20,219 research outputs found

    Relativistic Effects for Time-Resolved Light Transport

    Get PDF
    We present a real-time framework which allows interactive visualization of relativistic effects for time-resolved light transport. We leverage data from two different sources: real-world data acquired with an effective exposure time of less than 2 picoseconds, using an ultra-fast imaging technique termed femto-photography, and a transient renderer based on ray-tracing. We explore the effects of time dilation, light aberration, frequency shift and radiance accumulation by modifying existing models of these relativistic effects to take into account the time-resolved nature of light propagation. Unlike previous works, we do not impose limiting constraints in the visualization, allowing the virtual camera to explore freely a reconstructed 3D scene depicting dynamic illumination. Moreover, we consider not only linear motion, but also acceleration and rotation of the camera. We further introduce, for the first time, a pinhole camera model into our relativistic rendering framework, and account for subsequent changes in focal length and field of view as the camera moves through the scene

    Cascades and Dissipative Anomalies in Relativistic Fluid Turbulence

    Full text link
    We develop first-principles theory of relativistic fluid turbulence at high Reynolds and P\'eclet numbers. We follow an exact approach pioneered by Onsager, which we explain as a non-perturbative application of the principle of renormalization-group invariance. We obtain results very similar to those for non-relativistic turbulence, with hydrodynamic fields in the inertial-range described as distributional or "coarse-grained" solutions of the relativistic Euler equations. These solutions do not, however, satisfy the naive conservation-laws of smooth Euler solutions but are afflicted with dissipative anomalies in the balance equations of internal energy and entropy. The anomalies are shown to be possible by exactly two mechanisms, local cascade and pressure-work defect. We derive "4/5th-law"-type expressions for the anomalies, which allow us to characterize the singularities (structure-function scaling exponents) required for their non-vanishing. We also investigate the Lorentz covariance of the inertial-range fluxes, which we find is broken by our coarse-graining regularization but which is restored in the limit that the regularization is removed, similar to relativistic lattice quantum field theory. In the formal limit as speed of light goes to infinity, we recover the results of previous non-relativistic theory. In particular, anomalous heat input to relativistic internal energy coincides in that limit with anomalous dissipation of non-relativistic kinetic energy

    Tuning a Schottky barrier in a photoexcited topological insulator with transient Dirac cone electron-hole asymmetry

    Full text link
    The advent of Dirac materials has made it possible to realize two dimensional gases of relativistic fermions with unprecedented transport properties in condensed matter. Their photoconductive control with ultrafast light pulses is opening new perspectives for the transmission of current and information. Here we show that the interplay of surface and bulk transient carrier dynamics in a photoexcited topological insulator can control an essential parameter for photoconductivity - the balance between excess electrons and holes in the Dirac cone. This can result in a strongly out of equilibrium gas of hot relativistic fermions, characterized by a surprisingly long lifetime of more than 50 ps, and a simultaneous transient shift of chemical potential by as much as 100 meV. The unique properties of this transient Dirac cone make it possible to tune with ultrafast light pulses a relativistic nanoscale Schottky barrier, in a way that is impossible with conventional optoelectronic materials.Comment: Nature Communications, in press (12 pages, 6 figures

    Synchrotron radiation of self-collimating relativistic MHD jets

    Full text link
    The goal of this paper is to derive signatures of synchrotron radiation from state-of-the-art simulation models of collimating relativistic magnetohydrodynamic (MHD) jets featuring a large-scale helical magnetic field. We perform axisymmetric special relativistic MHD simulations of the jet acceleration region using the PLUTO code. The computational domain extends from the slow magnetosonic launching surface of the disk up to 6000^2 Schwarzschild radii allowing to reach highly relativistic Lorentz factors. The Poynting dominated disk wind develops into a jet with Lorentz factors of 8 and is collimated to 1 degree. In addition to the disk jet, we evolve a thermally driven spine jet, emanating from a hypothetical black hole corona. Solving the linearly polarized synchrotron radiation transport within the jet, we derive VLBI radio and (sub-) mm diagnostics such as core shift, polarization structure, intensity maps, spectra and Faraday rotation measure (RM), directly from the Stokes parameters. We also investigate depolarization and the detectability of a lambda^2-law RM depending on beam resolution and observing frequency. We find non-monotonic intrinsic RM profiles which could be detected at a resolution of 100 Schwarzschild radii. In our collimating jet geometry, the strict bi-modality in polarization direction (as predicted by Pariev et al.) can be circumvented. Due to relativistic aberration, asymmetries in the polarization vectors across the jet can hint to the spin direction of the central engine.Comment: Submitted to Ap

