30 research outputs found

    Reinforcement Learning with Perturbed Rewards

    Full text link
    Recent studies have shown that reinforcement learning (RL) models are vulnerable in various noisy scenarios. For instance, the observed reward channel is often subject to noise in practice (e.g., when rewards are collected through sensors), and is therefore not credible. In addition, for applications such as robotics, a deep reinforcement learning (DRL) algorithm can be manipulated to produce arbitrary errors by receiving corrupted rewards. In this paper, we consider noisy RL problems with perturbed rewards, which can be approximated with a confusion matrix. We develop a robust RL framework that enables agents to learn in noisy environments where only perturbed rewards are observed. Our solution framework builds on existing RL/DRL algorithms and firstly addresses the biased noisy reward setting without any assumptions on the true distribution (e.g., zero-mean Gaussian noise as made in previous works). The core ideas of our solution include estimating a reward confusion matrix and defining a set of unbiased surrogate rewards. We prove the convergence and sample complexity of our approach. Extensive experiments on different DRL platforms show that trained policies based on our estimated surrogate reward can achieve higher expected rewards, and converge faster than existing baselines. For instance, the state-of-the-art PPO algorithm is able to obtain 84.6% and 80.8% improvements on average score for five Atari games, with error rates as 10% and 30% respectively.Comment: AAAI 2020 (Spotlight

    Stable deep reinforcement learning method by predicting uncertainty in rewards as a subtask

    Full text link
    In recent years, a variety of tasks have been accomplished by deep reinforcement learning (DRL). However, when applying DRL to tasks in a real-world environment, designing an appropriate reward is difficult. Rewards obtained via actual hardware sensors may include noise, misinterpretation, or failed observations. The learning instability caused by these unstable signals is a problem that remains to be solved in DRL. In this work, we propose an approach that extends existing DRL models by adding a subtask to directly estimate the variance contained in the reward signal. The model then takes the feature map learned by the subtask in a critic network and sends it to the actor network. This enables stable learning that is robust to the effects of potential noise. The results of experiments in the Atari game domain with unstable reward signals show that our method stabilizes training convergence. We also discuss the extensibility of the model by visualizing feature maps. This approach has the potential to make DRL more practical for use in noisy, real-world scenarios.Comment: Published as a conference paper at ICONIP 202
    corecore