the 5000 time points, and the final results 

of software reliability and uncertainty analysis (including sample average, 5% and 

95% quantiles) are shown in Figure 6.8. Then, the analytic method is implemented for 
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this problem and the uncertainty analysis result with the mean value is also plotted in 

Figure 6.8, where ‘MC’ denotes ‘Monte Carlo’ and ‘AM’  means ‘Analytic Method’ 

from Eq. (6.27).  

From the results of uncertainty analysis in Figure 6.8, we find that during the 

initial period of the reliability prediction, the confidence interval is small indicating 

that the uncertainty of the software reliability is low. Then, the confidence interval 

increases and reaches the maximum around the middle part. At the latter part, the 

confidence interval becomes small again but the mean value of system reliability is 

also small so that the comparative uncertainty is still large. We also observe from those 

curves in Figure 6.8 that the sample average from the Monte Carlo Simulation is very 

close to the mean calculated by the Analytic Method of Eq. (6.27). 

 

Figure 6.8 Modular software reliability and uncertainty analysis 

 

6.4.3 Improved Model on Large-Scale System Reliability  
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The above three-component Markov model is relatively simple for illustrative purpose. 

Here, we study a more complicated case with regard to the large-scale system in order 

to show the generality and efficiency of the Monte Carlo approach. Although this 

model is illustrated to show how to incorporate the uncertainty, more importantly, 

through this incorporation, it improves the original model of Dai & Levitin (2006) by 

relaxing several impractical assumptions. 

6.4.3.1 The Model based on Graph Theory and Bayesian Theorem 

Dai & Levitin (2006) presented a novel reliability model for Grid computing which is 

a new emerging technology aiming at large-scale resource sharing and global-area 

collaboration. This model is representative for large-scale software systems (Selby, 

2005) where different modules or resources are distributed all over the Internet under 

the coordination of the RMS (Resource Management System). Dai & Levitin (2006)’s 

model is very general and is the first to make the modeling on large-scale system 

reliability tractable. A virtual tree structure is proposed to model the problem, where 

the root of the tree structure is the RMS, and the leaves are resources, while the 

branches of the tree represent the communication channels linking the leaves and the 

root. 

However, the generality causes the complexity in the modeling, and the 

uncertainty becomes more prominent due to the largeness and dynamicity of the 

Internet. We hereby improve the large-scale system reliability model to be more 

realistic by considering the uncertainty factors. The original model is briefly 

introduced here. More details can be found in Dai & Levitin (2006). 

The set of all nodes and links involved in performing the given task form a task 

spanning tree. This task spanning tree can be considered to be a combination of 



Chapter 6 Uncertainty Analysis in Reliability Modeling  

136 
 

minimal task spanning trees (MTST), where each MTST represents a minimal possible 

combination of available elements (resources and links) that guarantees the successful 

completion of the entire task. The failure of any element in a MTST leads to the entire 

task failure.  

For any subtask j, and any resource k assigned to execute this subtask, one has 

the amount of input and output data, the bandwidths of links, belonging to the 

corresponding paths γk, and the resource processing time. Thus, one can obtain the 

completion time , see Dai & Levitin (2006).  

 A MTST completes the entire task if all of its elements do not fail by the 

maximal time needed to complete subtasks in performing which they are involved. 

Thus, when calculating the element reliability in a given MTST, one has to use the 

corresponding record with maximal time. 

Having the MTST, and the times of their elements involvement in performing 

different subtasks, one can determine the pmf (probability mass function) of the entire 

service time. 

First, the conditional time of the entire task completion given only MTST Si is 

available as  

 )(max
1}{ ijhji yY

≤≤
=  for any 1≤i≤N:               (6.28) 

For a set ψ of available MTST, the task completion time is equal to the minimal 

task completion times among the MTST. 

  ⎥⎦
⎤

⎢⎣
⎡==

≤≤∈∈
)(maxmin)(min

1}{ ijhjiii
yYY

ψψψ                                  (6.29) 
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Now, we can sort the MTST in an increasing order of their conditional task 

completion times }{iY , and divide them into different groups containing MTST with 

identical conditional completion time. Suppose there are K such groups denoted by 

KGGG ,...,, 21  where NK ≤≤1 , and any group iG  contains MTST with identical 

conditional task completion times iΘ  ( ).0 21 KΘ...ΘΘ <<<≤  Then the probability 

)(Pr ii ΘΘQ ==  can be obtained as 

)(Pr 121 E,...,E,E,EQ iiii −−=                         (6.30) 

where iE  is the event when at least one of MTST from the group iG  is available, and 

iE  is the event when none of MTST from the group iG  is available.  

Suppose the MTST in a group iG  are arbitrarily ordered, and ijF  (j=1,2,…, iN ) 

represents an event when the j-th MTST in the group is available. Then, the event iE  

can be expressed by 

U
iN

j
iji FE

1=

= ,                       (6.31) 

and (6.30) takes the form 

),...,,,Pr( 121 EEEE iii −− = ),...,,,Pr( 121
1

EEEF ii

N

j
ij

i

−−
=
U .                          (6.32) 

Using the Bayesian theorem on conditional probability, we obtain from (6.32) 

that 

Qi = ( ) ( )∑
=

−−−⋅
iN

j
ijiijijiij FEEEFFFF

1
1211)2()1( ,,,,,...,,PrPr L .              (6.33) 
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The probability ( )ijFPr  can be calculated as a product of the reliabilities of all the 

elements belonging to the j-th MTST from group Gi.  

 Then, the service reliability R(θ*) is defined according to the performability 

concept as a probability that the correct output is produced in time less than θ*.  This 

index can be derived by 

*)Θ(1*)(
1

θθ <⋅= ∑
=

i
K

i
iQR .    (6.34) 

More details can be found in Dai & Levitin (2006). 

6.4.3.2 Model Improvement Considering Uncertainty 

In these large scale systems, uncertainty is common due to the unexpected and 

dynamic natures of the Internet. The parameters in the above analytical model for 

large-scale system reliability are also dynamical, for instance communication speed 

and processing speed are not constant, but varied under different workloads or mutable 

bandwidths. The original model (Dai & Levitin, 2006) assumed the parameters of 

communication speed and processing speed are constant, which is just an 

approximation to reality. Here, we propose an improved version of the model that 

relaxes such approximated assumption to consider the uncertainty of the speed 

parameters, i.e. assuming the speed parameters themselves are random variables 

instead of the constants. 

With this improved model, we study the same problem described as the Case D 

of Dai & Levitin (2006). Consider a grid service with nine resources. The complexity 

of the entire service task is C = 6000 mega operations (MO). The backbone structure 

of the service, and the parameters of the resources & communication links are depicted 
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in Figure 6.9. The task is divided into three subtasks with equal complexity c1 = c2 = c3 

= 2000 (MO). The subtask distribution is: c1 is assigned on resources R1, R4, R7;  c2 is 

assigned on resources R2,R5,R8; and c3 is assigned on resources R3,R6,R9;. The 

amount of transmitted data for each subtask is 100 Kbits.  

