4 research outputs found

    Cryptanalysis of Block Ciphers

    Get PDF
    The block cipher is one of the most important primitives in modern cryptography, information and network security; one of the primary purposes of such ciphers is to provide confidentiality for data transmitted in insecure communication environments. To ensure that confidentiality is robustly provided, it is essential to investigate the security of a block cipher against a variety of cryptanalytic attacks. In this thesis, we propose a new extension of differential cryptanalysis, which we call the impossible boomerang attack. We describe the early abort technique for (related-key) impossible differential cryptanalysis and rectangle attacks. Finally, we analyse the security of a number of block ciphers that are currently being widely used or have recently been proposed for use in emerging cryptographic applications; our main cryptanalytic results are as follows. An impossible differential attack on 7-round AES when used with 128 or 192 key bits, and an impossible differential attack on 8-round AES when used with 256 key bits. An impossible boomerang attack on 6-round AES when used with 128 key bits, and an impossible boomerang attack on 7-round AES when used with 192 or 256 key bits. A related-key impossible boomerang attack on 8-round AES when used with 192 key bits, and a related-key impossible boomerang attack on 9-round AES when used with 256 key bits, both using two keys. An impossible differential attack on 11-round reduced Camellia when used with 128 key bits, an impossible differential attack on 12-round reduced Camellia when used with 192 key bits, and an impossible differential attack on 13-round reduced Camellia when used with 256 key bits. A related-key rectangle attack on the full Cobra-F64a, and a related-key differential attack on the full Cobra-F64b. A related-key rectangle attack on 44-round SHACAL-2. A related-key rectangle attack on 36-round XTEA. An impossible differential attack on 25-round reduced HIGHT, a related-key rectangle attack on 26-round reduced HIGHT, and a related-key impossible differential attack on 28-round reduced HIGHT. In terms of either the attack complexity or the numbers of attacked rounds, the attacks presented in the thesis are better than any previously published cryptanalytic results for the block ciphers concerned, except in the case of AES; for AES, the presented impossible differential attacks on 7-round AES used with 128 key bits and 8-round AES used with 256 key bits are the best currently published results on AES in a single key attack scenario, and the presented related-key impossible boomerang attacks on 8-round AES used with 192 key bits and 9-round AES used with 256 key bits are the best currently published results on AES in a related-key attack scenario involving two keys

    Cryptanalysis of CIKS-128 and CIKS-128H Suitable for Intelligent Multimedia and Ubiquitous Computing Systems

    Get PDF
    Recently, data-dependent permutations (DDP) that are very suitable for intelligent multimedia and ubiquitous computing systems have been introduced as a new cryptographic primitive for the design of fast encryption systems. The CIKS-128 and CIKS-128H block ciphers are the typical examples of DDP-based encryption algorithms. In this paper, we show that CIKS-128 and CIKS-128H are vulnerable to related-key differential attacks. We first describe how to construct their full-round related-key differential characteristics with high probabilities and then we exploit them to break the full-round CIKS-128 and CIKS-128H with 2^44, and 2^48 data/time complexities, respectively

    Related-Key Differential Attacks on Cobra-S128, Cobra-F64a, and Cobra-F64b

    No full text
    status: publishe

    HUC-HISF: A Hybrid Intelligent Security Framework for Human-centric Ubiquitous Computing

    Get PDF
    制度:新 ; 報告番号:乙2336号 ; 学位の種類:博士(人間科学) ; 授与年月日:2012/1/18 ; 早大学位記番号:新584
    corecore