129,509 research outputs found

    Wireless Scheduling with Power Control

    Full text link
    We consider the scheduling of arbitrary wireless links in the physical model of interference to minimize the time for satisfying all requests. We study here the combined problem of scheduling and power control, where we seek both an assignment of power settings and a partition of the links so that each set satisfies the signal-to-interference-plus-noise (SINR) constraints. We give an algorithm that attains an approximation ratio of O(lognloglogΔ)O(\log n \cdot \log\log \Delta), where nn is the number of links and Δ\Delta is the ratio between the longest and the shortest link length. Under the natural assumption that lengths are represented in binary, this gives the first approximation ratio that is polylogarithmic in the size of the input. The algorithm has the desirable property of using an oblivious power assignment, where the power assigned to a sender depends only on the length of the link. We give evidence that this dependence on Δ\Delta is unavoidable, showing that any reasonably-behaving oblivious power assignment results in a Ω(loglogΔ)\Omega(\log\log \Delta)-approximation. These results hold also for the (weighted) capacity problem of finding a maximum (weighted) subset of links that can be scheduled in a single time slot. In addition, we obtain improved approximation for a bidirectional variant of the scheduling problem, give partial answers to questions about the utility of graphs for modeling physical interference, and generalize the setting from the standard 2-dimensional Euclidean plane to doubling metrics. Finally, we explore the utility of graph models in capturing wireless interference.Comment: Revised full versio

    Spatial networks with wireless applications

    Get PDF
    Many networks have nodes located in physical space, with links more common between closely spaced pairs of nodes. For example, the nodes could be wireless devices and links communication channels in a wireless mesh network. We describe recent work involving such networks, considering effects due to the geometry (convex,non-convex, and fractal), node distribution, distance-dependent link probability, mobility, directivity and interference.Comment: Review article- an amended version with a new title from the origina

    A PTAS for Bounded-Capacity Vehicle Routing in Planar Graphs

    Full text link
    The Capacitated Vehicle Routing problem is to find a minimum-cost set of tours that collectively cover clients in a graph, such that each tour starts and ends at a specified depot and is subject to a capacity bound on the number of clients it can serve. In this paper, we present a polynomial-time approximation scheme (PTAS) for instances in which the input graph is planar and the capacity is bounded. Previously, only a quasipolynomial-time approximation scheme was known for these instances. To obtain this result, we show how to embed planar graphs into bounded-treewidth graphs while preserving, in expectation, the client-to-client distances up to a small additive error proportional to client distances to the depot

    A new graph perspective on max-min fairness in Gaussian parallel channels

    Full text link
    In this work we are concerned with the problem of achieving max-min fairness in Gaussian parallel channels with respect to a general performance function, including channel capacity or decoding reliability as special cases. As our central results, we characterize the laws which determine the value of the achievable max-min fair performance as a function of channel sharing policy and power allocation (to channels and users). In particular, we show that the max-min fair performance behaves as a specialized version of the Lovasz function, or Delsarte bound, of a certain graph induced by channel sharing combinatorics. We also prove that, in addition to such graph, merely a certain 2-norm distance dependent on the allowable power allocations and used performance functions, is sufficient for the characterization of max-min fair performance up to some candidate interval. Our results show also a specific role played by odd cycles in the graph induced by the channel sharing policy and we present an interesting relation between max-min fairness in parallel channels and optimal throughput in an associated interference channel.Comment: 41 pages, 8 figures. submitted to IEEE Transactions on Information Theory on August the 6th, 200
    corecore