1,458 research outputs found

    Using humanoid robots to study human behavior

    Get PDF
    Our understanding of human behavior advances as our humanoid robotics work progresses-and vice versa. This team's work focuses on trajectory formation and planning, learning from demonstration, oculomotor control and interactive behaviors. They are programming robotic behavior based on how we humans “program” behavior in-or train-each other

    The emotional gatekeeper: a computational model of attentional selection and suppression through the pathway from the amygdala to the inhibitory thalamic reticular nucleus

    Get PDF
    In a complex environment that contains both opportunities and threats, it is important for an organism to flexibly direct attention based on current events and prior plans. The amygdala, the hub of the brain's emotional system, is involved in forming and signaling affective associations between stimuli and their consequences. The inhibitory thalamic reticular nucleus (TRN) is a hub of the attentional system that gates thalamo-cortical signaling. In the primate brain, a recently discovered pathway from the amygdala sends robust projections to TRN. Here we used computational modeling to demonstrate how the amygdala-TRN pathway, embedded in a wider neural circuit, can mediate selective attention guided by emotions. Our Emotional Gatekeeper model demonstrates how this circuit enables focused top-down, and flexible bottom-up, allocation of attention. The model suggests that the amygdala-TRN projection can serve as a unique mechanism for emotion-guided selection of signals sent to cortex for further processing. This inhibitory selection mechanism can mediate a powerful affective 'framing' effect that may lead to biased decision-making in highly charged emotional situations. The model also supports the idea that the amygdala can serve as a relevance detection system. Further, the model demonstrates how abnormal top-down drive and dysregulated local inhibition in the amygdala and in the cortex can contribute to the attentional symptoms that accompany several neuropsychiatric disorders.R01MH057414 - NIMH NIH HHS; R01 MH057414 - NIMH NIH HHS; R01 MH101209 - NIMH NIH HHS; R01NS024760 - NINDS NIH HHS; R01MH101209 - NIMH NIH HHS; R01 NS024760 - NINDS NIH HH

    The Descent of Preferences

    Get PDF
    [A slightly revised version of this paper has been accepted by the BJPS] More attention has been devoted to providing evolutionary scenarios accounting for the development of beliefs, or belief-like states, than for desires or preferences. Here I articulate and defend an evolutionary rationale for the development of psychologically real preference states. Preferences token or represent the expected values of discriminated states, available actions, or action-state pairings. The argument is an application the ‘environmental complexity thesis’ found in Godfrey-Smith and Sterelny, although my conclusions differ from Sterelny’s. I argue that tokening expected utilities can, under specified general conditions, be a powerful design solution to the problem of allocating the capacities of an agent in an efficient way. Preferences are for efficient action selection, and are a ‘fuel for success’ in the sense urged by Godfrey-Smith for true beliefs. They will tend to be favoured by selection when environments are complex in ways that matter to an organism, and when organisms have rich behavioural repertoires with heterogenous returns and costs.   The rationale suggested here is conditional, especially on contingencies in what design options are available to selection and on trade-offs associated with the costs of generating and processing representations of value. The unqualified efficiency rationale for preferences suggests that organisms should represent expected utilities in a comprehensive and consistent way, but none of them do. In the final stages of the paper I consider some of the ways in which design trade-offs compromise the implementation of preferences in organisms that have them

