4 research outputs found

    Weakly-supervised Temporal Action Localization by Uncertainty Modeling

    Full text link
    Weakly-supervised temporal action localization aims to learn detecting temporal intervals of action classes with only video-level labels. To this end, it is crucial to separate frames of action classes from the background frames (i.e., frames not belonging to any action classes). In this paper, we present a new perspective on background frames where they are modeled as out-of-distribution samples regarding their inconsistency. Then, background frames can be detected by estimating the probability of each frame being out-of-distribution, known as uncertainty, but it is infeasible to directly learn uncertainty without frame-level labels. To realize the uncertainty learning in the weakly-supervised setting, we leverage the multiple instance learning formulation. Moreover, we further introduce a background entropy loss to better discriminate background frames by encouraging their in-distribution (action) probabilities to be uniformly distributed over all action classes. Experimental results show that our uncertainty modeling is effective at alleviating the interference of background frames and brings a large performance gain without bells and whistles. We demonstrate that our model significantly outperforms state-of-the-art methods on the benchmarks, THUMOS'14 and ActivityNet (1.2 & 1.3). Our code is available at https://github.com/Pilhyeon/WTAL-Uncertainty-Modeling.Comment: Accepted by the 35th AAAI Conference on Artificial Intelligence (AAAI 2021

    Multiscale human activity recognition and anticipation network

    Get PDF
    Deep convolutional neural networks have been leveraged to achieve huge improvements in video understanding and human activity recognition performance in the past decade. However, most existing methods focus on activities that have similar time scales, leaving the task of action recognition on multiscale human behaviors less explored. In this study, a two-stream multiscale human activity recognition and anticipation (MS-HARA) network is proposed, which is jointly optimized using a multitask learning method. The MS-HARA network fuses the two streams of the network using an efficient temporal-channel attention (TCA)-based fusion approach to improve the model's representational ability for both temporal and spatial features. We investigate the multiscale human activities from two basic categories, namely, midterm activities and long-term activities. The network is designed to function as part of a real-time processing framework to support interaction and mutual understanding between humans and intelligent machines. It achieves state-of-the-art results on several datasets for different tasks and different application domains. The midterm and long-term action recognition and anticipation performance, as well as the network fusion, are extensively tested to show the efficiency of the proposed network. The results show that the MS-HARA network can easily be extended to different application domains

    Relational Prototypical Network for Weakly Supervised Temporal Action Localization

    No full text
    In this paper, we propose a weakly supervised temporal action localization method on untrimmed videos based on prototypical networks. We observe two challenges posed by weakly supervision, namely action-background separation and action relation construction. Unlike the previous method, we propose to achieve action-background separation only by the original videos. To achieve this, a clustering loss is adopted to separate actions from backgrounds and learn intra-compact features, which helps in detecting complete action instances. Besides, a similarity weighting module is devised to further separate actions from backgrounds. To effectively identify actions, we propose to construct relations among actions for prototype learning. A GCN-based prototype embedding module is introduced to generate relational prototypes. Experiments on THUMOS14 and ActivityNet1.2 datasets show that our method outperforms the state-of-the-art methods

    Relational Prototypical Network for Weakly Supervised Temporal Action Localization

    No full text
    corecore