15,788 research outputs found

    Multi-Task Offloading via Graph Neural Networks in Heterogeneous Multi-access Edge Computing

    Full text link
    In the rapidly evolving field of Heterogeneous Multi-access Edge Computing (HMEC), efficient task offloading plays a pivotal role in optimizing system throughput and resource utilization. However, existing task offloading methods often fall short of adequately modeling the dependency topology relationships between offloaded tasks, which limits their effectiveness in capturing the complex interdependencies of task features. To address this limitation, we propose a task offloading mechanism based on Graph Neural Networks (GNN). Our modeling approach takes into account factors such as task characteristics, network conditions, and available resources at the edge, and embeds these captured features into the graph structure. By utilizing GNNs, our mechanism can capture and analyze the intricate relationships between task features, enabling a more comprehensive understanding of the underlying dependency topology. Through extensive evaluations in heterogeneous networks, our proposed algorithm improves 18.6\%-53.8\% over greedy and approximate algorithms in optimizing system throughput and resource utilization. Our experiments showcase the advantage of considering the intricate interplay of task features using GNN-based modeling

    A Comprehensive Survey of Potential Game Approaches to Wireless Networks

    Get PDF
    Potential games form a class of non-cooperative games where unilateral improvement dynamics are guaranteed to converge in many practical cases. The potential game approach has been applied to a wide range of wireless network problems, particularly to a variety of channel assignment problems. In this paper, the properties of potential games are introduced, and games in wireless networks that have been proven to be potential games are comprehensively discussed.Comment: 44 pages, 6 figures, to appear in IEICE Transactions on Communications, vol. E98-B, no. 9, Sept. 201

    R^3: On-device Real-Time Deep Reinforcement Learning for Autonomous Robotics

    Full text link
    Autonomous robotic systems, like autonomous vehicles and robotic search and rescue, require efficient on-device training for continuous adaptation of Deep Reinforcement Learning (DRL) models in dynamic environments. This research is fundamentally motivated by the need to understand and address the challenges of on-device real-time DRL, which involves balancing timing and algorithm performance under memory constraints, as exposed through our extensive empirical studies. This intricate balance requires co-optimizing two pivotal parameters of DRL training -- batch size and replay buffer size. Configuring these parameters significantly affects timing and algorithm performance, while both (unfortunately) require substantial memory allocation to achieve near-optimal performance. This paper presents R^3, a holistic solution for managing timing, memory, and algorithm performance in on-device real-time DRL training. R^3 employs (i) a deadline-driven feedback loop with dynamic batch sizing for optimizing timing, (ii) efficient memory management to reduce memory footprint and allow larger replay buffer sizes, and (iii) a runtime coordinator guided by heuristic analysis and a runtime profiler for dynamically adjusting memory resource reservations. These components collaboratively tackle the trade-offs in on-device DRL training, improving timing and algorithm performance while minimizing the risk of out-of-memory (OOM) errors. We implemented and evaluated R^3 extensively across various DRL frameworks and benchmarks on three hardware platforms commonly adopted by autonomous robotic systems. Additionally, we integrate R^3 with a popular realistic autonomous car simulator to demonstrate its real-world applicability. Evaluation results show that R^3 achieves efficacy across diverse platforms, ensuring consistent latency performance and timing predictability with minimal overhead.Comment: Accepted by RTSS 202

    Elastic Business Process Management: State of the Art and Open Challenges for BPM in the Cloud

    Full text link
    With the advent of cloud computing, organizations are nowadays able to react rapidly to changing demands for computational resources. Not only individual applications can be hosted on virtual cloud infrastructures, but also complete business processes. This allows the realization of so-called elastic processes, i.e., processes which are carried out using elastic cloud resources. Despite the manifold benefits of elastic processes, there is still a lack of solutions supporting them. In this paper, we identify the state of the art of elastic Business Process Management with a focus on infrastructural challenges. We conceptualize an architecture for an elastic Business Process Management System and discuss existing work on scheduling, resource allocation, monitoring, decentralized coordination, and state management for elastic processes. Furthermore, we present two representative elastic Business Process Management Systems which are intended to counter these challenges. Based on our findings, we identify open issues and outline possible research directions for the realization of elastic processes and elastic Business Process Management.Comment: Please cite as: S. Schulte, C. Janiesch, S. Venugopal, I. Weber, and P. Hoenisch (2015). Elastic Business Process Management: State of the Art and Open Challenges for BPM in the Cloud. Future Generation Computer Systems, Volume NN, Number N, NN-NN., http://dx.doi.org/10.1016/j.future.2014.09.00

    Congestion control in multi-serviced heterogeneous wireless networks using dynamic pricing

    Get PDF
    Includes bibliographical references.Service providers, (or operators) employ pricing schemes to help provide desired QoS to subscribers and to maintain profitability among competitors. An economically efficient pricing scheme, which will seamlessly integrate users’ preferences as well as service providers’ preferences, is therefore needed. Else, pricing schemes can be viewed as promoting social unfairness in the dynamically priced network. However, earlier investigations have shown that the existing dynamic pricing schemes do not consider the users’ willingness to pay (WTP) before the price of services is determined. WTP is the amount a user is willing to pay based on the worth attached to the service requested. There are different WTP levels for different subscribers due to the differences in the value attached to the services requested and demographics. This research has addressed congestion control in the heterogeneous wireless network (HWN) by developing a dynamic pricing scheme that efficiently incentivises users to utilize radio resources. The proposed Collaborative Dynamic Pricing Scheme (CDPS), which identifies the users and operators’ preference in determining the price of services, uses an intelligent approach for controlling congestion and enhancing both the users’ and operators’ utility. Thus, the CDPS addresses the congestion problem by firstly obtaining the users WTP from users’ historical response to price changes and incorporating the WTP factor to evaluate the service price. Secondly, it uses a reinforcement learning technique to illustrate how a price policy can be obtained for the enhancement of both users and operators’ utility, as total utility reward obtained increases towards a defined ‘goal state’

    Resource Allocation in Networking and Computing Systems: A Security and Dependability Perspective

    Get PDF
    In recent years, there has been a trend to integrate networking and computing systems, whose management is getting increasingly complex. Resource allocation is one of the crucial aspects of managing such systems and is affected by this increased complexity. Resource allocation strategies aim to effectively maximize performance, system utilization, and profit by considering virtualization technologies, heterogeneous resources, context awareness, and other features. In such complex scenario, security and dependability are vital concerns that need to be considered in future computing and networking systems in order to provide the future advanced services, such as mission-critical applications. This paper provides a comprehensive survey of existing literature that considers security and dependability for resource allocation in computing and networking systems. The current research works are categorized by considering the allocated type of resources for different technologies, scenarios, issues, attributes, and solutions. The paper presents the research works on resource allocation that includes security and dependability, both singularly and jointly. The future research directions on resource allocation are also discussed. The paper shows how there are only a few works that, even singularly, consider security and dependability in resource allocation in the future computing and networking systems and highlights the importance of jointly considering security and dependability and the need for intelligent, adaptive and robust solutions. This paper aims to help the researchers effectively consider security and dependability in future networking and computing systems.publishedVersio
    • 

    corecore