6,087 research outputs found

    Secure Routing in Wireless Mesh Networks

    Get PDF
    Wireless mesh networks (WMNs) have emerged as a promising concept to meet the challenges in next-generation networks such as providing flexible, adaptive, and reconfigurable architecture while offering cost-effective solutions to the service providers. Unlike traditional Wi-Fi networks, with each access point (AP) connected to the wired network, in WMNs only a subset of the APs are required to be connected to the wired network. The APs that are connected to the wired network are called the Internet gateways (IGWs), while the APs that do not have wired connections are called the mesh routers (MRs). The MRs are connected to the IGWs using multi-hop communication. The IGWs provide access to conventional clients and interconnect ad hoc, sensor, cellular, and other networks to the Internet. However, most of the existing routing protocols for WMNs are extensions of protocols originally designed for mobile ad hoc networks (MANETs) and thus they perform sub-optimally. Moreover, most routing protocols for WMNs are designed without security issues in mind, where the nodes are all assumed to be honest. In practical deployment scenarios, this assumption does not hold. This chapter provides a comprehensive overview of security issues in WMNs and then particularly focuses on secure routing in these networks. First, it identifies security vulnerabilities in the medium access control (MAC) and the network layers. Various possibilities of compromising data confidentiality, data integrity, replay attacks and offline cryptanalysis are also discussed. Then various types of attacks in the MAC and the network layers are discussed. After enumerating the various types of attacks on the MAC and the network layer, the chapter briefly discusses on some of the preventive mechanisms for these attacks.Comment: 44 pages, 17 figures, 5 table

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks

    A STUDY OF ZIGBEE TECHNOLOGY

    Get PDF
    The zigbee communication is a communication technology to connect local wireless nodes and provides high stability and transfer rate due to data communication with low power. In the nodes away from coordinator in one PAN, the signal strength is weak causing the network a shortage of low performance and inefficient use of resources due to transferring delay and increasing delay time and thus cannot conduct seamless communication. This study suggests the grouping method, that makes it possible to perform wide range data transferring depending on the node signal strength in zigbee node and analyzes the suggested algorithm through simulation. Based on IEEE 802.15.4 Low Rate-Wireless Personal Area Network (LR-WPAN) standard, the Zigbee standard has been proposed to interconnect simple, low rate and battery powered wireless devices. The de-ployment of Zigbee networks is expected to facilitate numerous applications such as Home-appliance net-works, home healthcare, medical monitoring and environmental sensors. An effective routing scheme is more important for Zigbee mesh networks. In order to achieve effective routing in Zigbee Mesh networks, a Zigbee protocol module is realized using NS-2. The suitable routing for different data services in the Zigbee application layer and a best routing strategy for Zigbee mesh network are proposed. The ZigBee standard provides network, security, and application support services operating on top of the IEEE 802.15.4 Medium AccessControl (MAC) and Physical Layer wireless standard. It employs a group of technologies to enable scalable, self-organizing, self-healing networks that can manage various data traffic patterns. ZigBee is a low-cost, low-power, wireless mesh networking standard. The low costal lows the technologyto be widely deployed in wireless control and monitoring applications, the low power-usage allows longerlife with smaller batteries, and the mesh networking which promises high reliability and larger range. ZigBee has-been developed to meet the growing demand for capable wireless networking between numerous low power devices. The aims of this network are to reduce the energy consumption and latency by enhancing routing algorithm. In a traditional tree routing when a node wants to transmit a packet to the destination, the packet has to follow child/parent relationship and go along tree topology, even if the destination is lying at nearby source. In order to solve this problem, an Enhanced Tree Routing Algorithm is introduced using ZigBee network. This algorithm can find the shortest path by computing the routing cost for all of router that stored in neighbor table, and transmit the packet to the neighbor router that can reduce the hop count of transmission. The enhanced tree routing algorithm can achieve more stable and better efficiency then the previous traditional tree routing algorithm
    • …
    corecore