 

 

 

Figure 6.9 The structure and parameters of a Grid service 

 

In Dai & Levitin (2006)’s analytical model, they assumed the estimated 

parameters for communication speed (Kbps) and processing speed (Mops) are not 

changing. Here, we relax this strict assumption and model the uncertainty using the 

proposed Monte Carlo approach. Suppose communication speed and processing speed 

are random variables governed by Normal distributions with means listed in Figure 6.9 

and variance of 10. 
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 The results are depicted in Figure 6.10 with the Original Model, Improved 

Model, and 5% and 95% percentiles. The variance is shown in Figure 6.11. These 

results are in unit of second. 
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Figure 6.10 Improved model for Large-scale system reliability 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

50 100 150 200 250 300

Time

S
t
a
n
d
a
r
d
 
D
e
v
i
a
t
i
o
n

 

Figure 6.11 Standard Deviation for the model with uncertain parameters of speed 
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From Figure 6.10, we find that the original model of Dai & Levitin (2006) with 

constant speed assumptions is just an approximation to reality. The result of 

performance and reliability from the original model is plotted Stepwise while the 

improved model outputs a smoother curve. Although the original model with constant 

assumptions depicts the correct trend of the reliability, it is not as realistic as the 

improved model because intuition and experimental observations depict that the 

performance (execution time) or reliability should smoothly change instead of the 

abrupt jump. Therefore, the improved model which accounts for the uncertainty in the 

factors is more realistic and practical. Moreover, the improved model can provide 

another measure that the original model is unable to give, i.e. the percentiles that offer 

the confidence range to the practitioners about the model’s output which is more 

credible than only one-point estimate. In addition, the original model is a special case 

of the improved model with variance equal to 0. 

 

 

6.5 Summary 

This chapter studied the uncertainty problems in reliability modeling at both 

component-level and system-level. It not only addressed the uncertainty problem using 

the Bayesian Approach (BA), but more importantly solved the challenges for the 

dearth of data by embedding the Maximum-Entropy Principle (MEP) into the BA. By 

using MEP with BA, expert knowledge, historical data from similar experiments and 

developmental environments could thus be incorporated in analyzing the uncertainty 

and used for compensating insufficient failure data.  
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After exploring the uncertainty for software component, this chapter further 

extended the uncertainty analysis to more complicated systems that contain numerous 

components, each with its own respective distributions and uncertain parameters. A 

Monte Carlo approach was proposed to solve it. This method is broadly applicable for 

many systems that can be modeled with different modeling tools. The approach was 

then illustrated with a case of three-module software on a Markov model, and another 

case of a grid service reliability (a type of large-scale system) based on Graph theory. 

These examples with distinguished characteristics exhibited the generality and 

effectiveness of the MC approach to analyze not only simple module-based systems 

but also complicated systems with numerous uncertain parameters.  

This approach was further illustrated with a recently published model (Dai & 

Levitin, 2006) for large-scale system reliability. Adopting this approach allowed the 

relaxation of the assumptions of constant parameters in communication speed and 

processing speed, thus improving the practicality of the model. This demonstrated 

another novel application of the proposed uncertainty analysis. The results showed that 

the improved model accounting for the uncertainty factors was more realistic and more 

reasonable than the original model. Moreover, the improved model could further 

provide the percentiles and variance that exhibit the confidence range to the 

practitioners about the model’s output.  
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CHAPTER 7  UNCERTAINTY ANALYSIS ON DDS 

RELIABILITY 

Weighted voting systems (WVS) have attracted a lot of attention in the recent decades 

as they have been widely used in human organization systems, pattern recognition, 

detection systems, and etc. In chapter 3 and chapter 4, we have discussed some 

reliability models of WVS by taking into account continuous input and other properties 

in details. In this chapter, we study a specific realization of WVS - distributed 

detection system (DDS) and discuss the problem of uncertainty analysis and parameter 

estimation in reliability modeling of this system. 

As a special type of weighted voting system, distributed detection systems are 

generally used for fault detection, which were first studied in Tenney and Sandell 



Chapter 7 Uncertainty Analysis of DDS Reliability  

144 
 

(1981). Naim et al. (1991) propose a learning binary Bayesian distributed detection 

system where the probabilities are estimated on-line. Guo et al. (1991) use a 

distributed fault-detection and diagnosis system based on a distributed system 

identification approach to detect the fault in an intelligent control system to reduce the 

maintenance cost and increase system availability.  Yao and Liu (1998) use a similar 

the structure of distributed detection system in evolutionary artificial neural networks 

to make best use of the population information. Schnier and Yao (2003) propose an 

algorithm of using negative correlation to evolve fault-tolerant circuit in the same 

structure. 

Reliability modeling has gained considerable interest and acceptance by applying 

probabilistic methods to the real-world situation.  For distributed detection systems, its 

reliability is defined as the probability the system provides correct output given 

corresponding input, which is determined by the accuracy and number of the local 

detectors, the threshold factor, and etc. These uncertain parameters are subject random 

variation as the performance of distributed detection system degrades and the detectors 

fail at certain rate. To calculate the system reliability, we have to estimate these system 

parameters precisely. Point estimation methods are often used to obtain these 

parameters; however, the uncertainty of parameters will be ignored which may cause 

underestimating the uncertainty in the system reliability.  

The uncertainty of the parameters can be described with a probability model. 

From that, measures of the uncertainty can be obtained. To describe a probability 

model, we need more data than to obtain the point estimate of the parameter (Dai et al., 

2005). This chapter applies the Bayesian approach to quantify and analyze the 

uncertainty of the unknown parameters. This approach initially describes the 

uncertainty of the parameter by a probability model known as the prior probability.  
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The parameter is assumed to be inferable from the data and observed current data can 

be used to get a more precise estimates of the parameter, whose uncertainty is then 

characterized by the posterior distribution. This approach is useful in reliability 

modeling as it can formally incorporate prior information in the analysis. This is 

especially useful when observed data is scarce or expensive to obtain. Moreover, the 

Bayesian method can also treat the correlation among those parameters by using the 

joint distributions.   

In this chapter the effect of the uncertainty of the parameters on the reliability of 

the entire distributed detection system is studied. We quantify this uncertainty by the 

variance. A simulation is conducted as well to calculate the effect on the system 

reliability from the uncertainty of the parameters. We use an example to illustrate the 

parameter estimation by Bayesian approach.  

This chapter is organized as follows: section 7.1 introduces the reliability 

modeling of distributed detection systems; in section 7.2, the parameter estimation of 

failure rate of distributed detection system is studied and an example is applied to 

illustrate the process. Section 7.3 studies the uncertainty problem in reliability 

modeling of DDS. Section 7.4 illustrates the procedures with a numerical example.  

And section 7.5 introduces briefly the parameter estimation problem on the threshold 

factor. Finally, section 7.6 concludes this chapter and discusses some possible future 

research. 

 

 

7.1 Reliability Model 
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A distributed detection system functions exactly like a weighted voting system 

discussed in the chapters 3.4. It consists of N independent detectors, each of which 

submits a binary decision 0 or 1 to a data fusion center to calculate the system decision 

by comparing the cumulative weights to the preset thresholdτ . The decision 0 or 1 

represents rejection or acceptance of a proposition, respectively, as well as decision of 

alarming or not alarming on detection of faults (Guo et al, 1991). It slightly 

differentiates from the WVS systems we discussed in earlier chapters by considering 

discrete inputs only. The structure of the distributed detection system for fault 

detection in system engineering is shown in figure 1. 