    Relativistic outflow from two thermonuclear shell flashes on neutron stars

    Get PDF
    We study the exceptionally short (32-41 ms) precursors of two intermediate-duration thermonuclear X-ray bursts observed with RXTE from the neutron stars in 4U 0614+09 and 2S 0918-549. They exhibit photon fluxes that surpass those at the Eddington limit later in the burst by factors of 2.6 to 3.1. We are able to explain both the short duration and the super-Eddington flux by mildly relativistic outflow velocities of 0.1cc to 0.3cc subsequent to the thermonuclear shell flashes on the neutron stars. These are the highest velocities ever measured from any thermonuclear flash. The precursor rise times are also exceptionally short: about 1 ms. This is inconsistent with predictions for nuclear flames spreading laterally as deflagrations and suggests detonations instead. This is the first time that a detonation is suggested for such a shallow ignition column depth (yigny_{\rm ign} = 1010^{10} g cm−2^{-2}). The detonation would possibly require a faster nuclear reaction chain, such as bypassing the alpha-capture on 12^{12}C with the much faster 12^{12}C(p,γ\gamma)13^{13}N(α\alpha,p)16^{16}O process previously proposed. We confirm the possibility of a detonation, albeit only in the radial direction, through the simulation of the nuclear burning with a large nuclear network and at the appropriate ignition depth, although it remains to be seen whether the Zel'dovich criterion is met. A detonation would also provide the fast flame spreading over the surface of the neutron star to allow for the short rise times. (...) As an alternative to the detonation scenario, we speculate on the possibility that the whole neutron star surface burns almost instantly in the auto-ignition regime. This is motivated by the presence of 150 ms precursors with 30 ms rise times in some superexpansion bursts from 4U 1820-30 at low ignition column depths of ~108^8 g cm−2^{-2}.Comment: 11 pages, 6 figures, accepted by Astronomy and Astrophysic

    Magnetohydrodynamic-Particle-in-Cell Method for Coupling Cosmic Rays with a Thermal Plasma: Application to Non-relativistic Shocks

    Full text link
    We formulate a magnetohydrodynamic-particle-in-cell (MHD-PIC) method for describing the interaction between collisionless cosmic ray (CR) particles and a thermal plasma. The thermal plasma is treated as a fluid, obeying equations of ideal MHD, while CRs are treated as relativistic Lagrangian particles subject to the Lorentz force. Backreaction from CRs to the gas is included in the form of momentum and energy feedback. In addition, we include the electromagnetic feedback due to CR-induced Hall effect that becomes important when the electron-ion drift velocity of the background plasma induced by CRs approaches the Alfv\'en velocity. Our method is applicable on scales much larger than the ion inertial length, bypassing the microscopic scales that must be resolved in conventional PIC methods, while retaining the full kinetic nature of the CRs. We have implemented and tested this method in the Athena MHD code, where the overall scheme is second-order accurate and fully conservative. As a first application, we describe a numerical experiment to study particle acceleration in non-relativistic shocks. Using a simplified prescription for ion injection, we reproduce the shock structure and the CR energy spectra obtained with more self-consistent hybrid-PIC simulations, but at substantially reduced computational cost. We also show that the CR-induced Hall effect reduces the growth rate of the Bell instability and affects the gas dynamics in the vicinity of the shock front. As a step forward, we are able to capture the transition of particle acceleration from non relativistic to relativistic regimes, with momentum spectrum f(p)∼p−4f(p)\sim p^{-4} connecting smoothly through the transition, as expected from the theory of Fermi acceleration.Comment: 24 pages, 15 figures, accepted for publication in Ap

    Constraining Relativistic Bow Shock Properties in Rotation-Powered Millisecond Pulsar Binaries

    Get PDF
    Multiwavelength followup of unidentified Fermi sources has vastly expanded the number of known galactic-field "black widow" and "redback" millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase-centering of the double-peaked X-ray orbital modulation originating from mildly-relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock stand-off R0R_0. We develop synthetic X-ray synchrotron orbital light curves and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the stand-off is R0∼0.15R_0 \sim 0.15 -- 0.30.3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R0≲0.4R_0 \lesssim 0.4 while X-ray light curves suggest 0.1≲R0≲0.30.1\lesssim R_0 \lesssim 0.3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy-dependence in the shape of light curves motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein.Comment: Accepted to ApJ, 36 pages, 15 figures; comments welcom
    • …
    corecore