857 research outputs found
In-materio neuromimetic devices: Dynamics, information processing and pattern recognition
The story of information processing is a story of great success. Todays'
microprocessors are devices of unprecedented complexity and MOSFET transistors
are considered as the most widely produced artifact in the history of mankind.
The current miniaturization of electronic circuits is pushed almost to the
physical limit and begins to suffer from various parasitic effects. These facts
stimulate intense research on neuromimetic devices. This feature article is
devoted to various in materio implementation of neuromimetic processes,
including neuronal dynamics, synaptic plasticity, and higher-level signal and
information processing, along with more sophisticated implementations,
including signal processing, speech recognition and data security. Due to vast
number of papers in the field, only a subjective selection of topics is
presented in this review
Optimal synchronization deep in the quantum regime: resource and fundamental limit
We develop an analytical framework to study the synchronization of a quantum
self-sustained oscillator to an external signal. Our unified description allows
us to identify the resource on which quantum synchronization relies, and to
compare quantitatively the synchronization behavior of different limit cycles
and signals. We focus on the most elementary quantum system that is able to
host a self-sustained oscillation, namely a single spin 1. Despite the spin
having no classical analogue, we first show that it can realize the van der Pol
limit cycle deep in the quantum regime, which allows us to provide an
analytical understanding to recently reported numerical results. Moving on to
the equatorial limit cycle, we then reveal the existence of an
interference-based quantum synchronization blockade and extend the classical
Arnold tongue to a snake-like split tongue. Finally, we derive the maximum
synchronization that can be achieved in the spin-1 system, and construct a
limit cycle that reaches this fundamental limit asymptotically.Comment: 15 pages, 9 figures, equivalent to published versio
An Optoelectronic Stimulator for Retinal Prosthesis
Retinal prostheses require the presence of viable population of cells in the inner retina. Evaluations
of retina with Age-Related Macular Degeneration (AMD) and Retinitis Pigmentosa (RP)
have shown a large number of cells remain in the inner retina compared with the outer retina.
Therefore, vision loss caused by AMD and RP is potentially treatable with retinal prostheses.
Photostimulation based retinal prostheses have shown many advantages compared with retinal
implants. In contrary to electrode based stimulation, light does not require mechanical contact.
Therefore, the system can be completely external and not does have the power and degradation
problems of implanted devices. In addition, the stimulating point is
flexible and does not require
a prior decision on the stimulation location. Furthermore, a beam of light can be projected on
tissue with both temporal and spatial precision. This thesis aims at fi nding a feasible solution
to such a system.
Firstly, a prototype of an optoelectronic stimulator was proposed and implemented by using the
Xilinx Virtex-4 FPGA evaluation board. The platform was used to demonstrate the possibility
of photostimulation of the photosensitized neurons. Meanwhile, with the aim of developing
a portable retinal prosthesis, a system on chip (SoC) architecture was proposed and a wide
tuning range sinusoidal voltage-controlled oscillator (VCO) which is the pivotal component of
the system was designed. The VCO is based on a new designed Complementary Metal Oxide
Semiconductor (CMOS) Operational Transconductance Ampli er (OTA) which achieves a good
linearity over a wide tuning range. Both the OTA and the VCO were fabricated in the AMS
0.35 µm CMOS process. Finally a 9X9 CMOS image sensor with spiking pixels was designed.
Each pixel acts as an independent oscillator whose frequency is controlled by the incident light
intensity. The sensor was fabricated in the AMS 0.35 µm CMOS Opto Process. Experimental
validation and measured results are provided
Memory effects in complex materials and nanoscale systems
Memory effects are ubiquitous in nature and are particularly relevant at the
nanoscale where the dynamical properties of electrons and ions strongly depend
on the history of the system, at least within certain time scales. We review
here the memory properties of various materials and systems which appear most
strikingly in their non-trivial time-dependent resistive, capacitative and
inductive characteristics. We describe these characteristics within the
framework of memristors, memcapacitors and meminductors, namely memory circuit
elements whose properties depend on the history and state of the system. We
examine basic issues related to such systems and critically report on both
theoretical and experimental progress in understanding their functionalities.
We also discuss possible applications of memory effects in various areas of
science and technology ranging from digital to analog electronics,
biologically-inspired circuits, and learning. We finally discuss future
research opportunities in the field.Comment: Review submitted to Advances in Physic
Synchronicity From Synchronized Chaos
The synchronization of loosely coupled chaotic oscillators, a phenomenon
investigated intensively for the last two decades, may realize the
philosophical notion of synchronicity. Effectively unpredictable chaotic
systems, coupled through only a few variables, commonly exhibit a predictable
relationship that can be highly intermittent. We argue that the phenomenon
closely resembles the notion of meaningful synchronicity put forward by Jung
and Pauli if one identifies "meaningfulness" with internal synchronization,
since the latter seems necessary for synchronizability with an external system.
Jungian synchronization of mind and matter is realized if mind is analogized to
a computer model, synchronizing with a sporadically observed system as in
meteorological data assimilation. Internal synchronization provides a recipe
for combining different models of the same objective process, a configuration
that may also describe the functioning of conscious brains. In contrast to
Pauli's view, recent developments suggest a materialist picture of
semi-autonomous mind, existing alongside the observed world, with both
exhibiting a synchronistic order. Basic physical synchronicity is manifest in
the non-local quantum connections implied by Bell's theorem. The quantum world
resides on a generalized synchronization "manifold", a view that provides a
bridge between nonlocal realist interpretations and local realist
interpretations that constrain observer choice .Comment: 1) clarification regarding the connection with philosophical
synchronicity in Section 2 and in the concluding section 2) reference to
Maldacena-Susskind "ER=EPR" relation in discussion of role of wormholes in
entanglement and nonlocality 3) length reduction and stylistic changes
throughou
- …