 

Figure 7.1Structure of DDS for fault detection 

The following assumptions are made for the reliability modeling of such systems: 

1) Each local detector works independently; 

2) No detectors abstain from detection; 

3) All detectors receive the same input I (0 or 1), which is a priori right or wrong 

in implicit information; 

4) Decision transmission to the data fusion center is an error-free process. 
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The output of local detector is considered as correct output if it is equal to the 

input. Hence, two errors for the local detector are defined by the detector output, which 

is represented by dj(I), when it is in conflict with the input:  

( )
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⎪
⎨
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=
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j
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d
                                                           (7.1) 

We use terms 
jq01and 

jq10  to represent the probability of the occurance of two 

errors of detector j, respectively. Let jp00 and 
jp11  denote the probability the detector j 

makes a correct decision corresponding to the given input, that is 

( )( )0|0Pr00 === IIdp j
j  and ( )( )1|1Pr11 === IIdp j

j . So we have the following 

relations: jp00 =1-
jq01and jp11=1- jq10  as no abstention from detection is allowed in the 

reliability modeling.  

 To make the system decision, the data processing center incorporates all the 

detector outputs into a unanimous system output D with following rule: 
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where wj is the weight assigned to detector j, which indicates its relative importance in 

the DDS and τ  is a threshold factor in range of (0,1). 

The system fails if ( ) IID ≠ . Hence, reliability of the distributed detection 

system is defined as the probability that the output of the entire system is equal to the 

input, which can be mathematically represented as: 

 ( )( )IIDR == Pr                                                 (7.3) 
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The expression (7.3) can be expanded to 

( ) ( ) ( ) ( )1|1Pr1Pr0|0Pr0Pr ===+==== IDIIDIR           (7.4) 

From this expression, the reliability is a complex function with respect to the 

system parameters such as threshold value and the number of detectors. Levitin and 

Lisnianski (2001) present an efficient algorithm based on universal generating function 

technique to evaluate the reliability of the entire system and optimize the system 

reliability by finding an optimal solution of the threshold parameter in genetic 

algorithm.  

 

 

7.2 Parameter Estimation 

7.2.1 Problem Statement 

Distributed detection system composes of a number of local detectors. The system has 

a lifetime which depends on the detectors functioning normally. With the degradation, 

the detectors may fails at some time which causes the performance of entire system to 

degenerates to a lower level. The lifetime of the detectors and the entire system can be 

described by widely used continuous parametric distributions: exponential distribution, 

Weibull distribution, lognormal distribution and etc (Kuo and Zuo, 2002). Hence, the 

performance of such system which is associated with the number of normally working 

detectors depends highly on the value of the parameters applied in the reliability 

models.  
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Distributed detection system is widely applied as well to detect faults and 

monitor potential dangers  for military purposes and in extreme conditions such as 

outer space exploration (Tenney and Sandell, 1981). In this sense, the distributed 

detection system suffers a certain intensity of intentional and unintentional attack, for 

example, terrorists’ bombing and too much exposure to the space radiation. 

Additionally, in such extreme condition, the necessary maintenance can not be 

provided immediately and sufficiently, even when some fatal failures have been 

reported.  Therefore, the parameters of intensity of attack as well as the level of 

maintenance influence the reliability prediction to an important degree.  

Some detectors are likely to abstain from detection or refuse to report their 

decisions to the data fusion center (Levitin and Lisnianski, 2001). The performance of 

the entire detection system is considered to be degenerate in this case. The probability 

that the detector refuses to work should be considered as well in estimating the system 

reliability. 

Based on the analysis above, the reliability of distributed detection system 

depends highly on the various parameters associated with the lifetime distribution, 

intensity of attack, level of maintenance and probability of abstaining. However, these 

unknown parameters are subject to random variation or vary (or degrade) due to the 

different background or the systems in use. To predict the system reliability accurately, 

it is necessary to estimate the parameters by incorporating available history data set or 

expert advice and previous experience. 

 

7.2.2 Parameter Estimation 
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The reliability of the distributed detection system is directly dependent on the number 

of available detectors which is defined as a function of parameter 

set { }Tts λλλλλ ,...,,...,, 21=  (T is the number of parameters) which can be described 

by conditional probability ( )snp λ| . Denote the prior distribution of the parameter sλ  

as p( sλ ). This prior information on the parameters can be obtained from historical data.  

Suppose M observations on performance of the detection system are made in the 

independent experiments and  the number of working detectors in m-th experiment is 

recorded as cm. Denote { }Mcccc ,...,, 21=
v

. Given { }Mcccc ,...,, 21=
v

, the joint 

density or likelihood function can be written by 

( ) ( )∏
=

=
M

m
sms cpcp

1
|| λλv                                        (7.5) 

Given the observation data and prior distribution of parameter sλ , the posterior 

distribution can be calculated as 

( ) ( ) ( )sss cppcp λλλ || vv
⋅∝                                    (7.6) 

From eq. (7.6), the marginal density function with respect to parameter tλ  can 

be obtained by 

( ) ( )∫ ∫ ∫ ⋅⋅⋅⋅⋅⋅⋅⋅⋅= +− Tttst dddddcpcp λλλλλλλ 1121|| vv
                     (7.7) 

the expectation of the parameter tλ  given the observations can be derived by 

( ) ( ) ttttt dcpcE λλλλλ ∫ ⋅==
vv ||ˆ                                     (7.8) 

and the variance of the estimated parameter tλ  is calculated by 

( ) ( ) ( ) ttttt dcp λλλλλσ ∫ ⋅−=
v|ˆ 22                                (7.9) 

 



Chapter 7 Uncertainty Analysis of DDS Reliability  

151 
 

7.2.3 Poisson Distribution 

For a large distributed detection system consisting of a sufficiently large number of 

detectors, the number of failed detectors nf at a certain time point can be approximately 

represented by Poisson distribution with single parameter λ : 
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|                                      (7.10) 

The distribution of the number of available detectors n in the detection system 

take the form 
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 By eq. (7.5), the likelihood function is calculated by 
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According to eq. (7.6), we obtain the posterior distribution  
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Hence, by simplifying eq. (7.13), we obtain the posterior distribution of parameter λ  
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 By incorporating eq. (7.6), eq. (7.8), eq. (7.9) and eq. (7.14), the expect value and 

variance of the parameterλ are 
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After obtaining the posterior distribution of parameter λ , the discrete distribution of 

the number of available detectors at time Tp  given the observed data can be calculated 
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7.3   Uncertainty on System Reliability 

In the distributed detection systems, each local detector is assigned its corresponding 

weight to indicate its relative importance and influence to the entire system reliability. 

Hence, the reliability is actually a function of the number of available detectors as well 

as weight allocation policy which, from another perspective, is related to the 

distribution of survival detectors. This means the reliability will be estimated with 

different value even for the same number of available detectors because different 

detectors with different weights allocated may fail at different rates. For the sake of 

simplicity, in our chapter, we assume the hazard rate to each local detector is the same. 

That is, at any time point, the possibility that any detector fails to work is assumed to 

be the same. This assumption simplifies the calculation of the probability of different 

sets of failed detectors. Let Un={U1, U2,…,Uvn,…UVn} represent the sets of failed 

detectors when n detectors still work properly in the system. Event vn in the failure set 

occurs with probability Pr(Uvn). The reliability of distributed detection system in 



Chapter 7 Uncertainty Analysis of DDS Reliability  

153 
 

failure set vn given n detectors working normally is calculated by the conditional 

probability Pr(Uvn|n). 

Denote R(n) as the reliability function with respect to the number of detectors n. 

