233,650 research outputs found

    Query-aware Long Video Localization and Relation Discrimination for Deep Video Understanding

    Full text link
    The surge in video and social media content underscores the need for a deeper understanding of multimedia data. Most of the existing mature video understanding techniques perform well with short formats and content that requires only shallow understanding, but do not perform well with long format videos that require deep understanding and reasoning. Deep Video Understanding (DVU) Challenge aims to push the boundaries of multimodal extraction, fusion, and analytics to address the problem of holistically analyzing long videos and extract useful knowledge to solve different types of queries. This paper introduces a query-aware method for long video localization and relation discrimination, leveraging an imagelanguage pretrained model. This model adeptly selects frames pertinent to queries, obviating the need for a complete movie-level knowledge graph. Our approach achieved first and fourth positions for two groups of movie-level queries. Sufficient experiments and final rankings demonstrate its effectiveness and robustness.Comment: ACM MM 2023 Grand Challeng

    Contrastive Masked Autoencoders for Self-Supervised Video Hashing

    Full text link
    Self-Supervised Video Hashing (SSVH) models learn to generate short binary representations for videos without ground-truth supervision, facilitating large-scale video retrieval efficiency and attracting increasing research attention. The success of SSVH lies in the understanding of video content and the ability to capture the semantic relation among unlabeled videos. Typically, state-of-the-art SSVH methods consider these two points in a two-stage training pipeline, where they firstly train an auxiliary network by instance-wise mask-and-predict tasks and secondly train a hashing model to preserve the pseudo-neighborhood structure transferred from the auxiliary network. This consecutive training strategy is inflexible and also unnecessary. In this paper, we propose a simple yet effective one-stage SSVH method called ConMH, which incorporates video semantic information and video similarity relationship understanding in a single stage. To capture video semantic information for better hashing learning, we adopt an encoder-decoder structure to reconstruct the video from its temporal-masked frames. Particularly, we find that a higher masking ratio helps video understanding. Besides, we fully exploit the similarity relationship between videos by maximizing agreement between two augmented views of a video, which contributes to more discriminative and robust hash codes. Extensive experiments on three large-scale video datasets (i.e., FCVID, ActivityNet and YFCC) indicate that ConMH achieves state-of-the-art results. Code is available at https://github.com/huangmozhi9527/ConMH.Comment: This work is accepted by the AAAI 2023. 9 pages, 6 figures, 6 table
    • …
    corecore