8,663 research outputs found

    Implementing a Portable Clinical NLP System with a Common Data Model - a Lisp Perspective

    Full text link
    This paper presents a Lisp architecture for a portable NLP system, termed LAPNLP, for processing clinical notes. LAPNLP integrates multiple standard, customized and in-house developed NLP tools. Our system facilitates portability across different institutions and data systems by incorporating an enriched Common Data Model (CDM) to standardize necessary data elements. It utilizes UMLS to perform domain adaptation when integrating generic domain NLP tools. It also features stand-off annotations that are specified by positional reference to the original document. We built an interval tree based search engine to efficiently query and retrieve the stand-off annotations by specifying positional requirements. We also developed a utility to convert an inline annotation format to stand-off annotations to enable the reuse of clinical text datasets with inline annotations. We experimented with our system on several NLP facilitated tasks including computational phenotyping for lymphoma patients and semantic relation extraction for clinical notes. These experiments showcased the broader applicability and utility of LAPNLP.Comment: 6 pages, accepted by IEEE BIBM 2018 as regular pape

    Ranking Biomedical Annotations with Annotator’s Semantic Relevancy

    Get PDF
    Biomedical annotation is a common and affective artifact for researchers to discuss, show opinion, and share discoveries. It becomes increasing popular in many online research communities, and implies much useful information. Ranking biomedical annotations is a critical problem for data user to efficiently get information. As the annotator’s knowledge about the annotated entity normally determines quality of the annotations, we evaluate the knowledge, that is, semantic relationship between them, in two ways. The first is extracting relational information from credible websites by mining association rules between an annotator and a biomedical entity. The second way is frequent pattern mining from historical annotations, which reveals common features of biomedical entities that an annotator can annotate with high quality. We propose a weighted and concept-extended RDF model to represent an annotator, a biomedical entity, and their background attributes and merge information from the two ways as the context of an annotator. Based on that, we present a method to rank the annotations by evaluating their correctness according to user’s vote and the semantic relevancy between the annotator and the annotated entity. The experimental results show that the approach is applicable and efficient even when data set is large

    Ontology-based knowledge representation of experiment metadata in biological data mining

    Get PDF
    According to the PubMed resource from the U.S. National Library of Medicine, over 750,000 scientific articles have been published in the ~5000 biomedical journals worldwide in the year 2007 alone. The vast majority of these publications include results from hypothesis-driven experimentation in overlapping biomedical research domains. Unfortunately, the sheer volume of information being generated by the biomedical research enterprise has made it virtually impossible for investigators to stay aware of the latest findings in their domain of interest, let alone to be able to assimilate and mine data from related investigations for purposes of meta-analysis. While computers have the potential for assisting investigators in the extraction, management and analysis of these data, information contained in the traditional journal publication is still largely unstructured, free-text descriptions of study design, experimental application and results interpretation, making it difficult for computers to gain access to the content of what is being conveyed without significant manual intervention. In order to circumvent these roadblocks and make the most of the output from the biomedical research enterprise, a variety of related standards in knowledge representation are being developed, proposed and adopted in the biomedical community. In this chapter, we will explore the current status of efforts to develop minimum information standards for the representation of a biomedical experiment, ontologies composed of shared vocabularies assembled into subsumption hierarchical structures, and extensible relational data models that link the information components together in a machine-readable and human-useable framework for data mining purposes

    Ontology of core data mining entities

    Get PDF
    In this article, we present OntoDM-core, an ontology of core data mining entities. OntoDM-core defines themost essential datamining entities in a three-layered ontological structure comprising of a specification, an implementation and an application layer. It provides a representational framework for the description of mining structured data, and in addition provides taxonomies of datasets, data mining tasks, generalizations, data mining algorithms and constraints, based on the type of data. OntoDM-core is designed to support a wide range of applications/use cases, such as semantic annotation of data mining algorithms, datasets and results; annotation of QSAR studies in the context of drug discovery investigations; and disambiguation of terms in text mining. The ontology has been thoroughly assessed following the practices in ontology engineering, is fully interoperable with many domain resources and is easy to extend

    Hypotheses, evidence and relationships: The HypER approach for representing scientific knowledge claims

    Get PDF
    Biological knowledge is increasingly represented as a collection of (entity-relationship-entity) triplets. These are queried, mined, appended to papers, and published. However, this representation ignores the argumentation contained within a paper and the relationships between hypotheses, claims and evidence put forth in the article. In this paper, we propose an alternate view of the research article as a network of 'hypotheses and evidence'. Our knowledge representation focuses on scientific discourse as a rhetorical activity, which leads to a different direction in the development of tools and processes for modeling this discourse. We propose to extract knowledge from the article to allow the construction of a system where a specific scientific claim is connected, through trails of meaningful relationships, to experimental evidence. We discuss some current efforts and future plans in this area
    corecore