Therefore, the term R(n) used in this chapter estimates the average effect on reliability 

of the different cases of failed detectors given the number n 

( ) ( ) ( )∑
∈

⋅=
nvn UU

vnvn UnUnR Pr|Pr                                      (7.18) 

Obtaining the reliability of distributed detection system with n available detectors 

from eq. (7.18), we calculate the mean value of the reliability of the entire distributed 

detection systems by 

( )( ) ( ) ( )∑ ⋅== npnRnRER̂                                  (7.19) 

and the variance of reliability by 

( ) ( )( ) ( )( ) ( )∑ ⎟
⎠
⎞⎜

⎝
⎛ ⋅−=⎥⎦

⎤
⎢⎣
⎡ −= npRnRRnRER nn

22 ˆˆvar                         (7.20) 

The system reliability is a function of parameter λ  

( ) ( ) ( )∑ ⋅= ss npnRR λλ |                                       (7.21) 

From the eq. (7.21), the mean value of the reliability can be alternatively 

calculated by 

( ) ( )
( ) ( ) ( )∫∑

∫
⋅⋅=

=

sss

sss

dcpnpnR

dcpRR

λλλ

λλλ
r

r

||

|ˆ
                         (7.22) 
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which can be deduced directly from eq. (7.19) as well. The variance of entire system 

reliability can be alternatively obtained by 

( ) ( )( ) ( )∫ −= sss dcpRRR λλλ r|ˆvar
2

                              (7.23) 

As the reliability function has combinatorial complexity and the closed form of 

R(n) is hard to obtain, we design a generic Monte Carlo simulation to estimate the 

mean value and the variance of the reliability of entire system. In the simulation, 

system reliability is estimated by following the recursive method proposed by Levitin 

and Lisnianski (2001) based on universal generating function. The following algorithm 

provides the generic Monte Carlo Simulation method to estimate the effect on 

reliability of entire system of uncertainty in parameter n. 

 

1. begin  

2. for i1=1 to L  //L is the total number of the iterations 

3. for i2= 1 to N  

4. Generate a sample n from the posterior distribution of )|( cnp v  

5. Select randomly n detectors out of total N detectors to work normally 

6. for i3= 1 to M  

7. Generate a sample I from the distribution f(I) 

8. Calculate system reliability R(n) given the input and system configuration           

//using the estimate algorithm in Levitin and Lisnianski (2001) 

9. end           // a simulation on I following the distribution of f(I) 

10. end  // a simulation on n following the distribution of )|( cnp v  

11. end   //Now, L sample points of the system reliability are saved in R .  
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12. Calculate
N

R
R

N

n

n

∑
= 1ˆ  

13. Calculate ( )nRvar  

14. end 

By the above method, we can calculate the mean value and variance of reliability 

function accurately and efficiently. 

 

7.4   Numerical Example 

In this subsection, a numerical example of a detector system in spaceship is applied to 

illustrate parameter estimation by the Bayesian approach. On a spaceship launched into 

outer space, a detection system consisting of 5 detectors is installed to monitor the 

faults of a device. Susceptible to possible collisions from unknown objects and much 

exposure to radiation, each detection system has a limited lifetime. From previous data 

we assume that the prior distribution of failure rateλ  to the entire distributed detection 

system follows a Gamma distribution with parameters 5.1=α and 1=β : 

( ) λλλ −= ep 5.0128.1 . At the beginning of the project, we have to forecast the system 

reliability at time Tp after the successful launch of the entire system when the 

performance of distributed detection system is degraded as a number of detectors fail 

working in the outer space environment without necessary maintenance. In this 

example, the effect on system reliability of time factor is not considered, so Tp here is 

treated as a hyper-parameter that is not of interest. Each detector is assumed to by two-

state system: working perfectly or failing working. The weights allocation and the 

probability of the detector producing correct decision are both shown in the following 
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table. We assume that the fault comes out at 70% percent of time that p(I=1)=0.7 in 

this example. 

 

Table 7.1 Configuration of distributed detection system 
No. 1 2 3 4 5 

Weight 2 2 3 4 5 

jp00  0.8 0.75 0.8 0.85 0.9 

jp11 0.8 0.8 0.75 0.8 0.85

The failure data of the distributed detection system is collected at a fixed time Tp 

after the detection system is put into use. In each observation, we record the 

experiments results in the following table. 

Table 7.2 Observations on the number of available detectors 
No. 1 2 3 4 5 6 7 8 9 10 

No. of detectors 4 3 5 4 4 2 4 3 4 5 

From eq. (7.12), the joint distribution can be calculated as 

( ) λλ λλλ 10121| −−
−

=
∑

∝ = eecp M
cMN

M

m
mv , and the prior distribution of parameter 

λ is ( ) λλλ −= ep 5.0128.1 . According to eq. (7.14) we obtain the posterior distribution 

of parameter λ  as ( ) ( )11,5.13| Gammacp =vλ . 
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Hence, the expect value of parameter λ  by Bayesian method is estimated 

as ( ) 2273.1|ˆ 1 =
+

−+
==

∑
=

M

cMN
cE

M

m
m

β

α
λλ v , and the variance is calculated as 

( )
( )

1116.0
2
12 =

+

−+

=
∑
=

M

cMN
M

m
m

β

α

λσ . 

The total number of detectors of this detection system is N=5, however, number 

of failed detectors nf is assumed to follow Poisson distribution where nf covers all the 

integers with positive possibilities. We notice that the system reliability will go to 0.7 

by setting system output to be 1 when all the detectors fail working. To make the 

Poisson distribution fit this model, we sum up all the probabilities that nf exceeds N, 

that is n<0, and define the reliability of the detection system for all these cases to be 0.  

Table 7.3 Probability distribution and reliability estimated at n 
n p(n) R(n) 

<0 0.0030 0 

0 0.0091 0.7 

1 0.0311 0.8060

2 0.0904 0.8290

3 0.2100 0.8995

4 0.3475 0.9207

5 0.3089 0.9428

According to eq. (7.17) and (7.18), the probabilities as well as the reliability 

estimated of the number of available detectors n at time Tp are shown in Table 7.3. The 

probability of n being negative is 0.003. This means Poisson distribution describes 

very well the distribution of the number of available detectors with a negligible error, 
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though the support of Poisson distribution covers all the positive integers while only 7 

possibilities in our example are considered. 

The expect value of entire system reliability is estimated by eq. (7.19): 

 ( )( ) ( ) ( ) 9064.0ˆ =⋅== ∑ npnRnRER .   

and the variance of reliability is estimated from eq. (7.20): 

 ( ) ( )( )[ ] ( )( ) ( )( ) 0.0042ˆˆvar
22

=⋅−=−= ∑ npRnRRnRER nn . 

 

 

7.5  Parameter Estimation on Threshold 

In the reliability modeling described above, the parameter τ  is important to the system 

reliability. The system may make a totally different decision if the parameters are just 

changed by a small degree, even though all the detectors send the same decision to the 

data fusion center.  

For the on-line estimation for distributed detection system proposed by Naim et 

al. in IFAC (1991), the threshold factor τ  is calculated by the logarithm function of 

the ratio the probability input I=0 over the probability I=1. The threshold is 

continuously updated with the input information at each step. The threshold may 

deviate from the correct value due to the various problems in the on-line updating 

process. 
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To evaluate the reliability of the systems with the unknown structure and 

parameters, we also face the problem of estimating the parameters accurately given the 

scarce information we have. Our task is to reduce the uncertainty in estimating the 

system reliability given the uncertainty of these parameters. 

Therefore, estimating the parameter with small variation, which is a huge task, is 

necessary for calculating the reliability of the entire DDS accurately. Ignoring the 

parameters uncertainty can result in underestimating of the uncertainty in the entire 

system reliability. The measures of variance, confidence interval, bounds etc can well 

represent the uncertainty of the reliability, and give a more reasonable and more 

detailed result for the system reliability than just a point-estimated value. The Bayesian 

approach provides a coherent setup to obtain these measures.  

