53 research outputs found

    The Pareto Frontier for Random Mechanisms

    Full text link
    We study the trade-offs between strategyproofness and other desiderata, such as efficiency or fairness, that often arise in the design of random ordinal mechanisms. We use approximate strategyproofness to define manipulability, a measure to quantify the incentive properties of non-strategyproof mechanisms, and we introduce the deficit, a measure to quantify the performance of mechanisms with respect to another desideratum. When this desideratum is incompatible with strategyproofness, mechanisms that trade off manipulability and deficit optimally form the Pareto frontier. Our main contribution is a structural characterization of this Pareto frontier, and we present algorithms that exploit this structure to compute it. To illustrate its shape, we apply our results for two different desiderata, namely Plurality and Veto scoring, in settings with 3 alternatives and up to 18 agents.Comment: Working Pape

    Partial Strategyproofness: Relaxing Strategyproofness for the Random Assignment Problem

    Get PDF
    We present partial strategyproofness, a new, relaxed notion of strategyproofness for studying the incentive properties of non-strategyproof assignment mechanisms. Informally, a mechanism is partially strategyproof if it makes truthful reporting a dominant strategy for those agents whose preference intensities differ sufficiently between any two objects. We demonstrate that partial strategyproofness is axiomatically motivated and yields a parametric measure for "how strategyproof" an assignment mechanism is. We apply this new concept to derive novel insights about the incentive properties of the probabilistic serial mechanism and different variants of the Boston mechanism.Comment: Working Pape

    Aggregate efficiency in random assignment problems

    Get PDF
    We introduce aggregate efficiency (AE) for random assignments (RA) by requiring higher expected numbers of agents be assigned to their more preferred choices. It is shown that the realizations of any aggregate efficient random assignment (AERA) must be an AE permutation matrix. While AE implies ordinally efficiency, the reverse does not hold. And there is no mechanism treating equals equally while satisfying weak strategyproofness and AE. But, a new mechanism, the reservation-1 (R1), is identified and shown to provide an improvement on grounds of AE over the probabilistic serial mechanism of Bogomolnaia and Moulin (2001). We prove that R1 is weakly strategyproof, ordinally efficient, and weak envy--free. Moreover, the characterization of R1 displays that it is the probabilistic serial mechanism updated by a principle decreed by the Turkish parliament concerning the random assignment of new doctors: Modifying the axioms of Hasimoto, et. al. (2012) characterizing the probabilistic serial mechanism to satisfy this principle, fully characterizes R1

    Deep Learning for Two-Sided Matching

    Full text link
    We initiate the use of a multi-layer neural network to model two-sided matching and to explore the design space between strategy-proofness and stability. It is well known that both properties cannot be achieved simultaneously but the efficient frontier in this design space is not understood. We show empirically that it is possible to achieve a good compromise between stability and strategy-proofness-substantially better than that achievable through a convex combination of deferred acceptance (stable and strategy-proof for only one side of the market) and randomized serial dictatorship (strategy-proof but not stable)

    Strategyproofness-Exposing Mechanism Descriptions

    Full text link
    A menu description presents a mechanism to player ii in two steps. Step (1) uses the reports of other players to describe ii's menu: the set of ii's potential outcomes. Step (2) uses ii's report to select ii's favorite outcome from her menu. Can menu descriptions better expose strategyproofness, without sacrificing simplicity? We propose a new, simple menu description of Deferred Acceptance. We prove that -- in contrast with other common matching mechanisms -- this menu description must differ substantially from the corresponding traditional description. We demonstrate, with a lab experiment on two elementary mechanisms, the promise and challenges of menu descriptions
    corecore