396,082 research outputs found

    Relational Graph Models at Work

    Full text link
    We study the relational graph models that constitute a natural subclass of relational models of lambda-calculus. We prove that among the lambda-theories induced by such models there exists a minimal one, and that the corresponding relational graph model is very natural and easy to construct. We then study relational graph models that are fully abstract, in the sense that they capture some observational equivalence between lambda-terms. We focus on the two main observational equivalences in the lambda-calculus, the theory H+ generated by taking as observables the beta-normal forms, and H* generated by considering as observables the head normal forms. On the one hand we introduce a notion of lambda-K\"onig model and prove that a relational graph model is fully abstract for H+ if and only if it is extensional and lambda-K\"onig. On the other hand we show that the dual notion of hyperimmune model, together with extensionality, captures the full abstraction for H*

    Relational models for contingency tables

    Full text link
    The paper considers general multiplicative models for complete and incomplete contingency tables that generalize log-linear and several other models and are entirely coordinate free. Sufficient conditions of the existence of maximum likelihood estimates under these models are given, and it is shown that the usual equivalence between multinomial and Poisson likelihoods holds if and only if an overall effect is present in the model. If such an effect is not assumed, the model becomes a curved exponential family and a related mixed parameterization is given that relies on non-homogeneous odds ratios. Several examples are presented to illustrate the properties and use of such models

    Reasoning about Independence in Probabilistic Models of Relational Data

    Full text link
    We extend the theory of d-separation to cases in which data instances are not independent and identically distributed. We show that applying the rules of d-separation directly to the structure of probabilistic models of relational data inaccurately infers conditional independence. We introduce relational d-separation, a theory for deriving conditional independence facts from relational models. We provide a new representation, the abstract ground graph, that enables a sound, complete, and computationally efficient method for answering d-separation queries about relational models, and we present empirical results that demonstrate effectiveness.Comment: 61 pages, substantial revisions to formalisms, theory, and related wor

    Hierarchical Models for Relational Event Sequences

    Full text link
    Interaction within small groups can often be represented as a sequence of events, where each event involves a sender and a recipient. Recent methods for modeling network data in continuous time model the rate at which individuals interact conditioned on the previous history of events as well as actor covariates. We present a hierarchical extension for modeling multiple such sequences, facilitating inferences about event-level dynamics and their variation across sequences. The hierarchical approach allows one to share information across sequences in a principled manner---we illustrate the efficacy of such sharing through a set of prediction experiments. After discussing methods for adequacy checking and model selection for this class of models, the method is illustrated with an analysis of high school classroom dynamics

    Hierarchical relational models for document networks

    Full text link
    We develop the relational topic model (RTM), a hierarchical model of both network structure and node attributes. We focus on document networks, where the attributes of each document are its words, that is, discrete observations taken from a fixed vocabulary. For each pair of documents, the RTM models their link as a binary random variable that is conditioned on their contents. The model can be used to summarize a network of documents, predict links between them, and predict words within them. We derive efficient inference and estimation algorithms based on variational methods that take advantage of sparsity and scale with the number of links. We evaluate the predictive performance of the RTM for large networks of scientific abstracts, web documents, and geographically tagged news.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS309 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore