13 research outputs found

    Learning to Scaffold the Development of Robotic Manipulation Skills

    Full text link
    Learning contact-rich, robotic manipulation skills is a challenging problem due to the high-dimensionality of the state and action space as well as uncertainty from noisy sensors and inaccurate motor control. To combat these factors and achieve more robust manipulation, humans actively exploit contact constraints in the environment. By adopting a similar strategy, robots can also achieve more robust manipulation. In this paper, we enable a robot to autonomously modify its environment and thereby discover how to ease manipulation skill learning. Specifically, we provide the robot with fixtures that it can freely place within the environment. These fixtures provide hard constraints that limit the outcome of robot actions. Thereby, they funnel uncertainty from perception and motor control and scaffold manipulation skill learning. We propose a learning system that consists of two learning loops. In the outer loop, the robot positions the fixture in the workspace. In the inner loop, the robot learns a manipulation skill and after a fixed number of episodes, returns the reward to the outer loop. Thereby, the robot is incentivised to place the fixture such that the inner loop quickly achieves a high reward. We demonstrate our framework both in simulation and in the real world on three tasks: peg insertion, wrench manipulation and shallow-depth insertion. We show that manipulation skill learning is dramatically sped up through this way of scaffolding.Comment: Accepted to IEEE International Conference on Robotics and Automation (ICRA) 202

    Robotic Assembly Control Reconfiguration Based on Transfer Reinforcement Learning for Objects with Different Geometric Features

    Full text link
    Robotic force-based compliance control is a preferred approach to achieve high-precision assembly tasks. When the geometric features of assembly objects are asymmetric or irregular, reinforcement learning (RL) agents are gradually incorporated into the compliance controller to adapt to complex force-pose mapping which is hard to model analytically. Since force-pose mapping is strongly dependent on geometric features, a compliance controller is only optimal for current geometric features. To reduce the learning cost of assembly objects with different geometric features, this paper is devoted to answering how to reconfigure existing controllers for new assembly objects with different geometric features. In this paper, model-based parameters are first reconfigured based on the proposed Equivalent Theory of Compliance Law (ETCL). Then the RL agent is transferred based on the proposed Weighted Dimensional Policy Distillation (WDPD) method. The experiment results demonstrate that the control reconfiguration method costs less time and achieves better control performance, which confirms the validity of proposed methods
    corecore