7,775 research outputs found

    Optimizing cooperative cognitive radio networks with opportunistic access

    Get PDF
    Optimal resource allocation for cooperative cognitive radio networks with opportunistic access to the licensed spectrum is studied. Resource allocation is based on minimizing the symbol error rate at the receiver. Both the cases of all-participate relaying and selective relaying are considered. The objective function is derived and the constraints are detailed for both scenarios. It is then shown that the objective functions and the constraints are nonlinear and nonconvex functions of the parameters of interest, that is, source and relay powers, symbol time, and sensing time. Therefore, it is difficult to obtain closed-form solutions for the optimal resource allocation. The optimization problem is then solved using numerical techniques. Numerical results show that the all-participate system provides better performance than its selection counterpart, at the cost of greater resources

    Relay subset selection in cognitive networks with imperfect CSI and individual power constraints

    Get PDF
    This paper considers the relay subset selection problem in an underlay cognitive network in which two secondary users communicate assisted by a set of N potential relays. More specifically, this paper deals with the joint problem of choosing the best subset of L secondary relays and their corresponding weights which maximize the Signal-to-Interference-plus-Noise ratio (SINR) at the secondary user receiver, subject to per-relay power constraints and interference power constraints at the primary user. This problem is a combinatorial problem with a high computational burden. Nevertheless, we propose a sub-optimal technique, based on a convex relaxation of the problem, which achieves a near-optimal performance with a reduced complexity. Contrary to other approaches in the literature, the secondary relays are not limited to cooperate at full power.Peer ReviewedPostprint (author's final draft

    Joint Spectrum Sensing and Resource Allocation for OFDM-based Transmission with a Cognitive Relay

    Full text link
    In this paper, we investigate the joint spectrum sensing and resource allocation problem to maximize throughput capacity of an OFDM-based cognitive radio link with a cognitive relay. By applying a cognitive relay that uses decode and forward (D&F), we achieve more reliable communications, generating less interference (by needing less transmit power) and more diversity gain. In order to account for imperfections in spectrum sensing, the proposed schemes jointly modify energy detector thresholds and allocates transmit powers to all cognitive radio (CR) subcarriers, while simultaneously assigning subcarrier pairs for secondary users (SU) and the cognitive relay. This problem is cast as a constrained optimization problem with constraints on (1) interference introduced by the SU and the cognitive relay to the PUs; (2) miss-detection and false alarm probabilities and (3) subcarrier pairing for transmission on the SU transmitter and the cognitive relay and (4) minimum Quality of Service (QoS) for each CR subcarrier. We propose one optimal and two sub-optimal schemes all of which are compared to other schemes in the literature. Simulation results show that the proposed schemes achieve significantly higher throughput than other schemes in the literature for different relay situations.Comment: EAI Endorsed Transactions on Wireless Spectrum 14(1): e4 Published 13th Apr 201
    corecore