4,865 research outputs found

    Modeling Human Categorization of Natural Images Using Deep Feature Representations

    Get PDF
    Over the last few decades, psychologists have developed sophisticated formal models of human categorization using simple artificial stimuli. In this paper, we use modern machine learning methods to extend this work into the realm of naturalistic stimuli, enabling human categorization to be studied over the complex visual domain in which it evolved and developed. We show that representations derived from a convolutional neural network can be used to model behavior over a database of >300,000 human natural image classifications, and find that a group of models based on these representations perform well, near the reliability of human judgments. Interestingly, this group includes both exemplar and prototype models, contrasting with the dominance of exemplar models in previous work. We are able to improve the performance of the remaining models by preprocessing neural network representations to more closely capture human similarity judgments.Comment: 13 pages, 7 figures, 6 tables. Preliminary work presented at CogSci 201

    Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks

    Full text link
    While the use of bottom-up local operators in convolutional neural networks (CNNs) matches well some of the statistics of natural images, it may also prevent such models from capturing contextual long-range feature interactions. In this work, we propose a simple, lightweight approach for better context exploitation in CNNs. We do so by introducing a pair of operators: gather, which efficiently aggregates feature responses from a large spatial extent, and excite, which redistributes the pooled information to local features. The operators are cheap, both in terms of number of added parameters and computational complexity, and can be integrated directly in existing architectures to improve their performance. Experiments on several datasets show that gather-excite can bring benefits comparable to increasing the depth of a CNN at a fraction of the cost. For example, we find ResNet-50 with gather-excite operators is able to outperform its 101-layer counterpart on ImageNet with no additional learnable parameters. We also propose a parametric gather-excite operator pair which yields further performance gains, relate it to the recently-introduced Squeeze-and-Excitation Networks, and analyse the effects of these changes to the CNN feature activation statistics.Comment: NeurIPS 201

    Atari games and Intel processors

    Full text link
    The asynchronous nature of the state-of-the-art reinforcement learning algorithms such as the Asynchronous Advantage Actor-Critic algorithm, makes them exceptionally suitable for CPU computations. However, given the fact that deep reinforcement learning often deals with interpreting visual information, a large part of the train and inference time is spent performing convolutions. In this work we present our results on learning strategies in Atari games using a Convolutional Neural Network, the Math Kernel Library and TensorFlow 0.11rc0 machine learning framework. We also analyze effects of asynchronous computations on the convergence of reinforcement learning algorithms
    • …
    corecore