 

 

7.6   Summary 

Most reliability models are associated with their own parameters which are typically 

estimated from the historical data. For the widely used distributed detection system in 

fault detection, the system reliability depends on the number of normally working 

detectors and the accuracy of its local detectors. To evaluate the reliability accurately, 

it is necessary to obtain the system parameters precisely from the test data we hold. 

However, parameters of the reliability model are subject to random variation as the 

detection system may be used in different purposes and environments.  

In this chapter, a Bayesian approach is presented to estimate the unknown 

parameters from the scarce data and quantify the uncertainty on the system reliability 
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by measure of variance. A simulation is conducted as well to calculate the effect on the 

system reliability from the uncertainty of the parameters. An example is applied to 

illustrate the parameter estimation by Bayesian approach. 
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CHAPTER 8 PREVENTIVE RESOURCE 

ALLOCATION 

8.1  Apical Dominance 

In botany, a famous phenomenon in the growing process of a plant, named as apical 

dominance, shows how a plant allocates its resource to the most necessary parts and 

how this strategy works. A kind of plant hormone, called auxin, is the key factor to the 

growth of the plant cell (the auxin stimulates the plant cell to be elongated), which was 

found in the actively growing apical bud nearly two centuries ago (Cline, 1997). Auxin 

causes the lateral buds to remain dormant because the auxin is transported basipetally 

from the apical bud; so the concentration of auxin at lateral buds is lower than that in 
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apical buds. The auxin stimulates the apical buds to grow and inhibit the lateral buds as 

well, as shown in Figure 8.1. 

 

Figure 8.1 Apical dominance for a tree 

The natural resource allocation strategy controlled by auxin which is abundant in 

apical bud can heuristically be applied in finding an efficient and optimal resource 

allocation strategy for security in reliability systems, especially in systems with 

complex structures and a large number of components, such as large-scale grid 

computing systems, and Peer-to-Peer network systems.  

We assume system G consists of N components working independently in 

different locations with various functions. Each component i is measured with its 

reliability Ri, which represents current reliability of the component i. 

Among these N components, some have more influence on the entire system.  

Take grid system for example, the reliability of resource management systems (RMS) 

is the most critical part to the entire grid systems compared with other components. For 

the pee-to-peer systems with super- peer structure, some peers with stronger ability to 

deal with data and transfer data to other peers are considered as super-peer nodes. 
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These peers contribute much more proportion to the performance and reliability of 

entire P2P system.  

In the herbaceous plant and woody plant growth process, this resource allocation 

is controlled by apical dominance strategy where the apical bud is stimulated to grow 

with much more resource allocated and the lateral buds are inhibited as the 

concentration of auxin in apical bud is higher than that in lateral buds. This is the rule 

in the natural world where the concentration of auxin determines effectively the 

resource transported. This also heuristically teaches us the potential resource allocation 

policy for reliability systems, especially large-scale complex systems, such as grid 

systems and P2P systems. The similarities between apical dominance in a tree and 

resource allocation strategy for a engineering system (grid system) are elaborated in 

Table 8.1. 

Table 8.1 Comparison of tree and grid system 
Tree Grid System 

apical bud RMS 

high concentrate of auxin high importance 

more water and nutriment more resource 

However, the critical questions are: how to define the ‘auxin’ in reliability 

system and how to measure the ‘auxin’ of each component i in a complex system in 

order to compare them and sort them to decide what amount of resource to be allocated 

to component i with an optimal resource allocation policy that ensures the limited 

resource is distributed effectively to improve the system performance and reliability as 

much as possible. In our model, we define iα  as the concentration of auxin in 

component i in the complex system.  
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This chapter is organized as follows. Section 8.2 introduces the model and 

discuss 3 important factors for calculating α . In section 8.3, we propose an optimal 

resource allocation strategy. In section 8.4 a numerical example is presented to 

illustrate the process of calculating α . Section 8.5 gives a summary. 

 

 

8.2 Factors in Preventive Resource Allocation 

Similar to how auxin in a plant bud is determined by bud location, type of the plant, 

and many other factors, iα  of component i is evaluated by many important measures. 

These measures include: 

1). Reliability importance of component I, denoted by 
iRI , which indicates the effect 

of failure in individual component or subsystem on overall system reliability  

2). Cost ratio for improving reliability of component i denoted by
iRC . This measures 

the efficiency of the resource allocation strategy to increase component reliability.  

3).Potential attacks the system experiences, which is denoted by iRT .  

Now, we can consider iα  as a function of both
iRI  and 

iRC : ( )
iii RRRi TCIf ,,=α  

 

8.2.1 Reliability Importance Measure 

Different importance measures can be classified into two categories: structural 

importance and reliability importance. Structural importance indicates the topological 
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position of the component in a system, while reliability importance, first introduced by 

Birnbaum (1969), is used to rank the significance of individual components in a 

reliability system, with respect to their contribution to the overall reliability of the 

system. This measure is important in figuring out the weakness in a system and 

searching for the best strategy for allocating resources to the most important 

components in a complex system. After Birnbaum’s paper, a number of importance 

measures have been introduced for binary systems, which generally take the following 

forms (Leemis, 1995): 

i

s
R R

RI
i ∂

∂
=                                                              (8.1) 

where 
iRI is reliability importance of the ith component, Rs is the system reliability and 

Ri is the component reliability.  

In this definition, a system is defined as binary system when the system is either 

functional or non-functional. Such a system has very wide applications in engineering  

and many other fields; research on various importance measures of binary system has 

also received increasing attention. Research of reliability importance for binary system 

have also been extended to multistate system of which the component or system have 

more than 2 states. Xie and Shen (1989) suggest using different rankings for the 

corresponding improvement actions. Chang et al. (2004) use OBDD based algorithms 

to calculate system failure frequencies and reliability importance measures, where the 

reliability importance measures include Birnbaum importance, the Criticality 

importance and other indices. Meng (2004) presents some simple criteria to compare 

Birnbaum reliability importance measure of components in a general binary coherent 

system.  
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Another importance index is joint importance measure, which scales the 

interaction of two components in contribution to the overall system reliability. Wu 

(2005) introduces joint structural importance measure and joint reliability importance 

measure for multistate system. Zio and Podofillini (2006) present a differential 

importance measure (DIM) and a second order extension of DIM to account of the 

interactions between two components when evaluating the effect of changes in the 

reliability parameters of components on the system reliability. 

The concept of auxin in this chapter can be interpreted in nature as a special kind 

of reliability importance measure. This term differentiates from the original 

representation of reliability importance measure in the literature by taking into account 

resource allocation efficiency to component and potential threat or intentional attack 

from outsiders (e.g., terrorists attacks). 

 

8.2.2 Cost Factor 

Reliability importance in the preceding subsection is mainly about how the changes in 

component reliability will improve the overall system reliability. However, so far, we 

do not know how to improve the reliability of individual components most efficiently 

under the resource restrictions. In following subsection, we try to depict the possible 

relationships between resource allocated in components and corresponding reliability 

improvement.  

Some components in the system may be even harder or more costly to improve, 

that is, more preventive resource need to be allocated to the components to increase 

their reliability. However, there is no clear conclusion on the relationship for the cost 
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of each component as a function of its reliability. Mettas (2000) provides a general 

empirical function, which is derived from past experiences or data to overcome the 

problem. The cost function takes the following form 

( )
( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−
⋅−

= ii

ii
i RR

RR
f

iiiii eRRfRc max,

min,1

max,min, ,,;                               (8.2) 

where Ri,min is minimum reliability of component/subsystem i, Ri,max is maximum 

achievable reliability of component/subsystem i, and fi is feasibility of increasing the 

reliability of component/subsystem i, which is assumed between 0 and 1. fi represents 

the relative difficulty in increasing a component’s reliability. 

