510 research outputs found

    Relativistic Celestial Mechanics with PPN Parameters

    Get PDF
    Starting from the global parametrized post-Newtonian (PPN) reference system with two PPN parameters γ\gamma and β\beta we consider a space-bounded subsystem of matter and construct a local reference system for that subsystem in which the influence of external masses reduces to tidal effects. Both the metric tensor of the local PPN reference system in the first post-Newtonian approximation as well as the coordinate transformations between the global PPN reference system and the local one are constructed in explicit form. The terms proportional to η=4β−γ−3\eta=4\beta-\gamma-3 reflecting a violation of the equivalence principle are discussed in detail. We suggest an empirical definition of multipole moments which are intended to play the same role in PPN celestial mechanics as the Blanchet-Damour moments in General Relativity. Starting with the metric tensor in the local PPN reference system we derive translational equations of motion of a test particle in that system. The translational and rotational equations of motion for center of mass and spin of each of NN extended massive bodies possessing arbitrary multipole structure are derived. As an application of the general equations of motion a monopole-spin dipole model is considered and the known PPN equations of motion of mass monopoles with spins are rederived.Comment: 71 page

    The Relativistic Factor in the Orbital Dynamics of Point Masses

    Full text link
    There is a growing population of relativistically relevant minor bodies in the Solar System and a growing population of massive extrasolar planets with orbits very close to the central star where relativistic effects should have some signature. Our purpose is to review how general relativity affects the orbital dynamics of the planetary systems and to define a suitable relativistic correction for Solar System orbital studies when only point masses are considered. Using relativistic formulae for the N body problem suited for a planetary system given in the literature we present a series of numerical orbital integrations designed to test the relevance of the effects due to the general theory of relativity in the case of our Solar System. Comparison between different algorithms for accounting for the relativistic corrections are performed. Relativistic effects generated by the Sun or by the central star are the most relevant ones and produce evident modifications in the secular dynamics of the inner Solar System. The Kozai mechanism, for example, is modified due to the relativistic effects on the argument of the perihelion. Relativistic effects generated by planets instead are of very low relevance but detectable in numerical simulations

    The Relativistic Factor in the Orbital Dynamics of Point Masses

    Full text link
    There is a growing population of relativistically relevant minor bodies in the Solar System and a growing population of massive extrasolar planets with orbits very close to the central star where relativistic effects should have some signature. Our purpose is to review how general relativity affects the orbital dynamics of the planetary systems and to define a suitable relativistic correction for Solar System orbital studies when only point masses are considered. Using relativistic formulae for the N body problem suited for a planetary system given in the literature we present a series of numerical orbital integrations designed to test the relevance of the effects due to the general theory of relativity in the case of our Solar System. Comparison between different algorithms for accounting for the relativistic corrections are performed. Relativistic effects generated by the Sun or by the central star are the most relevant ones and produce evident modifications in the secular dynamics of the inner Solar System. The Kozai mechanism, for example, is modified due to the relativistic effects on the argument of the perihelion. Relativistic effects generated by planets instead are of very low relevance but detectable in numerical simulations

    Second post-Newtonian approximation of scalar-tensor theory of gravity

    Full text link
    Deep space laser ranging missions like ASTROD I (Single-Spacecraft Astrodynamical Space Test of Relativity using Optical Devices) and ASTROD, together with astrometry missions like GAIA and LATOR will be able to test relativistic gravity to an unprecedented level of accuracy. More precisely, these missions will enable us to test relativistic gravity to 10−7−10−910^{-7}-10^{-9}, and will require 2nd post-Newtonian approximation of relevant theories of gravity. The first post-Newtonian approximation is valid to 10−610^{-6} and the second post-Newtonian is valid to 10−1210^{-12} in the solar system. The scalar-tensor theory is widely discussed and used in tests of relativistic gravity, especially after the interests in inflation, cosmological constant and dark energy in cosmology. In the Lagrangian, intermediate-range gravity term has a similar form as cosmological term. Here we present the full second post-Newtonian approximation of the scalar-tensor theory including viable examples of intermediate-range gravity. We use Chandrasekhar's approach to derive the metric coefficients and the equation of the hydrodynamics governing a perfect fluid in the 2nd post-Newtonian approximation in scalar-tensor theory; all terms inclusive of O(c−4)O(c^{-4}) are retained consistently in the equation of motion.Comment: 20 pages, COSPAR2006 H0.1-

    A List of References on Spacetime Splitting and Gravitoelectromagnetism

    Get PDF
    Revised version to be published in the Proceedings of the Encuentros Relativistas Espa\~noles, September, 2000 [ http://hades.eis.uva.es/EREs2000 ]Comment: 22 pages, LaTeX article style. Please send corrections and additions to mailto:[email protected]
    • …
    corecore