725 research outputs found

    Explainability in Deep Reinforcement Learning

    Get PDF
    A large set of the explainable Artificial Intelligence (XAI) literature is emerging on feature relevance techniques to explain a deep neural network (DNN) output or explaining models that ingest image source data. However, assessing how XAI techniques can help understand models beyond classification tasks, e.g. for reinforcement learning (RL), has not been extensively studied. We review recent works in the direction to attain Explainable Reinforcement Learning (XRL), a relatively new subfield of Explainable Artificial Intelligence, intended to be used in general public applications, with diverse audiences, requiring ethical, responsible and trustable algorithms. In critical situations where it is essential to justify and explain the agent's behaviour, better explainability and interpretability of RL models could help gain scientific insight on the inner workings of what is still considered a black box. We evaluate mainly studies directly linking explainability to RL, and split these into two categories according to the way the explanations are generated: transparent algorithms and post-hoc explainaility. We also review the most prominent XAI works from the lenses of how they could potentially enlighten the further deployment of the latest advances in RL, in the demanding present and future of everyday problems.Comment: Article accepted at Knowledge-Based System

    Machine learning for optical fiber communication systems: An introduction and overview

    Get PDF
    Optical networks generate a vast amount of diagnostic, control and performance monitoring data. When information is extracted from this data, reconfigurable network elements and reconfigurable transceivers allow the network to adapt both to changes in the physical infrastructure but also changing traffic conditions. Machine learning is emerging as a disruptive technology for extracting useful information from this raw data to enable enhanced planning, monitoring and dynamic control. We provide a survey of the recent literature and highlight numerous promising avenues for machine learning applied to optical networks, including explainable machine learning, digital twins and approaches in which we embed our knowledge into the machine learning such as physics-informed machine learning for the physical layer and graph-based machine learning for the networking layer

    On Reducing Undesirable Behavior in Deep Reinforcement Learning Models

    Full text link
    Deep reinforcement learning (DRL) has proven extremely useful in a large variety of application domains. However, even successful DRL-based software can exhibit highly undesirable behavior. This is due to DRL training being based on maximizing a reward function, which typically captures general trends but cannot precisely capture, or rule out, certain behaviors of the system. In this paper, we propose a novel framework aimed at drastically reducing the undesirable behavior of DRL-based software, while maintaining its excellent performance. In addition, our framework can assist in providing engineers with a comprehensible characterization of such undesirable behavior. Under the hood, our approach is based on extracting decision tree classifiers from erroneous state-action pairs, and then integrating these trees into the DRL training loop, penalizing the system whenever it performs an error. We provide a proof-of-concept implementation of our approach, and use it to evaluate the technique on three significant case studies. We find that our approach can extend existing frameworks in a straightforward manner, and incurs only a slight overhead in training time. Further, it incurs only a very slight hit to performance, or even in some cases - improves it, while significantly reducing the frequency of undesirable behavior

    A Survey on Explainable AI for 6G O-RAN: Architecture, Use Cases, Challenges and Research Directions

    Full text link
    The recent O-RAN specifications promote the evolution of RAN architecture by function disaggregation, adoption of open interfaces, and instantiation of a hierarchical closed-loop control architecture managed by RAN Intelligent Controllers (RICs) entities. This paves the road to novel data-driven network management approaches based on programmable logic. Aided by Artificial Intelligence (AI) and Machine Learning (ML), novel solutions targeting traditionally unsolved RAN management issues can be devised. Nevertheless, the adoption of such smart and autonomous systems is limited by the current inability of human operators to understand the decision process of such AI/ML solutions, affecting their trust in such novel tools. eXplainable AI (XAI) aims at solving this issue, enabling human users to better understand and effectively manage the emerging generation of artificially intelligent schemes, reducing the human-to-machine barrier. In this survey, we provide a summary of the XAI methods and metrics before studying their deployment over the O-RAN Alliance RAN architecture along with its main building blocks. We then present various use-cases and discuss the automation of XAI pipelines for O-RAN as well as the underlying security aspects. We also review some projects/standards that tackle this area. Finally, we identify different challenges and research directions that may arise from the heavy adoption of AI/ML decision entities in this context, focusing on how XAI can help to interpret, understand, and improve trust in O-RAN operational networks.Comment: 33 pages, 13 figure

