149,626 research outputs found

    Electricity from photovoltaic solar cells: Flat-Plate Solar Array Project final report. Volume VI: Engineering sciences and reliability

    Get PDF
    The Flat-Plate Solar Array (FSA) Project, funded by the U.S. Government and managed by the Jet Propulsion Laboratory, was formed in 1975 to develop the module/array technology needed to attain widespread terrestrial use of photovoltaics by 1985. To accomplish this, the FSA Project established and managed an Industry, University, and Federal Government Team to perform the needed research and development. This volume of the series of final reports documenting the FSA Project deals with the Project's activities directed at developing the engineering technology base required to achieve modules that meet the functional, safety and reliability requirements of large-scale terrestrial photovoltaic systems applications. These activities included: (1) development of functional, safety, and reliability requirements for such applications; (2) development of the engineering analytical approaches, test techniques, and design solutions required to meet the requirements; (3) synthesis and procurement of candidate designs for test and evaluation; and (4) performance of extensive testing, evaluation, and failure analysis to define design shortfalls and, thus, areas requiring additional research and development. During the life of the FSA Project, these activities were known by and included a variety of evolving organizational titles: Design and Test, Large-Scale Procurements, Engineering, Engineering Sciences, Operations, Module Performance and Failure Analysis, and at the end of the Project, Reliability and Engineering Sciences. This volume provides both a summary of the approach and technical outcome of these activities and provides a complete Bibliography (Appendix A) of the published documentation covering the detailed accomplishments and technologies developed

    Alternative sweetener from curculigo fruits

    Get PDF
    This study gives an overview on the advantages of Curculigo Latifolia as an alternative sweetener and a health product. The purpose of this research is to provide another option to the people who suffer from diabetes. In this research, Curculigo Latifolia was chosen, due to its unique properties and widely known species in Malaysia. In order to obtain the sweet protein from the fruit, it must go through a couple of procedures. First we harvested the fruits from the Curculigo trees that grow wildly in the garden. Next, the Curculigo fruits were dried in the oven at 50 0C for 3 days. Finally, the dried fruits were blended in order to get a fine powder. Curculin is a sweet protein with a taste-modifying activity of converting sourness to sweetness. The curculin content from the sample shown are directly proportional to the mass of the Curculigo fine powder. While the FTIR result shows that the sample spectrum at peak 1634 cm–1 contains secondary amines. At peak 3307 cm–1 contains alkynes

    Enhancing the EAST-ADL error model with HiP-HOPS semantics

    Get PDF
    EAST-ADL is a domain-specific modelling language for the engineering of automotive embedded systems. The language has abstractions that enable engineers to capture a variety of information about design in the course of the lifecycle — from requirements to detailed design of hardware and software architectures. The specification of the EAST-ADL language includes an error model extension which documents language structures that allow potential failures of design elements to be specified locally. The effects of these failures are then later assessed in the context of the architecture design. To provide this type of useful assessment, a language and a specification are not enough; a compiler-like tool that can read and operate on a system specification together with its error model is needed. In this paper we integrate the error model of EAST-ADL with the precise semantics of HiP-HOPS — a state-of-the-art tool that enables dependability analysis and optimization of design models. We present the integration concept between EAST-ADL structure and HiP-HOPS error propagation logic and its transformation into the HiP-HOPS model. Source and destination models are represented using the corresponding XML formats. The connection of these two models at tool level enables practical EAST-ADL designs of embedded automotive systems to be analysed in terms of dependability, i.e. safety, reliability and availability. In addition, the information encoded in the error model can be re-used across different contexts of application with the associated benefits for cost reduction, simplification, and rationalisation of dependability assessments in complex engineering designs

    FRAM for systemic accident analysis: a matrix representation of functional resonance

    Get PDF
    Due to the inherent complexity of nowadays Air Traffic Management (ATM) system, standard methods looking at an event as a linear sequence of failures might become inappropriate. For this purpose, adopting a systemic perspective, the Functional Resonance Analysis Method (FRAM) originally developed by Hollnagel, helps identifying non-linear combinations of events and interrelationships. This paper aims to enhance the strength of FRAM-based accident analyses, discussing the Resilience Analysis Matrix (RAM), a user-friendly tool that supports the analyst during the analysis, in order to reduce the complexity of representation of FRAM. The RAM offers a two dimensional representation which highlights systematically connections among couplings, and thus even highly connected group of couplings. As an illustrative case study, this paper develops a systemic accident analysis for the runway incursion happened in February 1991 at LAX airport, involving SkyWest Flight 5569 and USAir Flight 1493. FRAM confirms itself a powerful method to characterize the variability of the operational scenario, identifying the dynamic couplings with a critical role during the event and helping discussing the systemic effects of variability at different level of analysis

    Expert Elicitation for Reliable System Design

    Full text link
    This paper reviews the role of expert judgement to support reliability assessments within the systems engineering design process. Generic design processes are described to give the context and a discussion is given about the nature of the reliability assessments required in the different systems engineering phases. It is argued that, as far as meeting reliability requirements is concerned, the whole design process is more akin to a statistical control process than to a straightforward statistical problem of assessing an unknown distribution. This leads to features of the expert judgement problem in the design context which are substantially different from those seen, for example, in risk assessment. In particular, the role of experts in problem structuring and in developing failure mitigation options is much more prominent, and there is a need to take into account the reliability potential for future mitigation measures downstream in the system life cycle. An overview is given of the stakeholders typically involved in large scale systems engineering design projects, and this is used to argue the need for methods that expose potential judgemental biases in order to generate analyses that can be said to provide rational consensus about uncertainties. Finally, a number of key points are developed with the aim of moving toward a framework that provides a holistic method for tracking reliability assessment through the design process.Comment: This paper commented in: [arXiv:0708.0285], [arXiv:0708.0287], [arXiv:0708.0288]. Rejoinder in [arXiv:0708.0293]. Published at http://dx.doi.org/10.1214/088342306000000510 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Optimal control of the heave motion of marine cable subsea-unit systems

    Get PDF
    One of the key problems associated with subsea operations involving tethered subsea units is the motions of support vessels on the ocean surface which can be transmitted to the subsea unit through the cable and increase the tension. In this paper, a theoretical approach for heave compensation is developed. After proper modelling of each element of the system, which includes the cable/subsea-unit, the onboard winch, control theory is applied to design an optimal control law. Numerical simulations are carried out, and it is found that the proposed active control scheme appears to be a promising solution to the problem of heave compensation

    New Zealand Building Project Cost and Its Influential Factors: A Structural Equation Modelling Approach

    Get PDF
    Construction industry significantly contributes to New Zealand's economic development. However, the delivery of construction projects is usually plagued by cost overruns, which turn potentially successful projects into money-losing ventures, resulting in various other unexpected negative impacts. The objectives of the study were to identify, classify, and assess the impacts of the factors affecting project cost in New Zealand. The proposed research model was examined with structural equation modelling. Recognising the lack of a systematic approach for assessing the influencing factors associated with project cost, this study identified 30 influencing factors from various sources and quantified their relative impacts. The research data were gathered through a questionnaire survey circulated across New Zealand construction industry. A total of 283 responses were received, with a 37% response rate. A model was developed for testing the relationship between project cost and the influential factors. The proposed research model was examined with structural equation modelling (SEM). According to the results of the analysis, market and industry conditions factor has the most significant effect on project cost, while regulatory regime is the second-most significant influencing factor, followed by key stakeholders' perspectives. The findings can improve project cost performance through the identification and evaluation of the cost-influencing factors. The results of such analysis enable industry professionals to better understand cost-related risks in the complex environment
    • …
    corecore