Charles Elegbede et al. (2003) also provide 3 reasonable conditions to find the 

cost function ci. ci is positive definite, non decreasing and it increases rapidly when 

reliability approach to 1. 

Different resource allocation strategies for the same component incur as well 

different cost. Xie and Shen (1989) enumerate three alternative improvement actions to 

increase the system reliability: equal improvement, replacement by a perfect 

component, and active redundancy. Take ‘active redundancy’ policy for example. 

Suppose the reliability of ith computing node (such as a computer, or memory) in a grid 

computing system is Ri with cost ci. If we use parallel redundancy by adding one active 

computing node to avoid system failure caused by accidents in component i, the cost 

will be doubled. In this way the reliability of this component increases from Ri to 

( )211 iR−− . Similarly, if we use 3 active computing nodes in parallel to improve the 

system performance, the reliability of this subsystem of components will be 

( )311 iR−−  with cost 3ci. The following figure depicts the relationship between 

reliability improvement and the number of units in parallel redundancy. 
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Cost vs Reliability
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Figure 8.2 Cost vs Reliability 

The cost curve in Figure 8.2 coincides with eq. (8.2) very well. They both 

indicate that cost of a high/low reliability component is high/low. 

This poses a new problem: which component should we choose to improve with 

minimum resource? A new index, cost coefficient, is introduced here to solve this 

problem: derivative of cost with respect to reliability obtained from eq. (8.2): 

( ) ( )
( )

⎥
⎥
⎦

⎤

⎢
⎢
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⎡

−

−
⋅−

−

−
⋅−== ii
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i
R e
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R
cC max,
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2
max,

min,max,1
d
d                             (8.3) 

This index measures the efficiency of allocating resource in component i to 

increase its reliability: Higher iRC indicates that it is more costly to improve ith 

component compare to improving a component with lower cost coefficient. 

 

8.2.3 Attack Factor 

Besides the two factors we have discussed previously, the third important factor we 

account for in the strategy of resource allocation for improving system reliability is the 
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potential threat or attack each component or subsystem experiences. Especially for 

large scale network systems such as grid and P2P computing systems, where the 

attackers can easily access the loosely distributed computing nodes which may be 

performing safety critical computing tasks. The intentional attacks from terrorists may 

cause the computing system to fail. To improve the reliability of such safety critical 

systems, we must consider outside factors when we allocate the preventive resources, 

such as guards, security devices, and so on. The following subsection focuses on 

strategies for preventive resource allocation to protect the components and systems 

from possible threat and intentional attacks or at least to mitigate the destructive effects 

from these outside attacks. 

From the previous research on the optimal defensive strategy in response to 

outside attacks, we can easily see that the attacker (terrorist) is presumed to have 

different preference on choosing locations to attack. They may have reliable or 

unreliable information of the defender’s resource allocation strategy against the 

potential threat which may be collected from public channel or private channel. The 

outside attacks are carried on under a certain level of cost limitation and the payoff of 

every possible attack is also expected. So analyzing the attackers’ decision is very 

complicated, and to some extent, impossible. However, it is crucial for safety critical 

system, such as power transmission system and power station, where an outside attack 

may cause destructive effect. 

Bier et al. (2005b) study a strategic model by using game theory in which two 

players are involved: a defender and an attacker. The defender must choose a collect of 

locations to allocate defensive resources and the attacker must a component to attack. 

They reach some conclusions as follows: it is sometimes an optimal strategy that the 

defender leaves a location undefended. The defender has a preference of allocating 
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resource in a centralized way. And in the value of the attacker’s outside option, the 

optimal allocation could be non-monotonic. Bier et al. (2007) propose a simple but 

practical Max Line method based on a greedy algorithm to assess the vulnerability of 

complex systems to intentional attacks and study the effectiveness of the method. 

Levitin (2007) extends the research of optimal defense strategy to multi-state series-

parallel system. The author presents a model in which separation and protection of 

system elements are considered. 

 

8.3 Optimal Strategy 

As we stated previously, we can implement the strategy of apical dominance, which 

has proven to be efficient and effective in biology, to simulate resource allocation 

decision process in complex system such as grid or p2p computing systems to improve 

optimally the reliability of the system under the limited budget. In apical dominance, 

concentration of auxin in a bud determines the amount of resources, such as water and 

nutriment, that can be transported to the bud and controls (stimulates or inhibits) its 

growth. Concentration of auxin is affected by many factors such as the location, plant 

species, and sunlight. The case of apical dominance is similar to resource allocation for 

engineering systems: the strategies are highly dependent on reliability/structure 

importance measure, cost coefficient, and outsider threat or intentional attack. We use 

( )
iii RRRi TCIf ,,=α  to represent the relationships. 

The relationships might not be so clear and unique for different systems. 

However, following rules are implied: 
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(1). more preventive resource should be allocated to the components with higher 

reliability/structure importance 

(2). resource should be allocated in priority to the component with low cost-

coefficient. This ensures that resources are allocated in the most efficient 

manners. 

Table 8.2 Auxin andα  
Auxin α  

Location Reliability importance 

Different species Cost Coefficient 

Sunlight Outside Threat 

 

 (3). the component under more potential threat should be allocated more 

resources. 

Rule (3) is not valid for the complicated case in Bier et al. (2005). But in this 

chapter, for the sake of simplicity, we assume this rule holds. 

Considering the 3 rules, we propose the following form to calculate iα  for 

component i: 

i

i

i
R

R

R
i T

C
I

⋅=α                                                           (8.4) 

As we know from the earlier analysis, the cost coefficient of component will 

increase exponentially over the reliability improvement of the component. In this sense, 

iα  is a decreasing function of reliability of component i. With continuously resource 

supplement to component i, iα  will approach a certain level until the optimal 

allocation is reached.  
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Theorem: for a coherent system, the resource allocation strategy is optimal if and only 

if  

Ni αααα =⋅⋅⋅==⋅⋅⋅== 21                                                (8.5) 

Proof:   

Assume reliability of the two components are iR and jR  with accumulative cost 

iC and jC  respectively. Hence the sum of cost to maintain the reliability of these two 

components at level iR and jR is ji CCC += . And the contribution to the overall 

system reliability can be obtained as jRRiRR RTIRTICont
jjii

+= . 

Therefore, we obtain a maximization problem: 

CCCSub

RTIRTIContMax

ji

jRRiRR jjii

≤+

+=

:

:
                                      (8.6) 

The fact that the system is coherent ensures that the optimal solution is obtained 

at boundary condition. We turn the original problem into: 

CCCSub

RTIRTIContMax

ji

jRRiRR jjii

=+

+=

:

:
                                       (8.7) 

From eq. (8.2), we have  
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−−
=                                         (8.8) 

Substitute ij CCC −=  and eq. (8.8) into the objective function, we have 
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Let ( )( )min,max,1 iiiRRi RRfTIA
ii

−−=  
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From eq. (8.9), we know the total contribution from component i and j is a 

function of Ci. The optimal value may lie at the point where the derivative of Cont 

with respect to Ci is 0: 

( )
0

d
d

=
i

i

C
CCont                                                        (8.10) 

We have 

( ) ( ) jjj
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                                 (8.11) 

Substitute eq. (8.2) into eq. (8.11), 
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Compare with eq. (8.3), we obtain 
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=                                                   (8.13) 

that is  

ji αα =                                                           (8.14) 

In order to verify that this is the optimal strategy, it is necessary to verify the 

concavity of Cont function, that is to verify the sign of the second order of derivative 

of Cont with respect to Ci: 
( )
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Since 0ln >iC  and if  is valid from 0 to 1, the second order of derivative of 

Cont is negative. Concavity of the function is proved. 
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Based on the concavity, we conclude that the optimal strategy is reached when eq. 

