6 research outputs found

    The Algorithmic Complexity of Bondage and Reinforcement Problems in bipartite graphs

    Full text link
    Let G=(V,E)G=(V,E) be a graph. A subset D⊆VD\subseteq V is a dominating set if every vertex not in DD is adjacent to a vertex in DD. The domination number of GG, denoted by γ(G)\gamma(G), is the smallest cardinality of a dominating set of GG. The bondage number of a nonempty graph GG is the smallest number of edges whose removal from GG results in a graph with domination number larger than γ(G)\gamma(G). The reinforcement number of GG is the smallest number of edges whose addition to GG results in a graph with smaller domination number than γ(G)\gamma(G). In 2012, Hu and Xu proved that the decision problems for the bondage, the total bondage, the reinforcement and the total reinforcement numbers are all NP-hard in general graphs. In this paper, we improve these results to bipartite graphs.Comment: 13 pages, 4 figures. arXiv admin note: substantial text overlap with arXiv:1109.1657; and text overlap with arXiv:1204.4010 by other author

    Contents

    Get PDF
    corecore