309 research outputs found

    Proximal Policy Gradient Arborescence for Quality Diversity Reinforcement Learning

    Full text link
    Training generally capable agents that perform well in unseen dynamic environments is a long-term goal of robot learning. Quality Diversity Reinforcement Learning (QD-RL) is an emerging class of reinforcement learning (RL) algorithms that blend insights from Quality Diversity (QD) and RL to produce a collection of high performing and behaviorally diverse policies with respect to a behavioral embedding. Existing QD-RL approaches have thus far taken advantage of sample-efficient off-policy RL algorithms. However, recent advances in high-throughput, massively parallelized robotic simulators have opened the door for algorithms that can take advantage of such parallelism, and it is unclear how to scale existing off-policy QD-RL methods to these new data-rich regimes. In this work, we take the first steps to combine on-policy RL methods, specifically Proximal Policy Optimization (PPO), that can leverage massive parallelism, with QD, and propose a new QD-RL method with these high-throughput simulators and on-policy training in mind. Our proposed Proximal Policy Gradient Arborescence (PPGA) algorithm yields a 4x improvement over baselines on the challenging humanoid domain.Comment: Submitted to Neurips 202

    Model predictive control-based value estimation for efficient reinforcement learning

    Full text link
    Reinforcement learning suffers from limitations in real practices primarily due to the numbers of required interactions with virtual environments. It results in a challenging problem that we are implausible to obtain an optimal strategy only with a few attempts for many learning method. Hereby, we design an improved reinforcement learning method based on model predictive control that models the environment through a data-driven approach. Based on learned environmental model, it performs multi-step prediction to estimate the value function and optimize the policy. The method demonstrates higher learning efficiency, faster convergent speed of strategies tending to the optimal value, and fewer sample capacity space required by experience replay buffers. Experimental results, both in classic databases and in a dynamic obstacle avoidance scenario for unmanned aerial vehicle, validate the proposed approaches

    Virtual Robot Climbing using Reinforcement Learning

    Get PDF
    Reinforcement Learning (RL) is a field of Artificial Intelligence that has gained a lot of attention in recent years. In this project, RL research was used to design and train an agent to climb and navigate through an environment with slopes. We compared and evaluated the performance of two state-of-the-art reinforcement learning algorithms for locomotion related tasks, Deep Deterministic Policy Gradients (DDPG) and Trust Region Policy Optimisation (TRPO). We observed that, on an average, training with TRPO was three times faster than DDPG, and also much more stable for the locomotion control tasks that we experimented. We conducted experiments and finally designed an environment using insights from transfer learning to successfully train an agent to climb slopes up to 36°

    Learning to Run challenge solutions: Adapting reinforcement learning methods for neuromusculoskeletal environments

    Full text link
    In the NIPS 2017 Learning to Run challenge, participants were tasked with building a controller for a musculoskeletal model to make it run as fast as possible through an obstacle course. Top participants were invited to describe their algorithms. In this work, we present eight solutions that used deep reinforcement learning approaches, based on algorithms such as Deep Deterministic Policy Gradient, Proximal Policy Optimization, and Trust Region Policy Optimization. Many solutions use similar relaxations and heuristics, such as reward shaping, frame skipping, discretization of the action space, symmetry, and policy blending. However, each of the eight teams implemented different modifications of the known algorithms.Comment: 27 pages, 17 figure

    Learning Agility and Adaptive Legged Locomotion via Curricular Hindsight Reinforcement Learning

    Full text link
    Agile and adaptive maneuvers such as fall recovery, high-speed turning, and sprinting in the wild are challenging for legged systems. We propose a Curricular Hindsight Reinforcement Learning (CHRL) that learns an end-to-end tracking controller that achieves powerful agility and adaptation for the legged robot. The two key components are (I) a novel automatic curriculum strategy on task difficulty and (ii) a Hindsight Experience Replay strategy adapted to legged locomotion tasks. We demonstrated successful agile and adaptive locomotion on a real quadruped robot that performed fall recovery autonomously, coherent trotting, sustained outdoor speeds up to 3.45 m/s, and tuning speeds up to 3.2 rad/s. This system produces adaptive behaviours responding to changing situations and unexpected disturbances on natural terrains like grass and dirt
    corecore