    SliceOps: Explainable MLOps for Streamlined Automation-Native 6G Networks

    Full text link
    Sixth-generation (6G) network slicing is the backbone of future communications systems. It inaugurates the era of extreme ultra-reliable and low-latency communication (xURLLC) and pervades the digitalization of the various vertical immersive use cases. Since 6G inherently underpins artificial intelligence (AI), we propose a systematic and standalone slice termed SliceOps that is natively embedded in the 6G architecture, which gathers and manages the whole AI lifecycle through monitoring, re-training, and deploying the machine learning (ML) models as a service for the 6G slices. By leveraging machine learning operations (MLOps) in conjunction with eXplainable AI (XAI), SliceOps strives to cope with the opaqueness of black-box AI using explanation-guided reinforcement learning (XRL) to fulfill transparency, trustworthiness, and interpretability in the network slicing ecosystem. This article starts by elaborating on the architectural and algorithmic aspects of SliceOps. Then, the deployed cloud-native SliceOps working is exemplified via a latency-aware resource allocation problem. The deep RL (DRL)-based SliceOps agents within slices provide AI services aiming to allocate optimal radio resources and impede service quality degradation. Simulation results demonstrate the effectiveness of SliceOps-driven slicing. The article discusses afterward the SliceOps challenges and limitations. Finally, the key open research directions corresponding to the proposed approach are identified.Comment: 8 pages, 6 Figure

    Explainable AI over the Internet of Things (IoT): Overview, State-of-the-Art and Future Directions

    Full text link
    Explainable Artificial Intelligence (XAI) is transforming the field of Artificial Intelligence (AI) by enhancing the trust of end-users in machines. As the number of connected devices keeps on growing, the Internet of Things (IoT) market needs to be trustworthy for the end-users. However, existing literature still lacks a systematic and comprehensive survey work on the use of XAI for IoT. To bridge this lacking, in this paper, we address the XAI frameworks with a focus on their characteristics and support for IoT. We illustrate the widely-used XAI services for IoT applications, such as security enhancement, Internet of Medical Things (IoMT), Industrial IoT (IIoT), and Internet of City Things (IoCT). We also suggest the implementation choice of XAI models over IoT systems in these applications with appropriate examples and summarize the key inferences for future works. Moreover, we present the cutting-edge development in edge XAI structures and the support of sixth-generation (6G) communication services for IoT applications, along with key inferences. In a nutshell, this paper constitutes the first holistic compilation on the development of XAI-based frameworks tailored for the demands of future IoT use cases.Comment: 29 pages, 7 figures, 2 tables. IEEE Open Journal of the Communications Society (2022

    Explainable and Safe Reinforcement Learning for Autonomous Air Mobility

    Full text link
    Increasing traffic demands, higher levels of automation, and communication enhancements provide novel design opportunities for future air traffic controllers (ATCs). This article presents a novel deep reinforcement learning (DRL) controller to aid conflict resolution for autonomous free flight. Although DRL has achieved important advancements in this field, the existing works pay little attention to the explainability and safety issues related to DRL controllers, particularly the safety under adversarial attacks. To address those two issues, we design a fully explainable DRL framework wherein we: 1) decompose the coupled Q value learning model into a safety-awareness and efficiency (reach the target) one; and 2) use information from surrounding intruders as inputs, eliminating the needs of central controllers. In our simulated experiments, we show that by decoupling the safety-awareness and efficiency, we can exceed performance on free flight control tasks while dramatically improving explainability on practical. In addition, the safety Q learning module provides rich information about the safety situation of environments. To study the safety under adversarial attacks, we additionally propose an adversarial attack strategy that can impose both safety-oriented and efficiency-oriented attacks. The adversarial aims to minimize safety/efficiency by only attacking the agent at a few time steps. In the experiments, our attack strategy increases as many collisions as the uniform attack (i.e., attacking at every time step) by only attacking the agent four times less often, which provide insights into the capabilities and restrictions of the DRL in future ATC designs. The source code is publicly available at https://github.com/WLeiiiii/Gym-ATC-Attack-Project
    • …
    corecore