1,992 research outputs found

    Relay selection for multiple access relay channel with decode-forward and analog network coding

    Full text link
    This paper presents a relay selection for decode-and-forward based on network coding (DF-NC) and analog-NC protocols in general scheme of cellular network system. In the propose scheme the two source node simultaneously transmit their own information to all the relays as well as the destination node, and then, a single relay i.e. best with a minimum symbol error rate (SER) will be selected to forward the new version of the received signal. Simulation results show that, the DF-NC scheme with considerable performance has exactness over analog-NC scheme. To improve the system performance, optimal power allocation between the two sources and the best relay is determined based on the asymptotic SER. By increasing the number of relays node, the optimum power allocation achieve better performance than asymptotic SER.Comment: 11 pages, 5 figures; International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.2, March 201

    Regenerative and Adaptive schemes Based on Network Coding for Wireless Relay Network

    Full text link
    Recent technological advances in wireless communications offer new opportunities and challenges for relay network.To enhance system performance, Demodulate-Network Coding (Dm-NC) scheme has been examined at relay node; it works directly to De-map the received signals and after that forward the mixture to the destination. Simulation analysis has been proven that the performance of Dm-NC has superiority over analog-NC. In addition, the Quantize-Decode-NC scheme (QDF-NC) has been introduced. The presented simulation results clearly provide that the QDF-NC perform better than analog-NC. The toggle between analogNC and QDF-NC is simulated in order to investigate delay and power consumption reduction at relay node.Comment: 11 pages, 8 figures, International Journal of Computer Networks & Communications (IJCNC), Vol.4, No.3, May 201

    Outage analysis of superposition modulation aided network coded cooperation in the presence of network coding noise

    No full text
    We consider a network, where multiple sourcedestination pairs communicate with the aid of a half-duplex relay node (RN), which adopts decode-forward (DF) relaying and superposition-modulation (SPM) for combining the signals transmitted by the source nodes (SNs) and then forwards the composite signal to all the destination nodes (DNs). Each DN extracts the signals transmitted by its own SN from the composite signal by subtracting the signals overheard from the unwanted SNs. We derive tight lower-bounds for the outage probability for transmission over Rayleigh fading channels and invoke diversity combining at the DNs, which is validated by simulation for both the symmetric and the asymmetric network configurations. For the high signal-to-noise ratio regime, we derive both an upperbound as well as a lower-bound for the outage performance and analyse the achievable diversity gain. It is revealed that a diversity order of 2 is achieved, regardless of the number of SN-DN pairs in the network. We also highlight the fact that the outage performance is dominated by the quality of the worst overheated link, because it contributes most substantially to the network coding noise. Finally, we use the lower bound for designing a relay selection scheme for the proposed SPM based network coded cooperative communication (SPM-NC-CC) system.<br/

    A Simple Cooperative Diversity Method Based on Network Path Selection

    Full text link
    Cooperative diversity has been recently proposed as a way to form virtual antenna arrays that provide dramatic gains in slow fading wireless environments. However most of the proposed solutions require distributed space-time coding algorithms, the careful design of which is left for future investigation if there is more than one cooperative relay. We propose a novel scheme, that alleviates these problems and provides diversity gains on the order of the number of relays in the network. Our scheme first selects the best relay from a set of M available relays and then uses this best relay for cooperation between the source and the destination. We develop and analyze a distributed method to select the best relay that requires no topology information and is based on local measurements of the instantaneous channel conditions. This method also requires no explicit communication among the relays. The success (or failure) to select the best available path depends on the statistics of the wireless channel, and a methodology to evaluate performance for any kind of wireless channel statistics, is provided. Information theoretic analysis of outage probability shows that our scheme achieves the same diversity-multiplexing tradeoff as achieved by more complex protocols, where coordination and distributed space-time coding for M nodes is required, such as those proposed in [7]. The simplicity of the technique, allows for immediate implementation in existing radio hardware and its adoption could provide for improved flexibility, reliability and efficiency in future 4G wireless systems.Comment: To appear, IEEE JSAC, special issue on 4

    Reliable Physical Layer Network Coding

    Full text link
    When two or more users in a wireless network transmit simultaneously, their electromagnetic signals are linearly superimposed on the channel. As a result, a receiver that is interested in one of these signals sees the others as unwanted interference. This property of the wireless medium is typically viewed as a hindrance to reliable communication over a network. However, using a recently developed coding strategy, interference can in fact be harnessed for network coding. In a wired network, (linear) network coding refers to each intermediate node taking its received packets, computing a linear combination over a finite field, and forwarding the outcome towards the destinations. Then, given an appropriate set of linear combinations, a destination can solve for its desired packets. For certain topologies, this strategy can attain significantly higher throughputs over routing-based strategies. Reliable physical layer network coding takes this idea one step further: using judiciously chosen linear error-correcting codes, intermediate nodes in a wireless network can directly recover linear combinations of the packets from the observed noisy superpositions of transmitted signals. Starting with some simple examples, this survey explores the core ideas behind this new technique and the possibilities it offers for communication over interference-limited wireless networks.Comment: 19 pages, 14 figures, survey paper to appear in Proceedings of the IEE

    Multi-Source Cooperative Communication with Opportunistic Interference Cancelling Relays

    Full text link
    In this paper we present a multi-user cooperative protocol for wireless networks. Two sources transmit simultaneously their information blocks and relays employ opportunistically successive interference cancellation (SIC) in an effort to decode them. An adaptive decode/amplify-and-forward scheme is applied at the relays to the decoded blocks or their sufficient statistic if decoding fails. The main feature of the protocol is that SIC is exploited in a network since more opportunities arise for each block to be decoded as the number of used relays NRU is increased. This feature leads to benefits in terms of diversity and multiplexing gains that are proven with the help of an analytical outage model and a diversity-multiplexing tradeoff (DMT) analysis. The performance improvements are achieved without any network synchronization and coordination. In the final part of this work the closed-form outage probability model is used by a novel approach for offline pre-selection of the NRU relays, that have the best SIC performance, from a larger number of NR nodes. The analytical results are corroborated with extensive simulations, while the protocol is compared with orthogonal and multi-user protocols reported in the literature.Comment: in IEEE Transactions on Communications, 201
    corecore