(8.14) is satisfied. The validation to an N-component system is easy to verify as well. 

 

 

8.4 Numerical Example 

Suppose in a grid network system, some routers connect to each other in a bridge 

structure network to exchange data between two grid computing nodes, to perform the 

desired tasks as shown in Figure 8.3.  

The routers in our example are assumed to be vulnerable under different levels of 

intentional attacks Ti but the connections between the routers are assumed to be 

invulnerable which are depicted in bold. 

 

 
 

Figure 8.3 Bridge network in a grid computing system 

From existing knowledge, the overall system reliability is a function of all 

components as follows: 
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Following eq. (8.1) to take derivatives, we obtain the reliability importance 

measures of each component: 
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54325435425324325431 RRRRRRRRRRRRRRRRRRRI +−−−−+=  

54315435415314315342 RRRRRRRRRRRRRRRRRRRI +−−−−+=  

54215425415214215213 RRRRRRRRRRRRRRRRRRRI +−−−−+=  

53215325315213215124 RRRRRRRRRRRRRRRRRRRI +−−−−+=  

432143243142132132415 RRRRRRRRRRRRRRRRRRRRI +−−−−+=  

Before we analyze the resource allocation strategy, we must collect some useful 

information of the system as the following table shows: 

Table 8.3 Calculation of Alpha 
 1 2 3 4 5 

Attack 0.8 0.88 0.85 0.9 0.85 

Cost 12 11 13 10 10 

Rmax 0.95 0.99 0.9 0.99 0.95 

Rmin 0.5 0.4 0.3 0.5 0.4 

Feasibility 0.3 0.2 0.4 0.3 0.2 

Reliability 0.8511 0.8424 0.7862 0.8758 0.8082 

Importance 0.3052 0.3009 0.3666 0.2334 0.4563 

CostCoefficient 386.42 238.33 361.72 262.84 218.77 

Alpha 0.0006320 0.001111 0.000861 0.000799 0.001773 

 

The information includes the attack level that each component is exposed to, the 

amount of resource has been used to build up the components, max,iR , min,iR  and relative 

feasibility.  

Based on this, reliability of each component is calculated by eq. (8.2) and 

reliability importance is obtained by eq. (8.1). We use eq. (8.3) to calculate cost 



Chapter 8 Preventive Resource Allocation  

176 
 

coefficient of each component. We can then obtain α  by using our definition and 

compare them in Figure 8.4 to determine which component is the weakest (with 

highest value of α ). In our example, we shall choose component 5 to improve first to 

use the resource most efficiently. 

Comparison of alpha

0

0.0005

0.001

0.0015

0.002

1 2 3 4 5
Component

A
lp

ha

 

Figure 8.4 Comparison of alpha 

 

 

8.5 Summary 

In this chapter, we have introduced an important phenomenon of apical dominance in 

plant growth process in which the concentration of auxin in buds controls the amount 

of resource to allocate. This phenomenon shows great similarities to the process of 

allocating resource in complex engineering systems such as grid systems and p2p 

systems. The similarities have also been analyzed to get the important factors, which 

include reliability importance measures, cost coefficients, and intentional attacks they 

may suffer.  



Chapter 8 Preventive Resource Allocation  

177 
 

As analyzed, the cost coefficient of a component varied when its reliability was 

improved. α is a function of the cost coefficient which changes as well. This makes 

the resource allocation strategy more complicated. In this chapter, we provide a 

sufficient and necessary condition to judge whether the optimal strategy is reached. A 

numerical example is also presented to illustrate the process of calculating α  for each 

component. 

Although the factor of attack from outsiders is considered as an important part in 

calculatingα , it is still a long way to understand clearly how intentional attack will 

affect the resource allocation strategy, especially to complex systems such as grid 

computing systems. The real situation of attacking and defending is much more 

complicated and many researchers use game theory and other technique to model this. 

Further analysis on the effect from attacker’s decision on resource allocation strategy 

is critical and necessary to carry on. 
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CHAPTER 9 CONCLUSIONS AND FUTURE 

WORK 

The concept of reliability of computing systems has attracted more and more attention 

from many practical areas, due to explosive development of information technology, 

which brings to us as well the exponentially increasing in size and complexity of the 

computing systems. This thesis mainly focused on building reliability models for 

different common used computing systems, such as weighted voting systems, peer-to-

peer systems and software systems, conducting comprehensive analysis of the models 

we built, and designing optimal resource allocation strategies to improve system 

reliability based on the information we had.  
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This chapter summarizes the results and the contributions of the research work in this 

dissertation and discusses their limitations and implications. Suggestions on the 

possible future research are indicated as well. 

 

 

9.1 Summary 

Computing systems are a kind of system with one or more computers/processors 

and associated software with common storage, which perform computing tasks in 

meaningful ways. Faults in either hardware or software may cause failures in the entire 

computing systems. Hence, in this thesis, research on reliability modeling and analysis 

of computing systems covers both of hardware systems and software systems. 

Computing tasks that different computing systems execute lie in numerous forms 

in many practical areas. Weighted voting system is a computing system that is widely 

used in pattern recognition, human organization systems, fault detection and technical 

decision making systems. Chapter 3, and chapter 4 both focus on some important 

issues related to reliability modeling and analysis of weighted voting systems 

(distributed detection system is a special case). Chapter 3 studied a new reliability 

model of WVS by taking into account continuous state input which is represented by 

measures such as temperature and pressure. To reduce the computing complexity, 

some necessary assumptions were made. The distribution of output of each voting unit 

was assumed to be normally distributed with the mean value being the input. The 

output of entire system was the weighted sum of the outputs of units composing the 

system. The definitions of ‘correct decision’ and ‘reliability of entire system’ were 
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modified correspondingly as the inputs were continuous. A reliability optimization 

problem with cost constraints was formulated as well under the consideration that 

different voting units have different accuracies and cost. The different allocations of 

these voting units could make the reliability of the entire voting system different. GA 

was applied to obtain the optimal strategy of allocating the voting units. A detailed GA 

was introduced in this chapter with an illustrative example. 

Extensions on the reliability models built in chapter 3 are presented in chapter 4, 

in which the output of voting units are considered to be biased to the input and the 

accuracy of the units are assumed to depend on the input. Three different cases of the 

weighted voting systems, accounting for different assumptions and application 

backgrounds, were discussed. To illustrate the three cases, three numerical examples 

were conducted respectively. Reliability of the weighted voting system was calculated 

both by Monte Carlo and by analytical method for each example. Comparing the first 

two cases, we find that the reliability of the biased voting system is lower than the 

unbiased voting system, given the same accuracy of the system. A brief comparison of 

the two methods was conducted and we find that both methods have their own 

advantages and disadvantages.  

