25,179 research outputs found

    Probabilistic Relational Model Benchmark Generation

    Get PDF
    The validation of any database mining methodology goes through an evaluation process where benchmarks availability is essential. In this paper, we aim to randomly generate relational database benchmarks that allow to check probabilistic dependencies among the attributes. We are particularly interested in Probabilistic Relational Models (PRMs), which extend Bayesian Networks (BNs) to a relational data mining context and enable effective and robust reasoning over relational data. Even though a panoply of works have focused, separately , on the generation of random Bayesian networks and relational databases, no work has been identified for PRMs on that track. This paper provides an algorithmic approach for generating random PRMs from scratch to fill this gap. The proposed method allows to generate PRMs as well as synthetic relational data from a randomly generated relational schema and a random set of probabilistic dependencies. This can be of interest not only for machine learning researchers to evaluate their proposals in a common framework, but also for databases designers to evaluate the effectiveness of the components of a database management system

    Leveraging Node Attributes for Incomplete Relational Data

    Full text link
    Relational data are usually highly incomplete in practice, which inspires us to leverage side information to improve the performance of community detection and link prediction. This paper presents a Bayesian probabilistic approach that incorporates various kinds of node attributes encoded in binary form in relational models with Poisson likelihood. Our method works flexibly with both directed and undirected relational networks. The inference can be done by efficient Gibbs sampling which leverages sparsity of both networks and node attributes. Extensive experiments show that our models achieve the state-of-the-art link prediction results, especially with highly incomplete relational data.Comment: Appearing in ICML 201

    Inference Optimization using Relational Algebra

    Get PDF
    Exact inference procedures in Bayesian networks can be expressed using relational algebra; this provides a common ground for optimizations from the AI and database communities. Specifically, the ability to accomodate sparse representations of probability distributions opens up the way to optimize for their cardinality instead of the dimensionality; we apply this in a sensor data model.\u

    Discriminative Nonparametric Latent Feature Relational Models with Data Augmentation

    Full text link
    We present a discriminative nonparametric latent feature relational model (LFRM) for link prediction to automatically infer the dimensionality of latent features. Under the generic RegBayes (regularized Bayesian inference) framework, we handily incorporate the prediction loss with probabilistic inference of a Bayesian model; set distinct regularization parameters for different types of links to handle the imbalance issue in real networks; and unify the analysis of both the smooth logistic log-loss and the piecewise linear hinge loss. For the nonconjugate posterior inference, we present a simple Gibbs sampler via data augmentation, without making restricting assumptions as done in variational methods. We further develop an approximate sampler using stochastic gradient Langevin dynamics to handle large networks with hundreds of thousands of entities and millions of links, orders of magnitude larger than what existing LFRM models can process. Extensive studies on various real networks show promising performance.Comment: Accepted by AAAI 201
    corecore