    PrÀ- und postnatale Entwicklung topographischer Transformationen im Gehirn

    Get PDF
    This dissertation connects two independent fields of theoretical neuroscience: on the one hand, the self-organization of topographic connectivity patterns, and on the other hand, invariant object recognition, that is the recognition of objects independently of their various possible retinal representations (for example due to translations or scalings). The topographic representation is used in the presented approach, as a coordinate system, which then allows for the implementation of invariance transformations. Hence this study shows, that it is possible that the brain self-organizes before birth, so that it is able to invariantly recognize objects immediately after birth. Besides the core hypothesis that links prenatal work with object recognition, advancements in both fields themselves are also presented. In the beginning of the thesis, a novel analytically solvable probabilistic generative model for topographic maps is introduced. And at the end of the thesis, a model that integrates classical feature-based ideas with the normalization-based approach is presented. This bilinear model makes use of sparseness as well as slowness to implement "optimal" topographic representations. It is therefore a good candidate for hierarchical processing in the brain and for future research.Die vorliegende Arbeit verbindet zwei bisher unabhĂ€ngig untersuchte Gebiete der theoretischen Neurowissenschaften: zum Einen die vorgeburtliche Selbstorganisation topographischer Verbindungsstrukturen und zum Anderen die invariante Objekterkennung, das heisst, die Erkennung von Objekten trotz ihrer mannigfaltigen retinalen Darstellungen (zum Beispiel durch Verschiebungen oder Skalierungen). Die topographische ReprĂ€sentierung wird hierbei wĂ€hrend der Selbstorganisation als Koordinatensystem genutzt, um Invarianztransformationen zu implementieren. Dies zeigt die Möglichkeit auf, dass sich das Gehirn bereits vorgeburtlich detailliert selbstorganisieren kann, um nachgeburtlich sofort invariant Erkennen zu können. Im Detail fĂŒhrt Kapitel 2 in ein neues, probabilistisch generatives und analytisch lösbares Modell zur Ontogenese topographischer Transformationen ein. Dem Modell liegt die Annahme zugrunde, dass Ausgabezellen des Systems nicht völlig unkorreliert sind, sondern eine a priori gegebene Korrelation erreichen wollen. Da die Eingabezellen nachbarschaftskorreliert sind, hervorgerufen durch retinale Wellen, ergibt sich mit der Annahme rein erregender Verbindungen eine eindeutige topographische synaptische Verbindungsstruktur. Diese entspricht der bei vielen Spezies gefundenen topographischen Karten, z.B. der Retinotopie zwischen der Retina und dem LGN, oder zwischen dem LGN und dem Neokortex. Kapitel 3 nutzt eine abstraktere Formulierung des Retinotopiemechanismus, welche durch adiabitische Elimination der AktivitĂ€tsvariablen erreicht wird, um den Effekt retinaler Wellen auf ein Modell höherer kortikaler Informationsverarbeitung zu untersuchen. Zu diesem Zweck wird der Kortex vereinfacht als bilineares Modell betrachtet, um einfache modulatorische NichtlinearitĂ€ten mit in Betracht ziehen zu können. ZusĂ€tzlich zu den Ein- und Ausgabezellen kommen in diesem Modell Kontrolleinheiten zum Einsatz, welche den Informationsfluss aktiv steuern können und sich durch Wettbewerb und prĂ€natalem Lernen auf verschiedene Muster retinaler Wellen spezialisieren. Die Ergebnisse zeigen, dass die entstehenden Verbindungsstrukturen affinen topographischen Abbildungen (insbesondere Translation, Skalierung und Orientierung) entsprechen, die nach Augenöffnen invariante Erkennung ermöglichen, da sie Objekte in der Eingabe in eine normalisierte ReprĂ€sentierung transformieren können. Das Modell wird fĂŒr den eindimensionalen Fall ausfĂŒhrlich analysiert und die FunktionalitĂ€t fĂŒr den biologisch relevanteren zweidimensionalen Fall aufgezeigt. Kapitel 4 verallgemeinert das bilineare Modell des dritten Kapitels zu einem mehrschichtigen Modell, die shifter curcuits''. Diese ermöglichen eine logarithmisch in der Anzahl der Eingabezellen wachsende Anzahl an Synapsen, statt einer prohibitiv quadratischen Anzahl. Ausgenutzt wird die OrthogonalitĂ€t von Translationen im Raum der Verbindungsstrukturen um diese durch harten Wettbewerb an einzelnen Synapsen zu organisieren. Neurobiologisch ist dieser Mechanismus durch Wettbewerb um einen wachstumsregulierenden Transmitter realisierbar. Kapitel 5 nutzt Methoden des probabilistischen Lernens, um das bilineare Modell auf das Lernen von optimalen ReprĂ€sentation der Eingabestatistiken zu optimieren. Da statistischen Methoden zweiter Ordnung, wie zum Beispiel das generative Modell aus Kapitel 2, keine lokalisierten rezeptiven Felder ermöglichen und somit keine (örtliche) Topographie möglich ist, wird sparseness'' verwendet um statistischen AbhĂ€ngigkeiten höherer Ordnung zu lernen und gleichzeitig Topographie zu implementieren. Anwendungen des so formulierten Modells auf natĂŒrliche Bilder zeigen, dass lokalisierte, bandpass filternde rezeptive Felder entstehen, die primĂ€ren kortikalen rezeptiven Feldern stark Ă€hneln. Desweiteren entstehen durch die erzwungene Topographie Orientierungs- und Frequenzkarten, die ebenfalls kortikalen Karten Ă€hneln. Eine Untersuchung des Modells mit zusĂ€tzlicher slowness'' der Ausgabezellen und in zeitlicher NĂ€he gezeigten transformierten natĂŒrlichen Eingabemustern zeigt, dass verschiedene Kontrolleinheiten konsistente und den Eingabetransformationen entsprechende rezeptive Felder entwickeln und somit invariante Darstellungen bezĂŒglich der gezeigten Eingaben entwickeln

    Which way do I go? Neural activation in response to feedback and spatial processing in a virtual T-maze

    No full text
    In 2 human event-related brain potential (ERP) experiments, we examined the feedback error-related negativity (fERN), an ERP component associated with reward processing by the midbrain dopamine system, and the N170, an ERP component thought to be generated by the medial temporal lobe (MTL), to investigate the contributions of these neural systems toward learning to find rewards in a "virtual T-maze" environment. We found that feedback indicating the absence versus presence of a reward differentially modulated fERN amplitude, but only when the outcome was not predicted by an earlier stimulus. By contrast, when a cue predicted the reward outcome, then the predictive cue (and not the feedback) differentially modulated fERN amplitude. We further found that the spatial location of the feedback stimuli elicited a large N170 at electrode sites sensitive to right MTL activation and that the latency of this component was sensitive to the spatial location of the reward, occurring slightly earlier for rewards following a right versus left turn in the maze. Taken together, these results confirm a fundamental prediction of a dopamine theory of the fERN and suggest that the dopamine and MTL systems may interact in navigational learning tasks
    • 

    corecore