As a newly developed distributed computing system, peer-to-peer has been 

widely accepted by users for network services such as distributed computing, file 

sharing, distributed storage, communication, and real time media streaming. Issues on 

reliability modeling and analysis are becoming more and more important. Chapter 5 

formulated a reliability model to estimate the service reliability as a measure of the 

system performance with service quality considerations. With this reliability model, 

the performance of service provided by the P2P media streaming system could be 
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obtained easily with information on the internet conditions and user profiles, which can 

be collected from survey or database of some public agencies. 

As the condition of internet is highly dynamic over different times of the day, 

further analysis on the reliability modeling of the P2P media streaming system is 

proposed to account for the time effects. The universal generating function (UGF) is 

then used as the method to calculate the reliability. Two examples are given to 

illustrate the two models and analysis proposed.   

Buffer techniques are commonly applied to store a few segments of media data 

ahead to hide transient extra delays in packet arrivals, improving the performance of 

the P2P media streaming systems (Hefeeda and Bhargava, 2003, and Zhang et al., 

2005). In chapter 5, we further build a reliability model to take into account the effects 

of the buffer technique on P2P system reliability. The real performance of the P2P 

media streaming system are better than what we concluded in the earlier part of this 

dissertation because of the application of the replication scheme in the real systems. A 

numerical example is used to illustrate the calculating process. 

Besides hardware systems, faults in software systems may also cause computing 

systems to fail. It is important to estimate software reliability accurately in assessing 

computing system reliability. In order to apply the models to predict the reliability of 

the component, the parameters of the models need to be known or estimated. Chapter 6 

studies the uncertainty problems in reliability modeling at both component-level and 

system-level. It not only addresses the uncertainty problem using the Bayesian 

Approach (BA), but more importantly solves the challenges for the dearth of data by 

embedding the Maximum-Entropy Principle (MEP) into the BA. By using MEP with 

BA, the expert knowledge, historical data from similar experiments and developmental 
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environments can thus be involved in analyzing the uncertainty and for compensating 

insufficient failure data.  

After exploring the uncertainty for software component, chapter 6 further extends 

the uncertainty analysis to more complicated systems that contain numerous 

components, each with its own respective distributions and uncertain parameters. A 

Monte Carlo approach is proposed to solve it. This method is broadly applicable for 

many systems that can be modeled with different modeling tools. The approach is then 

illustrated with a case of three-module software on a Markov model, and another case 

of a grid service reliability (a type of large-scale system) based on Graph theory. These 

examples with distinguished characteristics exhibit the generality and effectiveness of 

the MC approach to analyze not only simple module-based systems but also 

complicated systems with numerous uncertain parameters.  

This approach is further illustrated with a recently published model (Dai & 

Levitin, 2006) for large-scale system reliability. Adopting this approach allows the 

relaxation of the assumptions of constant parameters in communication speed and 

processing speed, thus improving the practicality of the model. This demonstrates 

another novel application of the proposed uncertainty analysis. The results show that 

the improved model accounting for the uncertainty factors is more realistic and more 

reasonable than the original model. Moreover, the improved model can further provide 

the percentiles and variance that exhibit the confidence range to the practitioners about 

the model’s output.  

Bayesian approach can also be applied to reliability models of WVS for 

uncertainty analysis and parameter estimation. For distributed detection system, as a 

special type of weighted voting system, its reliability is defined as the probability the 
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system provides correct output given corresponding input, which is determined by the 

accuracy and number of the local detectors, the threshold factor, and etc. These 

uncertain parameters are subject random variation as the performance of distributed 

detection system degrades and the detectors fail at certain rate. To calculate the system 

reliability, we have to estimate these system parameters precisely. In chapter 7, a 

Bayesian approach was presented to estimate the unknown parameters from the scarce 

data and quantify the uncertainty on the system reliability by measure of variance. A 

simulation was conducted as well to calculate the effect on the system reliability from 

the uncertainty of the parameters. An example was applied to illustrate the parameter 

estimation by Bayesian approach. Monte Carlo simulation was applied to estimate the 

effect on the system reliability on the uncertainty of parameters as the system 

reliability is hard to estimate by analytical method due to the combinatorial complexity 

of the problem.  

So far, this thesis mainly discussed reliability modeling and analysis of different 

computing systems. Another important issue on resource allocation strategy to 

computing systems is studied in chapter 8. In the strategy, three important factors were 

considered: reliability importance measures, cost coefficients, and intentional attacks 

they may suffer. By providing the proof, we found a sufficient and necessary condition 

to judge whether the optimal strategy is reached. A numerical example is also 

presented to illustrate the process of calculating α  for each component. 

 
 
 
9.2  Future Work
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Research on computing system reliability is very active nowadays. Following parts 

illustrate some possible directions which have great potential to develop based my 

current work introduced in proceeding sections. 

  The future research on the reliability analysis of weighted voting systems can 

follow two possible directions. Firstly, one important assumption in all the models 

above is the independence between voting units. However, it is very common that the 

decision of one voting unit affects the decision making of another unit. An area for 

further research is to formulate the voting system problems with dependent voting 

units. Secondly, the assumption that the output of each unit satisfies normal 

distribution makes the computation manageable as it is very easy to obtain the 

distribution of the sum of output of independent voting units. In practice, however, the 

distribution may not be normal, and hence it maybe hard to find the distribution 

function by analytical way. The future research can focus on finding an approximation 

function to approximate the probability of the entire system or the reliability of the 

entire system. 

Possible future research on peer-to-peer computing system reliability can be 

summarized in the following. Firstly, the media streaming data is transmitted in 

packages of a certain volume each and not continuously as assumed in this dissertation. 

The media data comes in packages and can also be lost in packages. The reliability 

function hence is a discrete problem. This can be studied in our further research on the 

reliability analysis of the P2P media streaming systems. Secondly, in this model, we 

did not consider the stochastic characteristics of the individual peers. In practice, every 

peer is prone to connect and disconnect to the P2P networks when the networks 

condition is excellent and bad respectively, so an arriving user may follow stochastic 
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process in connecting to the P2P networks. The stochastic theory applied to analyze 

the state of each individual peer will take into account the dynamic property, and this 

can make the models more realistic as well as more complicated. Many network 

techniques are applied in the real time media streaming network systems to make the 

services efficient and reliable, such as cache technique, replication of data and 

advanced search algorithms. These techniques are critical to the reliability and 

performance of the P2P services. Much more work can be done on the reliability 

analysis when we consider one or some techniques are considered. 

In chapter 3 and 4, Monte Carlo simulation method is applied to derive the 

reliability of weighted voting systems as the structure of this kind of systems is very 

complex and it is very hard to find the analytical solution. Although the Monte Carlo 

simulation method is accurate, further work can be done to study the efficiency of the 

estimators used in our model. Moreover, to extend the work in chapter 7, research on 

the parameter estimation on threshold factor can be done. However, the effect on the 

system reliability of uncertainty from the threshold factor is much more complex to 

estimate. This is a possible direction to conduct future research. 

Although the factor of attack from outsiders is considered in chapter 8 as an 

important part in calculatingα , it is still a long way to understand clearly how 

intentional attack will affect the resource allocation strategy, especially to complex 

systems such as grid computing systems. The real situation of attacking and defending 

is much more complicated even though many researchers use game theory and other 

technique to model. Further analysis on the effect from attacker’s decision on resource 

allocation strategy is critical and necessary to carry on. 
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Among all the chapters in this thesis, model validation have not been done in 

details because real world data of the practical systems is expensive to obtain. 

However, model validation is important for building reliability models. In future, some 

research can be potentially done on model validation to see how our models fit the real 

situation. Some improvement on the models can possibly be done based the 

observation from model validation. 
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